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Abstract

The subject of this matter is flow separation in the capillary wave region of
falling liquid films. The discovery of this hitherto unknown phenomenon as well
as the elucidation of its governing dynamics represent a basis for the unifying
explanation of several as yet unexplained empirical observations in falling liquid
films. Further, they constitute a valuable input for the development of wave
dynamics models. The study is based on highly resolving experimental and
numerical investigations of 2-dimensional laminar falling liquid films with ex-
ternally excited monochromatic surface waves. In addition, one 3-dimensional

numerical simulation was also performed.

Experimentally, an optical test setup was specifically designed to enable the
application of standard optical techniques for the measurement of the velocity
field in the film cross section as well as the instantaneous local film thickness.
Thereby, optical access to the falling liquid film was enabled by matching the re-
fractive indices of working liquid and glass test section. Velocity measurements
were performed using Laser Doppler Velocimetry (LDV) and Particle Image
Velocimetry (PIV), whereas film thickness measurements were performed with
a Confocal Chromatic Imaging (CCI) technique. Resulting experimental data
clearly show the existence of a separation eddy at the first capillary mini-
mum preceding a large wave. This capillary separation eddy (CSE) is shown
to outgrow the minimal film thickness, assuming an open shape with stream-
lines ending at the liquid-gas interface. Through systematic variations of the
Reynolds number and wave frequency it was established that the separation of
large waves, which influences the number, wavelength and amplitude of pre-
ceding capillary waves, determines the size of the CSE in its developed state.

Thereby, large wave separation (caused either by large Reynolds number values



or small values of the wave frequency) leads to large amplitude capillary waves
of small wavelength, causing a large CSE. Decreasing wave separation leads
to the gradual reduction and eventual suppression of capillary waves and, as a
consequence, the disappearance of the CSE. Further, on the basis of high-speed
PIV recordings, the effect of wave dynamics on the liquid phase velocity field
at different times in the wave evolution was elucidated. Finally, through the
simultaneous measurement of velocity (using LDV) and film thickness (using
CCI) time traces it was established that the streamwise velocity component in
the residual layer of the film is strongly correlated with the local film thickness.
Thereby, streamwise velocity time traces display periodic flow reversal in the

capillary wave region, coinciding with the CSE.

Numerical investigations focused on completing the picture established by
the experimental data, which were confined to the developed region of the
falling liquid film. Therefore, the full Navier-Stokes equations were solved nu-
merically for both the liquid and gaseous phase, using the Volume of Fluid
(VOF) method. Numerical results in the developed region of the flow are in
good agreement with experimental data both in terms of wave kinematics and
velocity field kinematics. On the basis of these data, the spatio-temporal evolu-
tion of the CSE, covering its inception, growth and subsequent breakup into the
open shape was elucidated. Further, a mechanistic explanation of the dynamics
governing these processes was developed. Results show that flow separation in
the capillary wave region is caused by an adverse pressure distribution, itself
induced by the strong third order deformation (i.e. change in curvature) of the
liquid-gas interface there. This deformation acts on the interfacial pressure
jump, and thereby the wall pressure distribution, as a result of surface tension
forces. It is shown that only the capillary waves, due to their short wavelength
and large curvature, impose a wall pressure distribution that satisfies the con-
ditions for flow separation. Furthermore, the effect of Reynolds number and
wave frequency on the magnitude of the adverse wall pressure derivative at the
first capillary minimum was studied, showing the latter to increase with wave
separation, which explains the experimental observations concerning the CSE’s

size. In a further step, the effect of the CSE on liquid phase scalar transport
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was elucidated. Thereby, it was established that this effect is to be understood
from a Lagrangian rather than from an Eulerian perspective. Indeed, fluid ele-
ments traveling in the residual layer of the film are only temporarily subjected
to the streamlines of the CSE as the capillary waves pass over their position,
owing to the fact that wave celerity exceeds local fluid velocity. Resulting path-

lines are characterized by “loop-”

or “hook”-shaped distortions caused by the
CSE, which represent convective transport normal to the wall. This convective
transport is shown to intensify wall-side heat transfer to the falling liquid film.
Moreover, the crosswise distribution of the mixing length, characterizing the
pathline distortions, was investigated in greater detail, showing it to increase
with wall distance. This results from the associated increase in relative velocity
between fluid elements and capillary waves and could explain experimental ob-
servations, showing interfacial scalar transfer to be enhanced more significantly

by surface waves than wall-side transfer.

Finally, capillary flow separation in falling liquid films with 3-dimensional
wave topology was investigated based on a single 3-dimensional simulation. Re-
sults show that a 3-dimensional CSE (assuming the form of a vortex tube) arises
in front of horseshoe-shaped large wave fronts, its axis following the position
of the first capillary minimum. Moreover, the region where large wave fronts
interact exhibits several pronounced precursory capillary minima, which are
respectively associated with a large open CSE. Further downstream, a checker-
board or herringbone pattern of 3-dimensional capillary interaction takes hold.
In this region, strong spanwise flow was observed, which is caused by the same
mechanism as the capillary flow separation, i.e. a spanwise pressure derivative
resulting from spanwise interfacial distortion. This spanwise flow could cause
a strong wave-induced intensification of scalar transfer to 3-dimensional falling

liquid films.
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Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Stromungsablésung im Kapil-
larwellenbereich laminarer Rieselfilme. Die Entdeckung dieses bisher unbekan-
nten Phidnomens sowie die Aufklarung des zugrunde liegenden Mechanismus
stellen eine Basis fiir die Erklirung einiger ungeklirter empirischer Beobach-
tungen in Rieselfilmen dar. Des Weiteren bedeuten sie einen wertvollen Beitrag
fiir die Entwicklung von Modellen zur Beschreibung der Wellendynamik solcher
Rieselfilme. Im Rahmen der Dissertation wurden dazu hoch aufgeloste ex-
perimentelle und numerische Untersuchungen 2-dimensionaler laminarer Rie-
selfilme mit monochromatisch aufgeprigten Oberflichenwellen durchgefiihrt.

Zusétzlich wurde eine 3-dimensionale Simulation durchgefiihrt.

Auf der experimentellen Seite wurde eine optische Messstrecke entwickelt,
welche die Anwendung optischer Messtechniken zur Messung des Geschwindig-
keitsfeldes im Filmquerschnitt sowie der Filmdicke ermdglicht. Dabei wurde
der erforderliche optische Zugang durch Anpassung der Brechungsindizes von
Filmfliissigkeit und gléserner Messstrecke gewéhrleistet. Geschwindigkeitsmes-
sungen wurden mit zwei verschiedenen Messtechniken durchgefiihrt, namlich
Laser Doppler Velocimetry (LDV) und Particle Image Velocimetry (PIV), wo-
hingegen zur Filmdickenmessung Confocal Chromatic Imaging (CCI) verwen-
det wurde. Die so erfassten experimentellen Daten zeigen eindeutig die Exis-
tenz eines Ablosewirbels im Bereich des ersten kapillaren Minimums stromab
einer groffen Oberflichenwelle. Die Grofe dieses kapillaren Ablosewirbels kann
dabei die lokale Filmdicke iiberschreiten, so dass Letzterer eine offene Form an-
nimmt, deren Stromlinien an der Phasengrenze (zwischen Fliissigkeit und Gas)
enden. Durch systematische Variation der Reynolds-Zahl und der Wellenfre-
quenz konnte gezeigt werden, dass die Grofe des kapillaren Ablosewirbels im
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ausgebildeten Zustand durch den Abstand aufeinander folgender grofier Ober-
flichenwellen bestimmt wird, da diese die Anzahl, Wellenlinge und Amplitude
der vorgelagerten Kapillarwellen festlegt. Bei groffem Wellenabstand (entweder
durch groffe Werte der Reynolds-Zahl oder kleine Werte der Wellenfrequenz be-
dingt) entstehen Kapillarwellen mit grofer Amplitude und kleiner Wellenlénge,
die einen grofien Ablosewirbel verursachen. Mit abnehmendem Wellenabstand
nimmt die Ausprigung der Kapillarwellen bis hin zu deren Unterdriickung
ab, wodurch ebenfalls der kapillare Ablésewirbel verschwindet. Durch Ein-
satz der PIV-Messtechnik wurde dariiber hinaus das Geschwindigkeitsfeld im
Querschnitt des Rieselfilms zu unterschiedlichen Zeitpunkten der Wellenent-
wicklung erfasst. Schliefilich konnte durch simultane Geschwindigkeits- (mit
LDV) und Filmdickenmessungen (mit CCI) festgestellt werden, dass die Ge-
schwindigkeitskomponente in Hauptstromungsrichtung innerhalb des Residual-
films stark mit der Filmdicke korreliert. Dabei zeigen die zeitlichen Verldufe der
Geschwindigkeitskomponente das periodische Auftreten von Riickstromung im
Kapillarwellenbereich in Ubereinstimmung mit der kapillaren Strémungsablo-

