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Influence of turbulent natural convection on heat transfer in shal-
low caves
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• Large-eddy simulations of natural convection in a confined shallow cave
are performed using wall temperature distributions representative of
different times of the year.

• We propose a general approach to predict heat transfer in a shallow
confined cave, and analyse the role of convection and radiation.

• Two flow regimes are found depending on the direction of the mean
vertical temperature gradient.

• Heat transfer coefficients are calculated from the simulations and the
use of the Newton’s law to predict the heat flux at cave walls is dis-
cussed.
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Abstract

We aim at analyzing in detail the different heat transfer mechanisms in-
volved in a confined shallow cave embedded in a rock massif submitted to
seasonal variations of the ground temperature. Heat conduction in the rock
massif, radiative heat transfer between cave walls, and turbulent natural
convection inside the cave are considered. The natural convection problem is
solved by large-eddy simulations (LES) using a Chebyshev pseudo-spectral
method associated with a spectral vanishing viscosity (SVV) model. The
thermal boundary conditions applied to the cave walls are obtained from a
large-scale model that takes into account heat conduction in the rock massif
and radiative fluxes between cave walls. This approach allows us to charac-
terize the relative strength of convective and radiative fluxes and to identify
the regions of the cavity and times of the year of intense heat transfer. We
identified two different flow regimes: (i) a one-cell flow regime associated
with strong convection, high turbulence level and unstable mean vertical
temperature gradient, (ii) a multiple-cell flow regime associated with weak
convection, low turbulence level and stable mean vertical temperature gra-
dient. The use of the Newton’s law to describe convection heat fluxes at the
cavity walls is discussed.
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1. Introduction1

Karsts are landscapes formed from the dissolution of soluble rocks, for2

instance limestone or gypsum [1]. The chemical erosion due to rainwater3

results in the formation of an extensive network of caves. Heat transfer in4

karstic massifs is at the core of many issues, as diverse as paleoclimate re-5

construction from speleothem analysis [2], consequences of tunneling on the6

environment [3], evolution of subterranean flora and fauna [4], or conserva-7

tion of parietal prehistoric paintings [5, 6]. However, assessing temperature8

fields and heat fluxes in karstic massifs is complicated by the coupling be-9

tween several heat transfer mechanisms, as heat conduction in the rock and10

convection due to air and water circulation in caves [7], possibly with latent11

heat exchanges due to condensation/evaporation or even ice formation [8].12

In this work, we focus on caves located at a shallow depth, typically13

on the order of 10 meters. This configuration corresponds to that of many14

painted caves in France (Lascaux [9], Marsoulas and Pech Merle [10]) and15

throughout the world (Altamira in Spain [5], Takamatsuzuka Tumulus in16

Japan [11]). The exceptional state of conservation of parietal paintings (some17

of which are more than 10,000 years old) is mainly due to the high stability18

of cave microclimate. Painting damages can occur when this microclimate19

is disturbed. Human visits may result in significant climate perturbations in20

a number of different ways, directly (increase in temperature, humidity and21

CO2 concentration, resulting in enhanced condensation and corrosion on cave22

walls [12]) or indirectly (need for an artificial ventilation, modification of cave23

entrance to allow visits as in Lascaux [9] or Marsoulas [10]). In some cases,24

the cessation or the limitation of visits is not enough to restore favourable25

conditions for conservation, and remediation may be necessary (e.g., thermal26

insulation of the Takamatsuzuka Tumulus [11]). A deep understanding of27

the physical mechanisms driving heat transfer inside a cave and between28

a cave and its external environment is therefore necessary to improve the29

conservation of painting cave heritage.30

The damping of the external temperature fluctuations by the rock massif31

surrounding a confined cave is the main reason for its high thermal stability32

(by confined cave, we mean a cave for which mass transfer with the exter-33

nal environment can be neglected). Quindos and coworkers [13, 5] measured34

the amplitude and phase shift of the annual temperature variations at the35

roofs of Altamira Cave, at different locations of varying depth (from 3.5 m36

to 17.5 m), and found a good agreement with the prediction of the periodic37
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1D conduction model. In the range of depth from a few meters to approxi-38

mately 10 m, daily temperature fluctuations can be considered as completely39

damped, while annual temperature fluctuations are still perceptible.40

Due to complex cave geometry and depth variations all along the cave,41

temperature levels inside the cave (i.e., wall and air temperatures) vary not42

only in time, but also in space. Quindos et al [5] found that the amplitude and43

phase shift at the floors of Altamira Cave were close to the values measured at44

the roofs, which they attributed to radiative heat transfer between cave walls.45

Guerrier et al [14] confirmed by numerical simulations the significant role of46

thermal radiation in the homogenization of the temperature field inside a47

confined cave. However, spatial temperature variations are not strictly zero.48

For instance, temperature differences on the order of 0.1 K were commonly49

measured between the walls of the Hall of Bulls in Lascaux Cave [15]. This is50

enough to trigger significant natural convection flow. Indeed, assuming a cave51

height of 5 m, the Rayleigh number comparing buoyancy and diffusion is on52

the order of 109, denoting possible turbulent flow at least in some parts of the53

cave [16, 17]. In addition, relative humidity is often close to 100 % in confined54

caves [5, 10], due to the presence of thin liquid films of percolating water on55

the walls and weak ventilation. Therefore, small temperature variations can56

induce condensation/evaporation at the walls, so that latent heat exchange57

must be considered. Due to seasonal variations of water intake [18], air58

humidity [5] and wall temperatures, condensation/evaporation mass fluxes59

are expected to vary in time. In conclusion, a minimal model for a shallow60

confined cave must consider heat conduction in the rock massif, radiative heat61

transfer between cave walls, and turbulent natural convection inside the cave.62

In addition, the significance of latent heat exchanges due to condensation and63

evaporation must be assessed.64

The numerical investigation of cave climate is clearly restricted by the65

computational effort required to simulate 3D turbulent natural convection.66

If the gas is assumed to be transparent, radiative transfer between opaque67

walls can be efficiently computed using view factors. A simple approach68

to account for convection without solving the Navier–Stokes equations is to69

estimate the wall convective heat fluxes from the Newton’s law [11, 14]. A70

considerable drawback of this method is the need for empirical correlations to71

estimate heat transfer coefficients, whereas available correlations refer to cav-72