sung.

Die numerischen Untersuchungen konzentrierten sich indes auf die Vervoll-
standigung des durch experimentelle Daten (welche auf den ausgebildeten Be-
reich des Rieselfilms beschriankt waren) erzeugten Bildes. Dazu wurden die
vollstindigen Navier-Stokes Gleichungen sowohl in der flissigen als auch in
der gasformigen Phase unter Verwendung der Volume of Fluid (VOF) Meth-
ode gelost. Die resultierenden numerischen Daten weisen im ausgebildeten
Bereich des Rieselfilms eine gute Ubereinstimmung mit den entsprechenden
experimentellen Daten bzgl. Wellenkinematik und Geschwindigkeitsfeld auf.
Auf Grundlage dieser numerischen Daten konnte die zeitlich-6rtliche Entwick-
lung des kapillaren Ablosewirbels von dessen Entstehung iiber das Wachs-
tum bis zur Ausprigung der ausgebildeten (offenen) Form aufgezeigt werden.
Des Weiteren wurde der diesem Entwicklungsprozess zugrunde liegende phy-
sikalische Mechanismus aufgekldrt. Demzufolge wird die Strémungsablésung
im Kapillarwellenbereich durch eine der Stromung entgegengerichtete starke

Druckzunahme verursacht, welche aus der starken Kriimmungsénderung der



Phasengrenze in diesem Bereich resultiert. Letztere beeinflusst den durch Ober-
flichenspannungskréfte verursachten Drucksprung {iber die Phasengrenze und
damit die Druckverteilung auf der Wand. Es konnte dabei gezeigt werden, dass
ausschliefilich im Kapillarwellenbereich, in Folge der geringen Wellenlénge und
grofen Amplitude der Kapillarwellen, die Bedingungen fiir die Stromungsablé-
sung erfiillt werden. Des Weiteren wurde der Einfluss der Reynolds-Zahl und
der Wellenfrequenz auf die Zunahme des Wandruckes im Bereich des ersten
kapillaren Minimums untersucht und gezeigt, dass diese mit zunehmendem
Wellenabstand ansteigt, wodurch sich die zuvor erwdhnten experimentellen
Beobachtungen hinsichtlich der Grofe des kapillaren Abldsewirbels erkliren

lassen.

In einem weiteren Schritt wurde der Einfluss der kapillaren Strémungsablo-
sung auf den konvektiven Transport (einer beliebigen skalaren Transportgrofe)
innerhalb des Rieselfilms untersucht. Dabei wurde erkannt, dass sich dieser
Einfluss in einer Lagrangeschen Betrachtungsweise besser verstehen ldsst als in
einer Eulerschen. In der Tat werden Fluidelemente, die innerhalb des Residu-
alfilms stromen, den Stromlinien des kapillaren Ablésewirbels nur fiir eine be-
grenzte Zeit ausgesetzt, wihrend der Kapillarwellenbereich ihre momentane Po-
sition iiberstreicht. Dies resultiert aus der Tatsache, dass die Wellengeschwin-
digkeit die Stromungsgeschwindigkeit im Residualfilm iiberschreitet. Die sich
ergebenden Bahnlinien weisen charakteristische Auslenkungen in Form einer
“Schlaufe” bzw. eines “Hakens” auf, welche durch den kapillaren Ablésewirbel
verursacht werden und einen konvektiven Transport senkrecht zur Wand dar-
stellen. Es konnte gezeigt werden, dass dieser konvektive Transport den wand-
seitigen Warmeiibergang im Rieselfilm intensiviert. Des Weiteren wurde der
durch die Bahnlinienauslenkungen verursachte Mischungsweg ndher untersucht
und gezeigt, dass dieser mit dem Wandabstand zunimmt. Dieses Verhalten
folgt aus der Abnahme der Relativgeschwindigkeit zwischen Fluidelementen
und Kapillarwellen mit zunehmendem Wandabstand und kénnte experimentelle
Beobachtungen erkliren, welche eine stérkere wellenbedingte Intensivierung des
Wirmeiibergangs an der freien Oberfliche des Rieselfilms im Vergleich zum

wandseitigen Warmeiibergang aufweisen.
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Abschlieffend wurde die kapillare Stromungsablésung in Rieselfilmen mit 3-
dimensionaler Wellendynamik auf Grundlage einer 3-dimensionalen numerischen
Simulation untersucht. Die Ergebnisse zeigen, dass sich ein 3-dimensionaler
Ablosewirbel (in Form einer Wirbelrshre) stromab der hufeisenférmigen Fron-
ten grofer Wellen, welche die Grenzflichentopologie 3-dimensionaler Rieselfilme
kennzeichnen, ausbildet. Die Achse dieses 3-dimensionalen Ablgsewirbels folgt
dabei der Position des ersten kapillaren Minimums. Auflerdem entstehen im
Bereich der Interaktion grofer Wellen mehrere stark ausgepréigte Kapillar-
wellen, welche jeweils einen kapillaren Ablosewirbel ausbilden. Weiter stromab
entsteht indes ein Schachbrett- bzw. Fischgritenmuster in Folge der 3-dimensi-
onalen Interaktion zwischen einzelnen Kapillarwellen. In diesem Bereich wur-
den starke Stromungsbewegungen in Querrichtung festgestellt, welche durch
denselben Mechanismus wie die kapillare Strémungsablésung getrieben werden,
d.h. durch Druckvariationen in Querrichtung in Folge entsprechender Variatio-
nen der Filmdicke. Diese Querstromungen konnten eine starke Intensivierung

des Wirmeiibergangs in 3-dimensionalen Rieselfilmen verursachen.

xii



Acknowledgements

Almost a century has passed since Wilhelm Nusselt in 1916 first took interest
in the transport processes occuring inside a thin water film. Today, although a
great deal has been revealed about falling liquid films, it is still the elucidation
and modelling of these transport processes that is at the center of research
efforts.

This thesis is based on studies I conducted as a research assistant at the In-
stitute of Heat and Mass Transfer at RWTH Aachen University between April
2005 and November 2009. Funding was provided by Deutsche Forschungs-
gemeinschaft (DFG) within Collaborative Research Center SFB 540 “Model-
Based Experimental Analysis of Kinetic Phenomena in Fluid Multi-Phase Re-
active Systems”.

I would like to express my sincere gratitude to my doctoral adviser Professor
Kneer for giving me the opportunity to unfold my curiosity and thirst for
discovery as well as for providing such excellent working conditions. I am also
profoundly thankful to Professor Zeller for his encouragement, his unwavering
personal and scientific council and for the continuous interest he took in my
work. Further, I would like to thank Professor Renz for putting me on the path
of scientific research. I am very grateful to Professor Tropea for agreeing to
be second examiner and for his continued interest in the thesis as well as his

support.

I am indebted to many colleagues inside and outside the institute for various
contributions and for a collaborative working environment. I am grateful to
Dr. Lel for introducing me to the subject of falling liquid films and to Dr.
Stratmann for introducing me to Laser Doppler Velocimetry as well as to Dr.

Forster for his guidance. I would like to thank Hans Dautzenberg, Andreas

xiii



Panagos, Stefan Mohl and Dmitri Hospital from the electronics laboratory as
well as Hans-Dieter Hilgers, Hartmut Moosmayer and Friedrich Nickel from
the mechanical work shop for their contributions to the optical test section and
measurement setup. Further, I would like to thank Kurt Ndhrich and Christian
Schiiller from the IT-group for their help with respect to computer hard- and
software. I also thank Dr. Biicker from the department of Scientific Computing
for his friendship and for being a reliable scientific barometer. Special thanks
go to Erika Aminatey who kept me healthy through these years.

Over these years I have had the privilege to work with a number of very
bright students while supervising their undergraduate research. This was not
only very rewarding from a teaching perspective, but their work also provided
valuable inputs to this thesis. For this I would like to thank them and I wish

them a successful future.

My most profound gratitude is due those who are closest to me and have
thus experienced the ups and downs almost as intensely as myself. I thank my
parents Hartmut and Gertrud Dietze for their relentless support, guidance and
council as well as for being such fine role models. I thank Kerstin Sack for
her unfailing willingness to understand me, for all the sacrifices she has made
as well as her continuing interest in my research and ultimately for freeing my
mind. T also thank my little sister Charlotte Dietze for reminding me that there

is a real world out there, which I have visited too seldom.

Finally, my thoughts dwell on Paulette Thienpondt and Magdalene Berhausen

who did not live to read these words.

Georg Friedrich Dietze
Aachen, April 2010

xiv



Contents

Acknowledgements
List of Figures

List of Tables

List of Symbols

1 Introduction

2 Falling film dynamics
2.1 Governing equations . . . . . .. ... ..o
2.2 Wavedynamics . . . . . . ...
2.2.1 Filminstability . . . . ... ... ... . .
2.22 Waveevolution . . . . .. .. ... ... oL,
2.23 Wavemodeling . . . . .. .. ..o
2.3 Liquid phase transport . . . . . . .. ... ... ...
2.3.1 Momentum transport . . .. . ... .. ... .. .. ..
2.3.2  Scalar transport . . . . . ... ...

3 Numerical simulation using the Volume of Fluid method
3.1 Employed numerical multiphase methods . . . . . ... .. ..
3.1.1 The Volume of Fluid method . . . . .. ... ... ...
3.1.2 Interface reconstruction . . . .. .. ... .. ... ...
3.1.3 The Continuum Surface Force method . . . . . . . . ..
3.2 Specification of performed numerical simulations . . .. .. ..
3.2.1 Computational domain and grid topology . . ... ...
3.2.2 Discretization of governing equations . . . . . ... ...
3.2.3 Numerical algorithms . . . . ... ... ... ... ...
3.2.4 Initial and boundary conditions . . . . . . . ... .. ..
3.2.5 Quantification of simulated cases . . . . . .. ... ...

xiii

xvii

xxvii

XXiX

109
110
113
116
121
124
124
128
131
136
145

Xv



Contents

3.3

Consistency tests . . . . . ... . ...
3.3.1 Grid dependence analysis . . .
3.3.2 Interfacial spurious currents . .
3.3.3 Outlet boundary condition . .

3.3.4 Comparison with experimental data . . ... .. .. ..

4 Experimental

4.1

4.2

Test setups . . . . . .. ... .. ...
4.1.1 Optical test setup . . ... ..
4.1.2 Inclined test setup . . ... ..
Measurement techniques . . . . . . ..

4.2.1 Confocal Chromatic film thickness measurement

4.2.2 Laser Doppler Velocimetry . .
4.2.3 Particle Image Velocimetry . .

Capillary flow separation

5.1

5.2
5.3
5.4

5.5

Kinematics . ... ... ... .. ...
5.1.1 Spatio-temporal visualisation .
5.1.2  Velocity field . ... ... ...
5.1.3 Vorticity field . . . . .. . ...
Governing dynamics . . . ... .. ..
Effect on wall-side heat transfer . . . .
Influence of control parameters . . . .
5.4.1 Reynolds number influence . .
5.4.2  Wave frequency influence . . .
3-dimensional capillary flow separation

6 Conclusion

References

XVvi

173
174
174
187
195
195
202
216

227
228
228
232
243
247
267
281
282
291
300

315

321



List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9

2.10
2.11

2.12

2.13

2.14
2.15

Complexity of liquid films . . . . . . ... ... ... ... ...
Free surface topology of a falling liquid film . . . . . ... ...

Coordinate systems for a falling liquid film in 3-dimensional space 8

Horizontal liquid film . . . . . . . .. ... ... ... 0oL, 15
Linear growth rates for 2-dimensional waves . . . . . . . .. .. 20
Linear stability bound for 2-dimensional waves . . . .. .. .. 21
Hierarchy of falling liquid film instability . . . . . . . ... ... 22
Linear stability bound for 3-dimensional waves . . . ... . .. 23
Linear growth rates for 3-dimensional waves . . . . . . . . ... 24

Wave celerity as a function of wave frequency according to Nosoko

et al. (1996) . . . . . . . . . 28
Wave celerity as a function of wave amplitude according to Nosoko

et al. (1996) . . . . . . . . 29
Hierarchy of wave dynamics models . . . . . . . ... ... ... 31

Liquid phase streamwise velocity field in smooth and wavy falling

liquid films . . . . . . ... L 48
Liquid phase streamwise velocity profiles (Re=10.7, Ka=509,
F=16 Hz) . . . o 52
Liquid phase streamwise velocity profiles (Re=20, Ka=124, {=20
Hz) . . .o 53
Liquid phase streamlines in a wave-fixed coordinate system . . 59

Flow pattern at the wave trough of a vertically falling liquid film
with harmonic surface waves according to Kapitza (1948) . .. 66

xvii



List of Figures

2.16

2.17
2.18
2.19
2.20

3.1

3.2
3.3

34

3.5

3.6
3.7
3.8

3.9

3.10

3.11
3.12
3.13
3.14
3.15
3.16
3.17

xviil

Wall shear stress distribution in smooth and wavy falling liquid

films . . . ... 74
Wall pressure distribution in smooth and wavy falling liquid films 76
Temperature profiles in a smooth developed falling liquid film . 85
Nusselt number time traces for different wavy falling liquid films 95
Mechanisms of scalar transport intensification in wavy falling

liquid films . . . . . ... Lo 100

Dynamic conditions for a finite control volume containing two
phases . . . . ... L 111
One-dimensional convection of volume fraction . . . ... ... 118

Interface reconstruction and computation of volume fluxes at cell

faces according to Youngs (1982) . . . . .. ... .. ... ... 119
Computational domain for the simulation of 2-dimensional falling
liquid films . . . . . ... Lo 124
Evolution of the streamwise velocity profile within the inlet chan-
nel of the 2-dimensional computational domain . . . . . . . .. 125
Close-up of the computational grid near the liquid inlet . . . . 126