ities of simple geometry with uniform thermal boundary conditions on each73

wall [19]. These conditions are far from being fulfilled in natural cavities,74

making the estimation of heat transfer coefficients inaccurate. In contrast,75
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some authors rely on Computational Fluid Dynamics (CFD) to get better76

insights on convection in caves [6, 20]. Assuming laminar flow, Lacanette et77

al. [20] developed specific numerical methods to solve for air velocity, temper-78

ature and moisture fields in Lascaux cave. Two sets of prescribed boundary79

conditions, representative of climate conditions in 1980 and 1999, were con-80

sidered.81

In this article, we aim at analyzing in detail the different mechanisms82

involved in heat transfer in a confined shallow cave embedded in a rock83

massif. Ideally, we should consider a problem where heat conduction in84

the rock, radiative transfer between the cave walls, and turbulent natural85

convection inside the cave are fully coupled, and solve a 1–year periodic86

regime. However, a one–year CFD simulation is not practicable with current87

computational resources. We thus proceed as follows. We first define a88

large–scale model, including heat conduction in the rock massif and radiative89

heat transfer between the cave walls, but neglecting convection inside the90

cave. Solving the periodic regime provides temperature fields in the rock91

massif (including the cave walls) all along the year. Then we select six wall92

temperature fields (spaced two months apart) representative of the different93

thermal states encountered in the cave over the year. These temperature94

fields are used as boundary conditions to solve the natural convection problem95

inside the cave by a detailed flow simulation.96

The thermal conductive fluxes in the air at the cave walls (i.e., the ther-97

mal “convective” fluxes) obtained from the detailed flow simulation are then98

compared with the radiative fluxes predicted by the large–scale model. Two99

cases may arise:100

• the thermal conductive fluxes at the cave walls are much smaller than101

the radiative fluxes, and disregarding convection in the large–scale102

model was a valid assumption. The temperature and velocity fields103

inside the cave are known from the detailed flow simulation. If hu-104

mid air was considered, the vapor concentration field in the cave and105

evaporation/condensation mass fluxes at the cave walls would also be106

known.107

• the thermal conductive fluxes at the cave walls are larger than the ra-108

diative fluxes. In this case, natural convection significantly contributes109

to the uniformization of the wall temperature fields. Since this effect110

was not taken into account in the large–scale model, the intensity of111

the natural convection flow is likely overestimated. Conduction fluxes112
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at the cave walls can thus be regarded as higher bounds of the actual113

ones, which is still a useful information. This approach also provides114

higher bounds of evaporation/condensation mass fluxes when humid115

air is considered.116

For the sake of simplicity, we consider a parallelepiped cavity, but more117

complex geometries could be treated with the same global approach. As a118

first step, we only consider in this article the limiting case of dry air (latent119

heat exchanges are thus disregarded). The large–scale model is solved using120

the finite element method. The turbulent convection flow inside the cave121

is obtained from large-eddy simulations (LES) performed with a Chebyshev122

pseudo-spectral method associated with a spectral vanishing viscosity (SVV)123

model [21].124

The paper is organised as follows. We first describe the large-scale model125

used to obtain temperature fields at cave walls (Sec. 2). Then we present126

the LES model used for the simulation of the natural convection flow inside127

the cave, and its numerical validation (Sec. 3). We discuss in section 4 the128

different flow regimes observed depending on the season, as well as turbulent129

statistics. We analyse in section 5 the heat flux distributions at the walls.130

Conducto-convective fluxes are compared with radiative fluxes. Concluding131

remarks are presented in section 6.132

2. Large–scale model133

2.1. Governing equations134

The large–scale model is a 3D extension of the 2D model defined by135

Guerrier et al [14]. We consider the confined parallelepiped cavity embedded136

in the rock massif displayed in Fig. 1a. The ground surface is inclined at 10◦
137

from the horizontal direction. The left upper edge of the cavity is located at138

a depth of 7.3 m. The cave dimensions are the height LX = 5.3 m, the width139

LY = 7 m and the length LZ = 17 m (see Fig. 2a), which roughly reflect140

the size of the Hall of Bulls in Lascaux Cave. The gravity acceleration field141

corresponds to g = −gX.142

Conductive heat transfer is assumed in the rock massif:143

∂Tr
∂t

= αr∇2Tr , (1)

where Tr is the rock temperature, t the time and αr = 8 × 10−7 m2.s−1 the144

limestone diffusivity [14]. A time–periodic Dirichlet condition is imposed at145
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Figure 1: a) Geometry setup for the large–scale model (not at scale). b) Time evolution
over a one-year period of the external temperature fluctuation Tex(t)− Tm applied at the
upper surface of the massif. The six filled circles correspond to the six months that we
investigate (see the corresponding times in Tab. 1).

the upper surface of the rock massif (see Fig. 1a):146

Tex(t) = Tm + A cos

(
2π
t

τ

)
, (2)

where Tex is the external ambient temperature, τ = 1 year is the period,147

Tm = 12◦C is the annual average external temperature and A = 8◦C is the148

amplitude of the temperature variations (these values of Tm and A are typ-149

ical of the climate conditions in south–west of France). The time evolution150

of Tex is displayed in Fig. 1b, where the six months that will be investi-151

gated using the LES model are highlighted. As we only consider the periodic152

regime, we arbitrarily assume that the initial time corresponds to the hottest153

temperature of the year that takes place in July.154

The lateral and bottom sides of the massif are adiabatic. With the155

approximation of black walls (the emissivity of limestone is 0.96 [19], i.e.,156

close to 1), and disregarding convection as explained in the introduction, the157

boundary condition at cave walls reads158

−λr∇Tr.n = σT 4 −
∫
Ω·n<0

I(Ω)|Ω · n|dΩ , (3)

where λr = 1.656 W.m−1.K−1 is the rock thermal conductivity [14], n is the159

normal vector pointing to the cavity, σ is the Stefan-Boltzmann constant160
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Figure 2: a) Geometry setup of the cavity. b) Time evolution of the temperature fluctu-
ations T (t) − Tm averaged on four edges of the cave. Red, yellow, green and blue lines
correspond to the left upper (Z = 0 and X = LX), left bottom (Z = 0 and X = 0), right
upper (Z = LZ and X = LX) and right bottom (Z = LZ and X = 0) edges, respectively
(the colors of the edges in Fig. 2a, and of the curves in Fig. 2b correspond to each other).
The six months that we investigate are marked with filled circles.

and I(Ω) is the radiative intensity (integrated over the infrared spectrum) in161

direction Ω. The air is supposed to be transparent. Therefore, I(Ω) depends162

on wall temperatures, and does not depend on the temperature field of the163

gas phase.164

The model defined by Eqs.(1-3) is solved using the commercial software165

Comsol Multiphysics (Galerkin method, time discretization based on implicit166

backward differentiation formulas). The computational domain is discretized167

with a total of approximately 530,000 quadratic Lagrangian tetrahedron el-168

ements. The view factors related to surface elements on cave walls are cal-169

culated using the hemicube method [22].170

2.2. Results from the large–scale model171

We discuss the six wall temperature fields resulting from the simulation172

of the large–scale model, at months of the year indicated in Fig. 1b. The wall173

temperature fields in February, March and May are displayed in Fig. 3. The174

wall temperature fields for the months of August, September and November175

(not shown) can be deduced by symmetry from those of February, March176

and May respectively, thanks to the yearly periodicity. Despite the simple177
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geometry of the cave, the wall temperature fields are rather complex. Be-178

cause of conductive damping in the rock and temperature uniformization by179

radiative transfer inside the cavity, temperature gradients are larger along180

the vault than along the floor, the latter being quasi-isothermal. The max-181

imum wall-temperature difference ∆T = Tmax − Tmin is reported in Tab. 1182

for each month: it is minimal in February/August (0.124 K) and maximal in183

May/November (0.492 K).184

We can gain more insight by considering in Fig. 2b the time evolution185

of the temperature averaged on the four edges highlighted in Fig. 2a. The186

average temperature of the upper left edge, which is the closest to the ground187

surface, evolves with larger amplitude and different phase shift compared to188

that of the other edges, whose temperatures differ little from each other.189

More specifically, the phase shifts of the left upper edge (depth d = 7.3 m)190

and of the right upper edge (depth d = 10.3 m) are respectively 0.40 and191

0.53 year. This is close to the values 0.41 and 0.58 year predicted by a 1D192

semi-infinite model for which the phase shift is d
√
τ/(4παr). The complexity193

of the wall temperature fields thus results from the small 10◦ slope between194

the ground and the horizontal plane (see Fig. 1a). Consequences on the flow195

structure will be analysed in Sec. 4 by using these wall temperature fields as196

thermal boundary conditions in the LES.197

3. Large-eddy simulation model198

3.1. Governing equations199

The air filling the cavity is assumed to be dry, transparent and at at-200

mospheric pressure. Following the Boussinesq approximation, the physical201

properties of the fluid are assumed to remain constant, except in the buoy-202

ancy term of the momentum equation where the density is assumed to vary203

linearly with temperature. The natural convection flow induced in the cavity204

is therefore governed by the following dimensionless equations:205

∇∗.u∗ = 0, (4)

∂u∗

∂t∗
+ u∗.∇∗u∗ = −∇∗p∗ + PrT ∗x∗ +

Pr

Ra0.5
∇∗2u∗ (5)

∂T ∗

∂t∗
+ u∗.∇∗T ∗ =

1

Ra0.5
∇∗2T ∗, (6)
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Figure 3: Wall temperature fields T − Tm computed from the large–scale model for three
months: February, March and May, from top to bottom. The left panels correspond to
the upper (X = LX), left (Z = 0) and front (Y = LY ) cave walls. The right panels
correspond to the bottom (X = 0), right (Z = LZ) and back (Y = 0) cave walls.
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where ∗ denotes dimensionless variables and u, p, T are respectively the206

velocity vector, the motion pressure and the temperature. Equations are207

made dimensionless using the reference height LX , the reference time tref =208

L2
X/(αRa

0.5), and the reference temperature scale ∆T . The reduced tem-209

perature thus reads T ∗ = (T − T0)/∆T , where T0 = (Tmax + Tmin)/2 is210

the reference temperature. Pr = ν/α = 0.712, and Ra = gβ∆TL3
X/(αν)211

are respectively the Prandtl number, and the Rayleigh number, where α =212

2.05 × 10−5 m2.s−1 is the thermal diffusivity, ν = 1.46 × 10−5 m2.s−1 is the213

kinematic viscosity and β = T−1
0 is the thermal expansion coefficient.214

Hydrodynamic and thermal boundary conditions at cave walls are zero215

velocity (no–slip) and one of the temperature fields provided by the large–216

scale model. Wall temperatures are assumed to be time–independent. This217

is justified by the large time scale associated with the time evolution of the218

wall temperature compared to the small characteristic time scale associated219

with the convection inside the cave. Indeed, the characteristic time scale of220

conduction in the rock for a depth equal to 7.3 m is about 2 years, which is of221

the same order as the period of 1 year characterizing the change of external222

boundary conditions, while the circulation time (or convection time), based223

on the computed velocities is of the order of a few minutes. The time required224

to reach statistically steady flows in the numerical simulations is of the order225

of 1 hour, which is also much smaller than one year.226

One of the main outcome of the simulation is the distribution of the227

conductive flux at the walls, to be compared with the radiative flux from the228

large–scale model. The conductive flux through the walls in the gas phase229

reads230

qcon = −λ∇T · n, (7)

where λ = 2.51×10−2 W.m−1.K−1 is the air conductivity. The dimensionless231

counterpart of Eq. (7) is232

Nu = −∇∗T ∗ · n, (8)

where Nu = qconLX/(λ∆T ) is the Nusselt number at the walls.233

The values of ∆T , T0 and Ra for the six cases considered in the LES are234

listed in Tab. 1. Notice that similar values of Ra may correspond to different235

wall temperature fields resulting in different flow structures, as will be seen236

in section 4.237
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Time Month ∆T (K) T0 (K) Ra ×10−9

0.11 τ August 0.124 284.985 2.13
0.20 τ September 0.312 285.165 5.35
0.37 τ November 0.492 285.419 8.41
0.61 τ February 0.124 285.315 2.13
0.70 τ March 0.312 285.135 5.35
0.87 τ May 0.492 284.881 8.43

Table 1: Maximum temperature difference ∆T , reference temperature T0 and Rayleigh
number Ra for the six wall temperature fields used as boundary conditions in the LES
(τ = 1 year).