Computational domain employed for the 3-dimensional simulation127
Flowchart of the numerical algorithm implemented in the CFD
code employed for 2-dimensional simulations . . . . . . . .. .. 132
Flowchart of the PISO loop contained in the complete algorithm
of figure 3.8 . . . . ... oo o 133

Convergence history of static pressure as well as streamwise and

crosswise velocity components for an exemplary simulation . . 135
Boundary conditions for the 2-dimensional simulations . . . . . 138
Boundary conditions for the 3-dimensional simulation . . . . . 143
Grid dependence analysis forcase 1. . . . . .. ... ... ... 151
Grid dependence analysis forcase 8. . . . . . . ... ... L. 152
Static drop test case simulations for cases 1 and 8 . . . . . .. 155
Interfacial streamwise velocity for cases 1and 8 . . . . . . . .. 156
Horizontal capillary wave test case simulations for cases 1 and 8 158



List of Figures

3.18

3.19
3.20
3.21
3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

4.1
4.2
4.3

4.4

4.5
4.6

Film thickness time traces for the horizontal capillary wave test

case simulations . . . . . ... ... oo oo
Computed streamwise wave evolution (case 1) . . . . .. .. ..
Computed instantaneous film thickness distributions (cases 1-4)
Computed instantaneous film thickness distributions (cases 5-8)
Computed instantaneous film thickness distributions (cases 9
and 10) . . ...
Comparison of film thickness time traces from experiment and
numerical simulation (case 1) . . . . . .. ... ... ... ...
Comparison of film thickness time traces from experiment and
numerical simulation (cases 2-4) . . . . . .. ... ... ...
Comparison of film thickness time traces from experiment and
numerical simulation (cases 5-7) . . . . . .. . ... ... ....
Comparison of film thickness time traces from experiment and
numerical simulation (cases 8-10) . . . .. .. ... ... ....
Comparison of streamwise velocity time traces from experiment
and numerical simulation (cases 5-7) . . . . .. ... ... ...
Comparison of streamwise velocity time traces from experiment
and numerical simulation (cases 8-10) . . . ... .. ... ...
Comparison of numerical and experimental wave topology for

the 3-dimensional simulation (case 11) . . . . .. . ... .. ..

Computer aided design of the optical test setup . . . . . . . ..
Photograph of the optical test setup . . . . . . ... ... ...
Enlarged view of the falling liquid film flowing down the inside
of the glass body in the optical test setup . . . . .. ... ...

Temperature dependence of the refractive index for quartz glass

body and working liquids . . . . . . ... ... ... L.
Close-up view of liquid inlet conditions in the optical test setup

Photograph of 2-dimensional wave fronts in the optical test setup
(Re=10.7, Ka=509.5, f=24 Hz) . . ... ... ... ......

159

161

162

163

164

165

166

167

168

169

170

171

174
175

177

178
179

Xix



List of Figures

XX

4.7

4.8

4.9
4.10

4.11

4.12

4.13
4.14

4.15

4.16

4.17

4.18
4.19

4.20

4.21

4.22

4.23

Photograph of 2-dimensional wave fronts in the optical test setup
(Re=12.9, Ka=509.5, f=18 Hz) . . . .. ... ......... 182

Film thickness time traces measured in the optical test setup at
two different streamwise positions in the region of developed waves183
Growth rates for wavy regimes realized in the optical test setup 184

Film thickness time traces measured in the optical test setup

(Re=15.0, 10.7) . . . . v v oo 185
Film thickness time traces measured in the optical test setup
(Re=10.7,8.6) . . . . v v v i i i ittt i et 186
Film thickness time traces measured in the optical test setup
(Re=6.8) . . . . o i 187
Sketch of the inclined test setup . . . . . . . . . ... ... ... 188
Photograph of wave fronts in the inclined test setup (Re=15.6,
Ka=1336, f=16Hz) . . . . . . . . . .. 189
Film thickness time traces measured in the inclined test setup
(Re=21.4, Ka=139.8, f=5-24 Hz) . . .. ... ......... 191
Streamwise evolution of film thickness time traces measured in
the inclined test setup (Re=21.4, Ka=139.8, f=5.0 Hz) . ... 193
Streamwise evolution of film thickness time traces measured in
the inclined test setup (Re=21.4, Ka=139.8, f=24.0 Hz) ... 194
Measurement principle of the CCI technique . . . . . . . . . .. 197

Calibration relation for the CCI distance measurement: wave-
length versus measurement distance . . . . .. ... ... ... 198
Application of the CCI film thickness measuring technique to
the optical test setup . . . . . . . . . ... . L. 199
Spectral dependence of the refractive index for quartz glass body
and DMSO-water solution at T=25.2°C . . . . ... ... ... 200
Sketch of the integrated fiber-based emitting and receiving optics
employed for LDV measurements . . . . . .. ... ... .... 202
Close-up schematic view of the intersection volume of LDV laser

beams, illustrating the measurement ellipsoid . . . . . . .. .. 204



List of Figures

4.24

4.25

4.26

4.27

4.28

4.29

4.30

431

4.32

4.33

4.34
4.35

4.36

4.37

Photograph of intersecting LDV laser beams in the optical test

Signal processing operations performed by the Burst Spectrum
Analyzer . . . . . ... 206

Sketch of the LDV measurement ellipsoid in the optical test

setup with Cartesian and radial coordinates . . . . . . . . . .. 207

Frequency response of the Titanium dioxide tracer particles em-

ployed for velocity measurements . . . . . . ... ... ... .. 210

Analytical and experimental radial streamwise velocity profiles
in a smooth water-glycerol film (Re=1.1, Ka=5.6) . . ... .. 211

Liquid phase streamwise velocity time traces in the residual
layer measured with LDV in the optical test setup (Re=15.0,
Ka=509.5, f=16.0 Hz) . . . . . . . . . .. .. ... 213
Liquid phase streamwise velocity time traces in the large wave
humps measured with LDV in the optical test setup (Re=15.0,
Ka=509.5, f=16.0 Hz) . . . . . . . . . .. .. ... 214
Liquid phase streamwise velocity time traces in the residual layer
and intermediate region measured with LDV in the inclined test
setup (Re=15.6, Ka=133.6, f=15.0Hz) . . . . ... ... ... 215
Liquid phase streamwise velocity time trace in the large wave
humps measured with LDV in the inclined test setup (Re=15.6,
Ka=133.6, f=15.0Hz) . . . . . . . .. ... ... 216
Photograph of the PIV laser light sheet illuminating the wavy
liquid film in the optical test setup . . . . . . . ... ... ... 217

Two successive digital PIV images recorded with the CMOS camera218

Typical illumination and imaging sequence employed for PIV

recordings . . . . ... 220
Displacement vectors obtained from the application of the PIV

algorithm to an exemplary image pair . . . . . ... ... ... 222
Calibration procedure for PIV measurements . . . . ... ... 224

xxi



List of Figures

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

xxii

Streamlines in the capillary wave region obtained from numerical
simulation (case 1) . . . . .. .. ... ... ... 229
Streamlines in the capillary wave region obtained from numerical
simulation (case 8) . . . . . ... ... 230
Simulated near-wall streamlines and streamwise velocity profiles

at the first capillary minimum during wave development (case 1) 233
Simulated near-wall streamlines and streamwise velocity profiles

at the first capillary minimum in the developed region (case 1) 234
Simulated near-wall streamlines and streamwise velocity profiles

at the first capillary minimum in the developed region (case 8) 236
Velocity vectors in the capillary wave region measured in the
optical test setup using PIV (Re=15.0, f=16.0 Hz) . . . . . . . 238
Streamwise velocity time traces in the residual layer (near-wall
region) measured in the optical test setup using LDV (Re=15.0,
F=160 Hz) ..o oo 240
Streamwise velocity time traces in the residual layer (intermedi-