3.2. Numerical methods238

The large-eddy simulation (LES) approach is used in this study to save239

computational time. Simulations are performed using a Chebyshev pseudo-240

spectral method (detailed in Sec. 3.2.1), associated with a spectral vanishing241

viscosity (SVV) method (detailed in Sec. 3.2.2) to model the effects of the242

subgrid scales. In Sec. 3.3, we analyse the sensitivity of LES results to SVV243

parameters and we compare LES results with Direct Numerical Simulation244

(DNS) results in February, which corresponds to the smallest Rayleigh num-245

ber investigated.246

3.2.1. Chebyshev pseudo-spectral method247

The flow governing equations are implemented in a spectral code close248

to the one developed by Xin and Le Quéré [23], using a Chebyshev colloca-249

tion method for the three spatial dimensions. This type of spectral method250

reaches a high spatial accuracy at a reasonable numerical cost. It assumes251

that the required solution is represented on a finite basis of orthogonal func-252

tions. The basis functions considered for the spatial discretization are the253

Chebyshev polynomials, suitable for the development of non-periodic func-254

tions. A projection method is used to ensure the pressure-flow coupling:255

first, the momentum and heat equations are solved using the pressure field256

from the previous time step; second, a pressure correction term is calculated257

from a Poisson equation and the predicted velocity is corrected to force the258

velocity divergence free condition. Time integration is performed using a259

second-order semi-implicit temporal scheme, coupling a backward differenti-260

ation (BDF2) scheme for the linear diffusion terms and an Adams Bashforth261
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extrapolation for the convective terms. Moreover, the computational domain262

is decomposed along the largest spatial direction (here the Z-horizontal di-263

rection) in order to perform parallel computations [24].264

3.2.2. Spectral vanishing viscosity model265

LES involves filtering the Navier-Stokes equations and solving only the266

large scales of a turbulent flow. The small scales of the flow are not solved but267

must be modeled. According to the filtering operation applied to the equa-268

tions (4)-(6), additional non-linear terms are generated with supplementary269

unknowns to be modeled by expressing them in terms of the filtered variables.270

For the momentum and heat transfer equations, the dimensionless supple-271

mentary terms are the subgrid scale stress tensor ∇∗.τLES
∗ = ∇∗.(u∗u∗ −272

u∗ u∗) and the subgrid scale heat flux∇∗.qLES
∗ =∇∗.(u∗T ∗−u∗ T ∗) where273

a denotes the spatial filtering operator of the variable a. These terms are274

usually modelled as diffusion terms [25].275

Conventional LES models based on a subgrid viscosity are not suited for276

spectral methods, and we rely in this work on the Spectral Vanishing Vis-277

cosity (SVV) method [26, 27], which has been specially developed for them.278

It consists in the introduction of an artificial dissipation term to ensure the279

spectral convergence, i.e. dissipate the high modes of the Chebyshev polyno-280

mial development. The main feature of the SVV method is to maintain the281

spectral accuracy, i.e. the exponential rate of convergence of the numerical282

solution [21]. This SVV method has been used for several applications such283

as turbulent channel flows [28], turbulent flows within rotating cavities [29]284

and turbulent wakes [30].285

The SVV method is implemented in the form of a modified Laplacian286

operator combining the viscous and the SVV terms [21]. Hence, the modified287

Laplacian operator ∇2
SV V is given by288

∇2
SV V =∇.(1 + ν−1Q)∇, (9)

where Q is the viscosity kernel and ν is the actual viscosity (in dimensionless289

form, equal to PrRa−0.5 for momentum and Ra−0.5 for energy equation).290

The viscosity kernel acts on each spatial direction independently. In spectral291

space, it is given for the ith direction by292

Q̂i(k) = εie
−(k−Ni)

2

(k−Mi)
2 , if k > Mi (10)

293

Q̂i(k) = 0, if k 6Mi (11)
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where k is the Chebyshev polynomial order, εi is the viscosity amplitude, Ni294

is the number of collocation points in the ith direction and Mi 6 Ni is the cut-295

off spectral mode. εi and Mi are the control parameters of the SVV method.296

The numerical modeling reduces by either increasing Mi or decreasing εi. It297

is worth noting that the same SVV parameters are used in the momentum298

equation and in the energy equation. This would be similar to considering a299

subgrid Prandtl number equal to one in a conventional LES model based on300

subgrid viscosity and diffusivity.301

3.3. Numerical validation302

In order to study the accuracy of the SVV approach, we carry out a sen-303

sitivity analysis on the SVV parameters Mi and εi and on the mesh size. To304

this aim, we focus on the simulation of February (see Tab. 1), which corre-305

sponds to the smallest Rayleigh number investigated here (the less turbulent306

case) and for which DNS is practicable with current computational resources.307

In a first step, we set the mesh size to NX×NY ×(NZ×Np) = 160×160×308

(20 × 32) (LES160 mesh), where NX/Y/Z is the number of collocation points309

in directions X/Y/Z in each subdomain and Np is the number of processors,310

and we vary Mi and εi as described in Tab. 2. The results are presented311

in terms of time-averaged variables over a dimensionless time period of 100.312

The time-averaged fluxes through each of the six walls of the cavity are313

computed at each time step. The flow field is assumed to be statistically314

steady when the sum of these six fluxes is less than 1% of the maximum one.315

In Tab. 2, we calculate for each set of SVV parameters the volume-averaged316

temperature (〈T ∗〉), the volume-averaged kinetic energy of the mean flow317

(k∗kin = 〈u∗i 〉〈u∗i 〉/2), the volume-averaged turbulent kinetic energy (k∗tur =318 〈
u∗
′
i u