ate region) measured in the optical test setup using LDV (Re=15.0,
F=160Hz) ..o oo 241
Streamwise velocity time traces in the large wave humps mea-
sured in the optical test setup using LDV (Re=15.0, f=16.0 Hz) 242
Out of plane vorticity component in the CSE region obtained

from PIV measurements in the optical test setup (Re=15.0,
Ka=509.5, f=16.0Hz) . . . . . . .. ... ... ... ... ... 244
Sketch illustrating the relation between interface topology and
liquid phase static pressure . . . . . . ... ... ... .. 250
Simulated wave topology, streamwise velocity contours and cor-
responding wall pressure distribution (case 1) . . . ... . ... 253
Simulated wave topology, streamwise velocity contours and cor-
responding wall pressure distribution (case 8) . . . ... .. .. 254
Dynamic conditions in the capillary wave region corresponding

to streamlines in figure 5.3(a) . . . . .. ... ... L. 256



List of Figures

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

Dynamic conditions in the capillary wave region corresponding
to streamlines in figure 5.3(c) . . . . .. ... ... L.
Dynamic conditions in the capillary wave region corresponding
to streamlines in figure 5.4(a) . . . . .. ... ... L.
Simulated kinematic and dynamic conditions at the first capil-
lary minimum (case 8) . . . . . . ... ... L.
Simulated kinematic and dynamic conditions in the region of the
wave front (case 8) . . . . .. ...
Simulated kinematic and dynamic conditions at the second cap-
illary minimum (case 8) . . . . . ... .. ... ... ...
Simulated kinematic and dynamic conditions at the first capil-
lary maximum (case 8) . . . . . . ... ...
Simulated streamlines and dynamic conditions in the capillary
wave region at t=2.97000 s (case 8) . . . . . ... ... ...
Simulated streamlines and dynamic conditions in the capillary
wave region at t=2.98250 s (case 8) . . . . . ... ... ...
Simulated streamlines and dynamic conditions in the capillary
wave region at t=2.99500 s (case 8) . . . . . ... ... ...
Simulated streamlines and dynamic conditions in the capillary
wave region at t=3.02000 s (case 8) . . . . . . ... ... ...
Simulated temperature contours in a single wave (cases 1 and 8)
Simulated temperature profiles in a single wave (cases 1 and 8)
Simulated fluid element pathlines in the residual layer during
the transition of the first capillary minimum (case 1) . . . . . .
General and close-up view of simulated near-wall fluid element
pathlines (case 1) . . . . . . . . . . ...
Simulated time traces of film thickness, wall shear stress and
Nusselt number evaluated over one period length (case 1)
Simulated fluid element pathlines in the residual layer during
the transition of the first capillary minimum (case 8) . . . . . .
General and close-up view of simulated near-wall fluid element

pathlines (case 8) . . . . . .. ... ... ... L.

258

261

262

263

264

265

266

272

273

276

279

280

xxiil



List of Figures

5.32

5.33

5.34

5.35

5.36

5.37

5.38

5.39

5.40

5.41

5.42

5.43

5.44

5.45

5.46

5.47

xxiv

Simulated time traces of film thickness, wall shear stress and
Nusselt number evaluated over one period length (case 8)

Simulated Streamwise film thickness distribution over a single
wave (Cases 50 8) . . . . ...
Film thickness and streamwise velocity time traces measured in
the optical test setup (Re=8.6, 10.7, f=16.0 Hz) . . ... ...
Film thickness and streamwise velocity time traces measured in
the optical test setup (Re=12.9, 15.0, f=16.0 Hz) . . . . . . . .

Streamlines at the first capillary minimum obtained from PIV

281

283

284

285

measurements in the optical test setup: Reynolds number influence286

Streamlines and dynamic conditions at the first capillary mini-
mum obtained from numerical simulation (cases 5 and 6)

Streamlines and dynamic conditions at the first capillary mini-
mum obtained from numerical simulation (cases 7 and 8)

Simulated Streamwise film thickness distribution over a single
wave (cases 9and 10) . . . . . . . ...
Film thickness and streamwise velocity time traces measured in
the optical test setup (Re=10.7, f=24.0,20.0 Hz) . . . . . . ..
Film thickness and streamwise velocity time traces measured in
the optical test setup (Re=10.7, f=18.0,16.0 Hz) . . . . . . . .

Streamlines at the first capillary minimum obtained from PIV

288

289

291

292

293

measurements in the optical test setup: wave frequency influence 294

Streamlines and dynamic conditions at the first capillary mini-
mum obtained from numerical simulation (cases 9 and 10) . . .
Simulated Streamwise film thickness distribution over a single
wave (cases 1t04) . . . . . . .
Streamlines and dynamic conditions at the first capillary mini-
mum obtained from numerical simulation (cases 2 and 3)

Streamlines and dynamic conditions at the first capillary mini-
mum obtained from numerical simulation (cases 4 and 1)

Interface topology for the 3-dimensional simulation (case 11)

296

297

298

299
300



List of Figures

5.48

5.49

5.50

5.51

5.52

5.53

5.54

5.55

Contours of film thickness as well as streamwise and spanwise
wall shear stress for the 3-dimensional film (case 11) . . . . ..
Streamlines and velocity vectors near the first two capillary min-
ima of the 3-dimensional film (case 11) . . . . . . ... ... ..
Streamlines and velocity vectors near the first two capillary min-
ima of the 3-dimensional film (case 11) . . . . . . ... ... ..
Liquid phase streamlines in the capillary wave region of the 3-
dimensional film (case 11): perspective and top view. . . . . . .
Liquid phase streamlines in the capillary wave region of the 3-
dimensional film (case 11): inner and outer side views. . . . . .
Velocity vectors at different x-positions in the region of capillary
interference of the 3-dimensional film (case 11) . . .. ... ..
Velocity vectors at different x-positions in the region of capillary
interference of the 3-dimensional film (case 11) . . .. ... ..
Velocity vectors at different x-positions in the region of capillary

interference of the 3-dimensional film (case 11) . . .. ... ..

302

304

305

307

308

310

XXV






List of Tables

2.1

2.2

2.3

2.4
2.5

2.6

2.7

3.1

3.2

3.3

3.4

3.5
3.6

List of long-wave equation models based on the asymptotic ex-

pansion method by Benney (1966) . . . . .. ... ....... 37
List of recent multiple-equation models based on the method by
Shkadov (1967) . . . . . . . . 43
List of experimental investigations of the velocity field in falling
liquid films . . . . . ... .. 49

List of investigations pertaining to backflow in falling liquid films 64
Classification of falling liquid film regimes according to Brauer

(1956) . . o o o 79
Classification of falling liquid film regimes according to Ishigai
etal. (1972) . .o 80
Liquid phase temperature profile and Nusselt number for smooth
fully developed films . . . . .. ... ... .. ... ... 86

Flow regimes for the performed numerical simulations of falling

liquid films . . . . . . ... 145
Liquid properties for the performed numerical simulations of
falling liquid films . . . . ... .. ... ... 146
Dimensions of the computational domain for the performed nu-
merical simulations of falling liquid films . . . . . . . ... ... 146
Spatio-temporal discretization for the performed numerical sim-
ulations of falling liquid films . . . . ... ... ... ... ... 147
Conditions for the 2-dimensional heat transfer simulations . . . 147

Spatio-temporal discretization for the grid dependence analysis
ofcases land 8 . . . . . . . . .. L 149

xxvii



List of Tables

4.1

4.2
4.3

4.4
4.5

4.6

4.7
4.8

XXViii

Liquid properties of the two refractively matched aqueous solu-
tions employed as working liquids in the optical test setup . . .
Flow regimes investigated in the optical test setup . . . . . ..
Liquid properties for working liquids employed in the inclined
test setup . . . . ..o
Flow regimes investigated in the inclined test setup . . . . . . .
Specifications of the CCI measurement system employed for film
thickness measurements . . . . ... ... ... ... ... ..
Optical quantities specifying the fiber-optic LDV-probe

Dimensions of the LDV-ellipsoid in the liquid film . . . . . . .
Settings and properties of the CMOS camera and copper vapour

laser employed for PIV image acquisition . . . . ... ... ..