∗′
i

〉
/2), and the Nusselt number (Nu = −∇ 〈T ∗〉 .nint) averaged over319

the upper (X∗=1), left (Z∗=0), and side ((Y ∗=0) walls separately (〈a〉 and320

a
′

denote the time average and the fluctuation of a respectively). There is321

no influence of the SVV parameters on the average wall heat flux and the322

volume-averaged temperature in the system (the change is less than 1%). In323

addition, the SVV parameters have little effects on the kinetic energy of the324

mean flow (less than 3%) but significant effects (up to 10%) on the turbulent325

kinetic energy. Therefore, varying the SVV parameters has little influence on326

the time averaged fields as previously found in the application of turbulent327

wakes by Pasquetti [21].328

In a second step, we fix the SVV parameters to Mi = 3Ni/4 and εi =329

1/(4Ni) and consider two LES meshes: 160 × 160× (20× 32) (LES160) and330
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SVV parameters 〈T ∗〉 × 102 k∗kin × 104 k∗tur × 104 Nuup,X∗=1 Nuleft,Z∗=0 Nusides,Y ∗=0

M = N/2, ε = 1/2N 5.370 2.865 2.368 -16.385 6.046 7.192
M = 2N/3, ε = 1/3N 5.367 2.889 2.274 -16.351 6.049 7.196
M = 3N/4, ε = 1/4N 5.350 2.803 2.547 -16.385 5.979 7.219
M = 4N/5, ε = 1/5N 5.341 2.880 2.504 -16.431 5.978 7.219

Table 2: Sensitivity to the SVV parameters of the volume-averaged temperature, the
volume-averaged kinetic energy of mean flow, the volume-averaged turbulent kinetic energy
and the wall-averaged Nusselt number for February.

240× 240× (20× 32) (LES240). Results are compared with those of a DNS331

(no model or Mi = Ni and εi = 0) with a mesh of 320×410×(32×32) points.332

The time required to perform the simulation for the dimensionless time ∆t∗ =333

1000 with the DNS approach using the available resources is approximately334

128000 hours. With the LES approach using LES160 and LES240 meshes, the335

time decreases to 24576 hours and 55360 hours, respectively. In Tab. 3, the336

same averaged variables described in Tab. 2 are recalculated for each case.337

The results obtained with the LES240 mesh are in good agreement with the338

DNS (differences below 10%), while results obtained with the LES160 mesh339

show significant discrepancies with the DNS (up to 20%).340

Case 〈T ∗〉 × 102 k∗kin × 104 k∗tur × 104 Nuup,X∗=1 Nuleft,Z∗=0 Nusides,Y ∗=0

DNS 5.760 2.540 2.710 -14.755 4.968 6.825
LES240 5.610 2.638 2.998 -15.605 5.381 6.961
LES160 5.350 2.803 2.547 -16.385 5.979 7.219

Table 3: Comparison between LES and DNS methods in terms of the volume-averaged
temperature, the volume-averaged kinetic energy of mean flow, the volume-averaged tur-
bulent kinetic energy and the average wall Nusselt number for February.

In order to get further insights on the accuracy of the SVV-LES model,341

we compare LES240 results and DNS results for the local distribution of key342

quantities such as the Nusselt number and the turbulent kinetic energy. In343

Fig. 4,a and b, we present the evolution of the Nusselt number along a hori-344

zontal line at the upper wall (X∗ = 1, Y ∗ = 0.6604) and along a vertical line345

at the left wall (Y ∗ = 0.6604, Z∗ = 0), respectively. The LES240 mesh pro-346

vides satisfactory results compared to the DNS with a small overestimation at347
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Figure 4: Nusselt number along the horizontal line X∗ = 1, Y ∗ = 0.6604 (a) and the
vertical line Y ∗ = 0.6604, Z∗ = 0 (b) and turbulent kinetic energy along the horizontal
line X∗ = 0.6, Y ∗ = 0.6604 (c) and the vertical line Y ∗ = 0.6604 and Z∗ = 0.05 (d)
for February. The straight and dashed lines correspond to the DNS and LES240 results,
respectively.

15



locations associated with significant turbulent fluctuations. In Fig. 4, c and348

d, we plotted the turbulent kinetic energy along a horizontal line (X∗ = 0.6,349

Y ∗ = 0.6604) and along a vertical line (Y ∗ = 0.6604, Z∗ = 0.05), where350

these turbulent fluctuations are significant. The agreement between LES240351

and DNS is rather good within the vertical boundary layer (c) while discrep-352

ancies are more important near the bottom wall (d) with overpredictions353

of the tubulent kinetic energy up to a factor of 2. Consequently, the SVV354

method with the LES240 mesh preserves the heat flux at the walls but tends355

to overpredict the turbulent kinetic energy.356

Since the main objective of this paper is to determine the role of turbulent357

convection on the heat fluxes at the cave walls and in order to save compu-358

tational time, we use the LES240 mesh (CPU time savings of approximately359

44% compared to DNS) and SVV parameters Mi = 3Ni/4 and εi = 1/(4Ni)360

for the simulation of all cases of Tab. 1.361

4. Flow field analysis362

4.1. One-cell and multiple-cell convection patterns363

Figure 5 shows the streamlines of the mean airflow colored by the kinetic364

energy for each month studied, in the vertical Y mid-plane (the mean flow and365

mean temperature fields are mostly bidimensional thanks to the symmetry366

of the equations and boundary conditions with respect to the Y mid-plane).367

For all cases ascending or descending flows develop along the left and right368

vertical walls. They are connected through horizontal flows along the floor369

and the ceiling, giving rise to a primary rotating circulation in the cavity.370

However, we can define two distinct flow regimes depending on the period371

of the year: a one-cell regime in March, May and August (left panels in372

Fig. 5) characterized by a single large-scale circulation which extends over373

the entire cavity, and a multiple-cell regime in September, November and374

February (right panels in Fig. 5) for which the primary rotating flow near375

the walls is associated with more complex flow patterns within the core.376

The different patterns can be schematically classified according to (i)377

the direction of rotation of the primary circulation along the walls, (ii) the378

number of cells in the bulk of the cavity. We are going to show that this379

classification results from the relative temperatures of the four edges men-380

tioned in Sec. 2.1, as illustrated in Fig. 6 where rather cold edges are marked381

in blue and rather hot in red. Indeed, it can be seen in Fig. 2b, that for each382