176
180

190
190

198
203
208



List of Symbols

Physical quantities

Symbol  Quantity Unit
0 Film thickness m
c Wave celerity m/s
f Wave frequency 1/s
w Angular frequency 1/s
A Wavelength m
et Streamwise wave number 1/m
B Spanwise wave number 1/m
A Wave amplitude m
€ Relative amplitude -
K Interfacial curvature 1/m
t Time coordinate s
At Time difference S
U Streamwise velocity component m/s
v Crosswise velocity component m/s
v Characteristic crosswise velocity m/s
w Spanwise velocity component m/s
Wx Spanwise vorticity component 1/s
Q Volume flow rate m®/s
q Volume flow rate per unit width m?/s
' Ratio of streamwise pressure force to grav- -

itational force at the wall

XXiX



List of Tables

XXX

Physical quantities (continued)

Symbol  Quantity Unit

v Stream function m?/s

10) Amplitude of stream function perturbation -

p Static pressure N/m?
Twa Streamwise wall shear stress N/ m?
Twz Spanwise wall shear stress N/m?

g Gravitational acceleration constant m/s?
Gz Streamwise gravitational acceleration com- m/s?

ponent

9y Crosswise gravitational acceleration com- m/s?

ponent
Temperature K

h Heat transfer coefficient W/m?K
hm Mass transfer coefficient kg/ m?s

L Characteristic length of the falling liquid m

film

%4 Width of the falling liquid film m

® Inclination angle with respect to horizontal deg

plane

R Radius of the glass body bore m

d Diameter m
H Height of the computational domain m

Thermophysical properties

Symbol  Quantity Unit
o Surface tension N/m
I Dynamic viscosity kg/ms
v Kinematic viscosity m?/s
P Density kg/m?




List of Tables

Thermophysical properties (continued)

Symbol  Quantity Unit
e Thermal diffusivity m?/s
k Thermal conductivity W/mK
c Specific heat capacity J/kgK
Cp Specific heat capacity (isobaric) J/kgK
Cv Specific heat capacity (isochoric) J/kgK
D Diffusion coefficient m?/s
Scales for non-dimensionalization
Symbol  Quantity Definition
3qu]! 73
ONu Crosswise length scale {—}
gz
L Streamwise length scale eg. A
9 O
UNu Streamwise velocity scale E—N“
14t
tNu Time scale L/unu
Dimensionless groups
Symbol  Quantity Definition
UNy O
Re Reynolds number UNu ONu
14t
o
We Weber number —_—
PLONG T,y
. o
Ka Kapitza number —75 43
pgs vy
Fr Froude number UNu

Length scale ratio

(Igy| Sxu)'/?

5NU/L

XXX1



List of Tables

XXXii

Dimensionless groups (continued)

Symbol  Quantity Definition
2/3 1/3
IlsL Dimensionless group for boundary %
layer equations €
u Dynamic viscosity ratio te /i
11, Density ratio Pe/p1
Pr Prandtl number v/
Nu Nusselt number h 2Nu
1
IIx Thermal conductivity ratio kg /K
11, Thermal diffusivity ratio ag /o
Sc Schmidt number wn/D
hm ONu
Sh Sherwood number N
p D
A
St Stokes number tn
2 d2

Mathematical notation

Notation  Signification
T Streamwise coordinate
Y Crosswise coordinate
z Spanwise coordinate
s Interfacial line coordinate
r Radial coordinate
13 Wave-fixed streamwise coordinate
Vv Volume
A Area




List of Tables

Mathematical notation (continued)

Notation  Signification
& 1-dimensional spatial, volume or temporal aver-
age of ¢
é Area average of ¢
q:b Spatial and temporal average of ¢
bi Einstein notation for vector q;
Zi Position vector: [z,y, z]"
Us Velocity vector: [u, v, w]"
v Nabla vector: [0/0x,d/8y,d/0z)"
7 Normal interfacial unit vector
n Normal distance to the interface
T First tangential interfacial unit vector
T Second tangential interfacial unit vector
g Gravitational acceleration vector
Tay Shear stress acting in (or opposed to the) y direc-
tion on a surface with outward normal pointing
in (or opposed to the) x-direction
Dy Einstein notation for matrix &
Sii Stress tensor
0ij Kronecker Delta
Eijk Levi-Civita permutation tensor
5 Delta function
AP Discrete amount of the extensive quantity ® in a
computational cell
i Complex variable: /—1
br Real part of the complex scalar ¢
bi Imaginary part of the complex scalar ¢
o Transpose of the vector ¢
o) Volume fraction
1) Area fraction
e Weight factor

XXXIiii



List of Tables

XXXIV

Subscripts
Symbol  Reference to
x Streamwise direction
Y Crosswise direction
z Spanwise direction
g Gaseous phase; glass
1 Liquid phase
1) Liquid-gas interface
w Bounding wall
F Film
C Channel; camera
f Film; finely resolved computational subdomain
d Diabatic boundary
0 Initial state; state at the liquid inlet; ambient air
Nu Nusselt (1923) (i.e. laminar, smooth and devel-
oped film)
m Mean or bulk; mass transfer; measurement
00 Fully developed region; far field
eff Effective or apparent
max Maximality
min Minimality
res Residual layer
C Criticality; capillary wave
SP Stagnation point
Sp. Spurious currents
BL Boundary layer equations
1 Normal projection
P Particles




List of Tables

Subscripts (continued)

Symbol  Reference to
R Red
G Green
B Blue
Superscripts
Symbol Reference to
x Streamwise direction
Y Crosswise direction
z Spanwise direction
0 Initial state
* Non-dimensionalization
Perturbation, differentiation
" Area specific
" Volume specific
7 Time step
Abbreviations
Acronym  Significance
CSE Capillary Separation Eddy
lhs Left hand side
rhs Right hand side
rms Root mean square
RIM Refractive Index Matching
LDV Laser Doppler Velocimetry

XXXV



List of Tables

XXXVi

Abbreviations (continued)

Acronym  Significance
PIV Particle Image velocimetry
PTV Particle Tracking Velocimetry
CCI Confocal Chromatic Imaging
CFD Computational Fluid Dynamics
VOF Volume of Fluid
CSF Continuum Surface Force
CCF Cross Correlation Function




1 Introduction

Liquid films are thin liquid layers of approximatively 1 mm thickness flowing
along a bounding wall. Depending on the mechanism of their formation one can
distinguish shear-driven liquid films, falling liquid films, which are accelerated
only by gravity, liquid films developing as a result of vapor condensation and

liquid films resulting from jet impingement (see figure 1.1).

Such flows develop naturally, as can be observed on the windshield of a car,
driving in rainy weather, but are also present in many industrial applications.
In cooling towers for example, water is sprayed onto corrugated sheets, gener-
ating a falling liquid film from which it evaporates into the counter-flowing air
(see e.g. Ibrahim et al. (1995); Fisenko et al. (2002)). In nuclear fusion research,
falling liquid lithium films are employed to cool chamber walls surrounding the
plasma (see e.g. Abdou (1999)). In modern nuclear reactors, water in the pri-
mary circuit flows along fuel elements in the shape of an evaporating film, driven
by water vapor (see e.g. Takase et al. (2003)). Conversely, films develop on the
outside of horizontal or vertical tubes in power plant condensers (see e.g. Sarma
et al. (1998)) or in absorption-cooling machines (see e.g. Killion & Garimella
(2004); Nosoko et al. (2002)). In certain gas turbines, liquid fuel is injected as
an air-driven film, which atomizes in the combustion chamber (see e.g. Geren-
das & Wittig (2001)). Liquid films also develop in reciprocating combustion
engines as oil films on the inside of the cylinder (see e.g. Yilmaz (2003)). In
process technology, falling film evaporators are employed for inspissation (see
e.g. Jebson & Chen (1997)) or distillation (see e.g. Brotherton (2002)) includ-
ing desalination (see e.g. Uche et al. (2002)). For example, such falling film
apparatuses consist of vertical tubes along the inside of which a falling film

develops. Thereby, the liquid is accessible for thermal control through the tube
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[shear-driven ﬁlms] [ falling films J [condensing ﬁlms] [impinging jets}

—
flow regime turbulent
—

natural waves (excited waves

wave dynamics {3-D waves: (2-D waves)
st

transport processes coupled

Figure 1.1: Diagram showing the complexity levels of liquid films and highlight-
ing conditions principally investigated in this thesis with rounded
boxes (a single 3-dimensional falling film was also investigated).

wall. This property is relevant for processes requiring the limitation of product
temperature. A considerably more complex flow is encountered in distillation
or absorption columns with structured packings where the film develops on non
smooth surfaces (see e.g. Valluri et al. (2005)). Further examples can be found
in the comprehensive review of liquid film applications compiled by Fulford
(1964).

In the context of this thesis, only falling liquid films (i.e. liquid films driven
by gravity) are of interest. Their most notable characteristic is the presence
of waves on the liquid-gas free surface, which subsequently will be referred to
as liquid-gas interface or simply interface. Brooke Benjamin (1957) established
that a smooth vertically falling film is unstable to interface perturbations for
all values of the film Reynolds number. Thus, such flows are generally wavy
in technical applications. The full complexity displayed by falling liquid film
dynamics is broken down in figure 1.1. On a higher level, the flow in the liquid
phase can be either turbulent or laminar. Thereby, even laminar falling films

can display very complex wave dynamics. Owing to film instability, surface



large wave

2-D waves
hump

residual layer

3-D waves

capillary
waves

Figure 1.2: Shadowgraph of a vertical water film with excited surface waves
(taken from Nosoko et al. (1996)) and typical wave profile in the
region of 2-dimensional wave fronts.

waves arise either naturally or due to controlled external perturbations. The
kinematics of these waves can be two- or three-dimensional. Further, single
waves either travel well separated from one another or interact with one an-
other due to dispersion effects. On an additional complexity level, one can
distinguish flows displaying strong coupling between heat- and mass-transport
(i.e. scalar transport) and momentum transport from flows where scalar trans-
port is passive. Thereby, coupling between scalar and momentum transport
can result from the temperature or concentration dependence of fluid proper-

ties such as surface tension and viscosity.

In most technical systems, falling films display maximal complexity, char-
acterized by turbulent flow regimes, 3-dimensional interacting surface waves,
occuring naturally with coupled and superimposed transport mechanisms. This
complexity prohibits an integral modelling approach which is traditionally ap-
plied in heat- and mass transfer through the use of transfer coefficients. Rather,

a more detailed approach must be chosen, focused on mechanistically modelling
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distinct phenomena and their interaction. Thereby, efforts have traditionally
been divided between two main areas: modelling of wave dynamics and mod-

elling of liquid phase transport phenomena.

A prerequisite for the mechanistic modelling of falling liquid films is the elu-
cidation of relevant transport phenomena and their governing dynamics. It
is to this task that this thesis seeks to contribute. Thereby, investigations
are constrained to the case of laminar falling liquid films with externally ex-
cited monochromatic 2-dimensional surface waves, with the exception of one
3-dimensional simulation (see section 5.5). As can be deduced from figure 1.1
this constitutes the path of least complexity. However, even under these more
simple conditions the understanding of liquid phase transport mechanisms is
still incomplete. Figure 1.2 illustrates the wave topology of a falling liquid film
under these conditions as visualized experimentally by Nosoko et al. (1996).
One can discern waves of two dimensional wave fronts and equal spacing near
the film inlet at the top of the shadowgraph. Farther downstream, plane wave
fronts break-up into 3-dimensional structures, interacting with one another and
rendering the interface topology considerably more complex. The profile on the
right side of figure 1.2 shows a typical shape of the liquid-gas interface in the
2-dimensional region of the flow, consisting of large wave humps preceded by
small so called capillary waves (to be understood in the sense that the effect of
surface tension dominates the effect of gravity, as stated by Whitham (1974))
and separated by a smooth residual layer .

A principal object of interest has been the investigation of the effect of wave
dynamics on transport in the liquid film. Several studies (see e.g. Frisk & Davis
(1972)) have shown that due to the presence of surface waves on the film, scalar
transfer between the bounding wall and the liquid or between the liquid and
its gaseous atmosphere is intensified. Thereof, a few studies (see e.g. Adomeit
et al. (2000)) have shown that the intensification is strongest in the region of
capillary waves. Because no sufficiently resolved numerical and experimental
data, relative to the velocity and scalar fields in the liquid phase have been
available, no unifying physically based explanation of this phenomenon has

been provided. Concurrently, the capillary wave region has been the focus of



attention due to another reason. Ever since Kapitza (1948) (see also the English
translation Kapitza & Kapitza (1965)), based on his long-wave approximation
of the film flow, hypothesized that upward flow exists in the region of the wave
trough, the possibility of such back flow in a falling liquid film (which nota

bene is vertical in most cases) has been debated.

Consequently, in an attempt to elucidate these two open questions, detailed
numerical and experimental investigations of the kinematics and dynamics in
the capillary wave region were performed in this thesis. The thesis is structured
as follows. In chapter 2, a summary of established knowledge concerning falling
film wave dynamics (section 2.3) as well as liquid phase transport mechanisms

(section 2.2) is provided in the form of a literature review.

Chapters 3 and 4 introduce the employed investigative methodology. Thereof,
chapter 3 addresses the numerical simulation of falling liquid films compris-
ing a description of the employed numerical multiphase methods (section 3.1),
the quantification of performed simulations (section 3.2) as well as a series of
consistency tests (section 3.3), including comparison with experimental data.
Chapter 4 introduces the test setups employed for the experimental investi-
gations (section 4.1) as well as the optical measurement techniques (section
4.2).

Results are summarized in chapter 5. These constitute a complete numerical
and experimental picture of the phenomenon of capillary flow separation in
falling liquid films discovered in the context of this thesis. The kinematics and
governing dynamics are elucidated in sections 5.1 and 5.2 respectively, whereas
its effect on heat transfer is explained in section 5.3. In section 5.4, the effect
of two principal control parameters, namely the Reynolds number and wave
frequency, is demonstrated and the chapter is concluded with an analysis of 3-
dimensional capillary flow separation (section 5.5). Final conclusions are drawn
in chapter 6.






2 Falling film dynamics

The body of research on falling liquid films, preceding the year 2000 is summa-
rized in two landmark books by Alekseenko et al. (1994) on general aspects of
falling films and by Chang & Demekhin (2002) on falling film wave dynamics.
In this chapter, some contents of these works as well as more recent research

results are reviewed in order to contextualize the contributions of this thesis.