month there is one edge that is significantly hotter or colder than the three383
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Figure 5: Flow streamlines colored by the kinetic energy of the mean flow. Streamlines are
drawn from the Y mid-plane and then projected onto the Y mid-plane when they deviate
from it.
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others, which are almost at the same temperature. The direction of rotation384

of the primary circulation along the walls in the X-Z plane is determined by385

the sign of the horizontal temperature gradient along the Z axis. In March,386

May and February the right vertical wall is on average warmer than the left387

wall (the horizontal gradient is positive) giving rise to a counterclockwise388

rotation. Indeed, due to the buoyancy forces, the hot wall and the cold wall389

drive the air flow upward and downward, respectively. Conversely, the hori-390

zontal temperature gradient is negative in August, September and November391

resulting in a clockwise rotation. On the other hand, when the floor is on392

average warmer than the ceiling (March, May, August), the vertical temper-393

ature gradient is negative resulting in an unstable thermal stratification in394

the core and this corresponds to the one-cell regime. When the floor is on av-395

erage colder than the ceiling (September, November, February), the vertical396

temperature gradient is positive resulting in a stable thermal stratification397

and this corresponds to the multiple-cell regime. For example in November,398

three convection cells of weak intensity are observed. The air layer adjacent399

to the left wall is heated then rises but the outer part of this layer is cooled by400

the core then slows down and generates a horizontal current at mid-height.401

This current travels through the core to the right side then splits with a part402

incoming to the downward flow adjacent to the cold wall and another part,403

slightly warmer, moving upward thus creating recirculation cells.404

Based on this simplified analysis of thermal boundary conditions, we can405

conclude that the global circulation along the vertical and horizontal walls406

is governed by the temperature variations between the vertical walls, i.e., by407

the horizontal temperature gradient, whereas the nature of the regime, one-408

cell or multiple-cell, is determined by the temperature variations between the409

horizontal walls, i.e., by the vertical temperature gradient.410

In the following, we analyse the flow dynamics, the thermal features and411

the turbulence level of the one-cell and mutliple-cell regimes. The volume-412

averaged kinetic energy of the mean flow, kkin, the volume-averaged turbulent413

kinetic energy, ktur, the maximum velocity, 〈u〉max, and the volume-averaged414

standard deviation of the dimensionless mean temperature, σ(〈T ∗〉), are given415

in Table 4 for each month. The one-cell regime is characterized by a strong416

mean flow compared to the multiple-cell regime, as indicated by relatively417

high kkin and 〈u〉max values in May and March. In August, these quantities418

are comparable to those of September and November although the temper-419

ature difference ∆T is approximately 3 or 4 times smaller (see Tab. 1). The420

intense convection flow in the one-cell regime extends throughout the cavity421
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Figure 6: Simplified representation of thermal boundary conditions and associated flow
regimes. Blue and red lines correspond to cold and hot edges, respectively.

Case Regime kkin (m2/s2) ktur (m2/s2) 〈u〉max (m/s) σ(〈T ∗〉)
March one-cell 1.6×10−4 4.4×10−5 0.076 0.018
May one-cell 2.8×10−4 9.3×10−5 0.095 0.015

August one-cell 3.5×10−5 2.8×10−5 0.045 0.011
September multiple-cell 3.6×10−5 8.8×10−6 0.047 0.023
November multiple-cell 3.1×10−5 6.6×10−6 0.050 0.044
February multiple-cell 8.4×10−6 1.0×10−5 0.028 0.036

Table 4: Volume-averaged kinetic energy of the mean flow kkin, volume-averaged turbulent
kinetic energy ktur, maximum velocity of the mean flow 〈u〉max and volume-averaged stan-
dard deviation of the dimensionless mean temperature σ(〈T ∗〉) calculated for all months
under study.
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(see Fig. 5) leading to a strong mixing effect and thus the homogenisation422

of the temperature field. This gives rise to small values of σ(〈T ∗〉) compared423

to the values related to the multiple-cell convection of weak intensity. To424

illustrate the analysis of the thermal feature, Fig. 7(top) displays the spatial425

distribution of the mean temperature in the Y mid-plane of the cavity. We426

focus on May (left panel) and November (right panel) as they correspond to427

the months with the greatest temperature amplitude (see Tab. 1) in the one-428

cell and multiple-cell regimes, respectively. In May, the temperature field is429

nearly isothermal thanks to the mixing effect of the large-scale convection430

cell. The temperature gradients are thus confined very close to the walls. By431

contrast, the temperature field in November shows significant temperature432

variations near the ceiling and a thermal stratification in the core related to433

the presence of the recirculation cells.434

From the data reported in Table 4, we can see that the turbulent fluctu-435

ation level is higher in the one-cell regime than in the multiple-cell regime.436

It should be noted that, although the kinetic energy of the mean flow is very437

low in February, turbulent fluctuations are detected due to the presence of438

counter-rotating cells near the left wall (see Fig. 5). The spatial distribution439

of the turbulent kinetic energy is presented in Fig. 7 (bottom panels) for May440

and November. In May, significant turbulent fluctuations are noticeable in441

the lower left corner where the descending vertical boundary layer hits the442

floor and to a less extent in the upper right side. The asymmetry between443

the lower left and upper right corners is due to larger temperature gradients444

in the left part of the cavity than in the right part. In November, the tur-445

bulent kinetic energy is very small and turbulent fluctuations are detectable446

only in the left part of the cavity near the flow division and in the top right447

region where the downward flow in the cold boundary layer is sheared by the448

ascending recirculation flow (see Figure 5).449

In order to visualize and compare the 3D turbulent structures in May450

and November, we make use of the Q-criterion Q = [ΩijΩij − SijSij]/2451

[31], where Ωij = [∂ui/∂xj − ∂uj/∂xi]/2 is the vorticity tensor and Sij =452

[∂ui/∂xj + ∂uj/∂xi]/2 is the strain tensor. This criterion compares the rates453

of rotation and deformation. Turbulent structures correspond to positive val-454

ues of Q [32]. Figure 8 shows the Q-criterion colored by the kinetic energy455

of the mean flow for these two months, for a given instantaneous flow field456

in the asymptotic regime. Vortices almost spread everywhere in May, while457

they are restricted to regions near the left and right planes in November. It458

is interesting to note that the instantaneous flow is fully three-dimensional459
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Figure 7: Mean temperature (top panels) and turbulent kinetic energy (bottom panels)
fields in the Y mid-plane of the cavity for May and November.

Figure 8: Isosurfaces of the Q-criterion colored by the kinetic energy of the mean flow for
an instantaneous flow field for May and November. Q = 1 s−2 for all cases.
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Figure 9: Horizontal profiles of the vertical velocity component U (a) and temperature (b)
in the Y mid-plane for three different heights (X = 0.2 m ≈ 0.04LX , X = 2.65 m = 0.5LX

and X = 5.1 m ≈ 0.96LX). The vertical walls are located at Z = 0 and Z = 17 m. May
(one-cell regime) and November (multiple-cell regime) are presented.

for both months, though the main mean dynamics happen in the X-Z plane.460

4.2. Near wall regions461

To get a better insight into the flow structure in the near-wall region, we462

discuss in this section the temperature and velocity profiles along vertical or463

horizontal lines.464

Fig. 9 presents horizontal profiles of the vertical velocity component U465

and the temperature in the Y mid-plane for three different heights (X =466

0.2 m ≈ 0.04LX , X = 2.65 m = 0.5LX and X = 5.1 m ≈ 0.96LX), for May467

(one-cell regime) and November (multiple-cell regime). Velocity boundary468

layers are observed in Fig. 9 (a), ascending or descending according to the469

sign of the horizontal temperature gradients in the thermal boundary layers470

(see Fig. 9 (b)). It can be noted that in May, the horizontal temperature and471

velocity gradients change sign in the left bottom part (X = 0.2 m, Z ≈ 0)472

due to the presence of a small vortex in the corner (see Figure 5). The473

thickness of the velocity and thermal boundary are estimated as follows. The474

thickness of the velocity boundary layer, δu, is referred as the distance from475

the wall to a point where the velocity reaches an extremum. The thickness476

of the thermal boundary layer, δθ, is referred as the distance from the wall477

where the temperature reaches 90 % of its value in the core. We find that478
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Figure 10: Vertical profiles of the horizontal velocity component W (a) and the tem-
perature (b) along the vertical centerline (Y = 0.5LY , Z = 0.5LZ) for the six months
investigated. The horizontal walls are located at X = 0 and X = 5.3 m. The solid and
dotted lines correspond to the one-cell and multiple-cell regime, respectively.

δu ∼ δθ ranges from 4 cm to 8 cm, i.e., less than 0.5% of the cavity length479

(LZ = 17 m).480

As highlighted in subsection 4.1, Fig. 9 (b) shows that the core of the481

cavity is nearly isothermal in May whereas a stable vertical thermal strati-482

fication takes place in November, especially in the upper half of the cavity483

where a temperature difference of about 0.1 K is observed between the air at484

mid-height (red curve) and the air adjacent to the top wall (black curve).485

Fig. 10 presents the horizontal velocity component W and the tempera-486

ture profiles along the vertical centerline (Y = 0.5LY , Z = 0.5LZ), in the487

one-cell regime for March, May and August (solid lines) and in the multiple-488

cell regime for February, September and November (dashed lines). In the489

one-cell regime, Fig. 10 (a) exhibits the large-scale circulation extending over490

the entire height of the cavity, with a reverse direction of rotation for Au-491

gust compared to March and May. By contrast, the core is almost motion-492

less in the multiple-cell regime, with however small variations around zero493

that are the signature of the recirculations of low intensity. Temperature494

profiles (Fig. 10 (b)) confirm that the temperature gradients are confined495

in very thin layers (few centimeters thick, i.e., less than 1% of the cavity496

height (LX = 5.3 m)) near the horizontal walls in the one-cell regime. In the497

multiple-cell regime, the temperature variations are observed near the ceiling498
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for September and November, in a layer that extends over about 1 m with a499

maximum temperature located at a few tens of centimeters from the wall.500

5. Heat transfer analysis501

5.1. Wall conductive fluxes502

In this subsection, we analyse the local heat transfer rates at the walls503

by quantifying the conductive wall heat flux qcon defined in Eq. (7). As the504

underlying physical mechanisms are very diverse, depending on the location505

on the wall or the month considered, we do not conduct this analysis in terms506

of dimensionless quantities; we aim to characterize the local heat transfer507

coefficient h in the Newton’s law508

qcon = h(Twall − Tgas), (12)

where Twall is the local wall temperature and Tgas is the air temperature509

averaged over the entire domain.510

In Fig. 11, qcon is plotted versus Twall − Tgas for the six months investi-511

gated and for each wall (each point corresponds to a given spatial location).512

Positive values correspond to heat transfer from the wall to the fluid. In513

the one-cell flow regime (left panels), we observe that the dependence of the514

conductive flux with Twall−Tgas is roughly linear. For a given month, a linear515

fit performed through the cloud of points (black line in the figures) allows to516

estimate empirically a single heat transfer coefficient h for all walls, ranging517

from 0.45 W.m−2.K−1 (in August) to 0.76 W.m−2.K−1 (in May), according518

to the magnitude of the convection flow. For the multiple cell regime (right519

panels), the conductive flux follows the same trend, except at the upper wall.520

The linear fit associated to all the walls except the upper one provides values521

of h ranging from 0.33 to 0.68 W.m−2.K−1. At the upper wall, qcon 6= 0 when522

Twall − Tgas = 0 which means that Tgas is not the relevant reference temper-523

ature for the surrounding air layer. The actual reference temperature Tbulk524

is such that qcond = 0 for Twall = Tbulk in the Newton’s law. It can be easily525

deduced from the graphs in Fig. 11 that the averaged gas temperature Tgas526

underestimates Tbulk by approximately 0.03 K in February, 0.1 K in Septem-527

ber, and 0.15 K in November. This is in line with the analysis presented in528

the previous section. Indeed, we have shown that the air layer near the ceil-529

ing is warmer than the core region at Tgas, which implies that the reference530

temperature must be ajusted upwards.531
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Figure 11: Cloud of points representing the local conductive heat flux at each wall versus
the difference between the wall local temperature and the gas average temperature, for the
six months investigated. Each point corresponds to a given spatial location on the wall.
The black line represents the best linear fit of the cloud of points (with the exception of the
top wall data in September, November and February). The green dashed line represents
the best linear fit of the top wall in September, November and February, with Tbulk instead
of Tgas.
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By fitting both htop and Tbulk, we get htop ranging from 0.23 W.m−2.K−1
532

(in September) to 0.42 W.m−2.K−1 (in February). It is worthy to note that533

all the values of the heat transfer coefficient h remain in a limited range,534

from 0.23 to 0.76 W.m−2.K−1. This is not surprising given that the Nusselt535

number usually scales as the Rayleigh number at the power 0.25 to 0.33536

in natural convection [33], and thus increases slowly with the temperature537

differences between the cavity walls. Therefore, these estimations of the heat538

transfer coefficient might be used in a large-scale model coupling conduction539

in the rock, radiative transfer in the cavity, and natural convection described540

by the Newton’s law (12). However, such approach raises the question of541

how to define the reference gas temperature in the Newton’s law. In the542

case of complex non uniform temperature fields, relying on the averaged gas543

temperature may result in large errors on wall convective heat fluxes.544

5.2. Wall total fluxes545

The aim of this section is to show the distribution of the conductive flux546

qcon and to compare it to the distribution of the radiative flux qrad and the547

total heat flux qtot = qcon + qrad. We focus here on the months with the548

highest conductive fluxes, i.e., May and November.549

Fig. 12 presents the distribution of conductive (a and b), radiative (c and550

d), and total (e and f) fluxes at the walls for the month of May. The radiative551

flux largely dominates the conductive flux but the latter remains significant at552

several spots, especially in the left ceiling region, downstream the left vertical553

boundary layer and near the right bottom edge. The maximum total heat554

flux in the system reaches in absolute value 1.15 W/m2 and is concentrated555

around the left upper edge. The conductive flux represents 40% of this value.556

We show in Fig. 13 the distribution of qcon (a and b), qrad (c and d),557

and qtot (e and f) for the month of November. It is worth noting that the558

radiative flux distribution in November is opposite to that in May (tempera-559

ture distributions are opposite), while this is not the case for the conductive560

flux, sensitive to buoyancy. As in May, the system is mainly controlled by561

radiative fluxes but there is still significant conductive heat flux in the upper562

part of the left wall. Again, the maximum total heat flux reaches in absolute563

value 1.15 W/m2 and is concentrated at the left upper edge. The conductive564

flux represents about 35% of the total flux in the upper part of the left and565

side walls and in the majority of the right wall.566

Heat transfer at the cavity walls is thus mainly dominated by the radiative567

heat flux, with the exception of some localized spots where both conductive568
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Figure 12: Spatial distribution of conductive (a and b), radiative (c and d) and total (e
and f) heat fluxes at the walls for the month of May. The left part of the figure corresponds
to the upper (X = LX), left (Z = 0) and front (Y = LY ) cave walls. The right part of the
figure corresponds to the bottom (X = 0), right (Z = LZ) and back (Y = 0) cave walls.
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Figure 13: Spatial distribution of conductive (a and b), radiative (c and d) and total (e
and f) heat fluxes at the walls for the month of November. The left part of the figure
corresponds to the upper (X = LX), left (Z = 0) and front (Y = LY ) cave walls. The
right part of the figure corresponds to the bottom (X = 0), right (Z = LZ) and back
(Y = 0) cave walls.
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and radiative fluxes are on the same order. This conclusion must be tempered569

by the fact that dry air was considered. In humid caves, convection controls570

the heat flux associated with the latent heat of condensation and evaporation.571

This probably affects the total heat flux. Assuming that solutal buoyancy572

does not significantly modify the flow structure, the highest condensation573

flux should occur in May and the highest evaporation flux in November, in574

the region of the left upper edge in both cases. The effect of latent heat will575

be investigated in a future work.576

6. Conclusion577

In this paper, the effect of turbulent natural convection on heat transfer578

within a confined underground cavity was investigated using large eddy sim-579

ulations based on the spectral vanishing viscosity method. Non-uniform wall580

temperatures computed from a large-scale model and representative of exter-581

nal climate condition at six times of the year were used as thermal boundary582

conditions.583

We identified two different flow regimes: (i) a one-cell flow regime asso-584

ciated with strong convection and unstable mean vertical temperature gra-585

dient, (ii) a multiple-cell flow regime associated with weak convection and586

stable mean vertical temperature gradient. For each regime the mean direc-587

tion of rotation of the flow is determined by the direction of the horizontal588

temperature gradient. The one cell flow regime (March, May, August) is589

characterized by a single-roll large-scale circulation, high turbulent fluctu-590

ation level and strong mixing resulting in the homogeneisation of the gas591

temperature. The multiple-cell flow regime (September, November, Febru-592

ary) is characterized by two counter-rotating large-scale structures. It corre-593

sponds to a flow of weak intensity with low turbulent fluctuation level and a594

significant vertical temperature gradient in the air near the ceiling.595

The values of the heat transfer coefficient in the Newton’s law were calcu-596

lated from the LES results. We found that the flow intensity and turbulence597

level have little influence on the heat transfer coefficient value. However, the598

definition of the reference gas temperature to be used in the Newton’s law599

is a non trivial question in this problem with thermal boundary conditions600

defined from complex temperature fields. The choice of the average gas tem-601

perature is relevant when the air temperature is nearly uniform everywhere602

in the core of the cavity. Otherwise, significant errors in the prediction of603

wall heat fluxes may occur. This problem could likely be exacerbated by the604
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complex geometry of natural caves, making even more necessary the use of605

CFD approaches as presented here.606

Our method allows to determine if heat transfer at the cavity walls is607

dominated by conducto-convective or radiative fluxes. Moreover, places in608

the cavity and times of the year corresponding to intense heat transfer can be609

identified. In future works, we will consider the coupling with mass transport610

of water vapour in order to predict the conditions leading to intense conden-611

sation, a problem of great importance for the conservation of painted caves.612

In addition, given the significance of radiative fluxes, it might be worth in-613

vestigating the effect of gas radiation associated with the presence of water614

vapour and carbon dioxide in the cave atmosphere.615
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