2.1 Governing equations

Assuming Newtonian fluids, the flow of a falling liquid film down an inclined
plane T (see figure 2.1) in a quiescent gaseous atmosphere is governed by the
following system of equations in both the liquid and gaseous phase:

8ui+u_8ui__8p+g 8ui+ Oou;j _22 % ¥ pas
p ot Py 81’j - o0z x; Maxj ® o0x; 3 x; Maxj P9

op ad

(pu;) =0, 4,7=1,2,3,

(2.1)
where Einstein’s summation convention is to be applied, yielding the continu-
ity equation and the Navier-Stokes equations for the 3 Cartesian coordinates.
In order for the solutions to these equations to be well defined in the respec-
tive phases, 7 inter-phase coupling conditions need to be formulated. Three of
these result from the continuity of velocity across the interface. Further condi-

tions result from a local interfacial force balance. Thereby, the discontinuity of

TOnly inclination angles smaller or equal to 90° with respect to the horizontal plane shall
be considered in this thesis.
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Figure 2.1: Sketch of a wavy falling liquid film in 3-dimensional space, showing
the wall fixed Cartesian coordinate system and the orthonormal
surface coordinate system defined in equation 2.2.

the stress tensor across the interface, due to the presence of interfacial tensile
forces, must be accounted for. Conventionally, the interfacial force balance is
formulated in an orthonormal surface coordinate system (see figure 2.1), yield-
ing three scalar coupling equations. The surface coordinate system chosen here
is given by the following definitions (see Slattery (1990) or Kreyszig (1991)):

P ) e R R
o | \ oz 9z ’




2.1 Governing equations

Thereby, the interface is represented by the scalar equation y = 0 (z,z). Con-
sequently, 7 signifies the unit normal vector (pointing away from the liquid
phase) and 7, T span the tangent plane to the interface at the considered in-

terface point.

According to Brackbill et al. (1992), the resulting tensile force per unit area

F!; acting on an infinitesimal interfacial surface element can be written as

Jdo on; do
= —n; - i— . 2.
o (91'1 " (U (9l'j + n] (91'J) ( 3)

With this, the interfacial force balance yields the following coupling conditions

follows:

between gaseous (superscript g) and liquid (superscript /) phase formulated in
surface coordinates:

9 ;7 (2.4)

0
Séjani + a_{Z'TiTi = Sigjn]’Ti.

For the formulation of the tangential balances (i.e. the last two equations of
2.4), the first term of equation 2.3 was projected in the directions of the surface

coordinates 7 and T. Further, S;; designates the stress tensor:

s 2 Ou Ous | Ou;
S” o 6” (p+ 3 H@mk) +/14 (830] T axl) ’ (25)

The film thickness §, which appears in the above equations, is related to the

velocity field by the so called kinematic condition (i.e. the seventh coupling

condition):
dé

vly:é = E7 (26)

which simply states that the position of the interface moves in crosswise direc-

tion with the local crosswise velocity of the fluid. At the wall, assuming no slip
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and no penetration, the following boundary conditions apply:
ul,_o = vl,_g = w|,_, = 0. (2.7)

When additional heat transport is considered, the energy equation is added
to the equations in 2.1:

0 0 0 oT Ou;
—(peT)+ — icpT)= — |k =— Sij =, 2.8
ST o ) = g (kD) +5u5E, (28)
where the last term on the right side signifies the dissipation rate per unit vol-
ume. In addition to the continuity of temperature across the interface a second
thermal inter-phase coupling condition can be derived from an interfacial heat
balance: T oT
el S -
! ij i € 31’j n

In the above equation as in the rest of the text, the subscripts g and [ have been

(2.9)

introduced to refer to the gaseous and liquid phase respectively, as opposed to
equation 2.4 where superscripts were exceptionally employed for convenience.
Finally, assuming an isothermal bounding wall, the following thermal boundary
condition applies:

T|y:0 =Tw. (2.10)

The investigations presented in this thesis are mainly focused on 2-dimensional
flow dynamics with constant fluid properties. For these conditions the gov-
erning equations presented above are considerably reduced in complexity. By
further assuming a constant pressure po in the gaseous phase and a smooth
liquid-gas interface, Nusselt (1923) solved the resulting 2-dimensional equa-
tions in the limit of developed flow. This solution describes the primary flow

of the film and can be written as follows:

r7 P (y) = po + p1 gy (Onu —¥),
(2.11)

2
uNu (y) = g?? (6Nuy— %) , UNu = WNu =0,

10



2.1 Governing equations

where ¢ signifies the volume flow rate per unit width. The properties of this
primary flow are conventionally introduced as reference values for non dimen-

sionalization. The reference values for length, velocity and time thus are:

ONu

1
3qu |3 B 1 Gz 51%“ L
u = 5 u=— T u - ) u= - 2.12
On |: gz :| UN ONu / N (y)dy 3y I UNu ( )

whereby the subscript Nu refers to the work of Nusselt (1923) and L signifies

an adequate characteristic length in streamwise direction.

Cerro & Whitaker (1971) calculated the film thickness distribution in the
developing region of the smooth film based on a boundary layer approach for
different heights of the inlet channel. Their results show that the film thickness
asymptotically approaches dny over the developing region. Finally, an analyt-
ical solution for smooth developed vertical film flow in eylindrical coordinates
(see e.g. Mudawar & Houpt (1993a)) can be derived:

u (r) lyg 1(R27r2)7R§1n(§)}, v=w=0, p=po, (2.13)

T2y |2
where R designates the radial distance of the bounding wall and Rs the radial
distance of the liquid-gas interface. No closed relation for the film thickness can
be derived under these conditions. However, by integrating the radial velocity
profile over the film thickness, the latter can be related implicitly to the volume

flow rate per unit width.
Introducing the dimensionless quantities:

* x * Y * taNu * P * u * v L
= — = — t = s = = 5 == b 214
'Y 7 o L ? pad,’ YT T v Ona 214)

the Navier-Stokes and continuity equations in 2.1 reduce to the following no-

dimensional form for the considered 2-dimensional case with constant fluid

properties:
ou”* ot ou* o ou* _ op* n X . o%u* n 1821[‘ n 3x
ot ox* oy Yoz T Re \“Bz2 T ¢ Oy*2 € Re’

11



2 Falling film dynamics

ov* - ov* ot w4 9t x *v* N 1 0%v* 1
ot* Ox* Oy* € dy*  Re \ 0x*2 ' € Oy*? €2 Fr?’
ou ov —o,
dxr* = Oy*
(2.15)

where x and v have been introduced to distinguish the formulations for the

respective phases. In the gaseous phase x = II,/II,, v = 1/II, and in the

liquid phase x = v = 1 with the density ratio II, = pg/p and the dynamic

viscosity ratio I, = pg /. As the surrounding atmosphere of the falling liquid

film is quiescent gas, the scales in both the liquid and the gaseous phase are

imposed by the flow in the liquid phase (see equation 2.12). The dimensionless

Navier-Stokes and continuity equations yield the Reynolds number Re, the

Froude number F'r and the ratio of length scales e:

UNu ONy UNu ONu
Re=—, Fr=

— €= .
“ (Igy| ona)*/? L

The inter-phase coupling conditions in equation 2.4 reduce to:

" . Wee 9%
P —pgt 3372 9z

2¢ | 2 0uf (06" 2 N vy N 8% ([ Ouf Lo o\ |
B Re dx* \ Oz* dy*  Oz* \ Jy* orx*
2¢ll, | o Oup (08" ? Lo 06T (Oup o Dy

B Re ox* \ Oz* y*  Ox* \ Oy* ox* ) |’

2 06 (OQuf vl B8 ouy 2 O\
¢ oz (ax* oy* + 2 1 oy* te ox* )

2 06" [Oug  Ovg Jé] Oug o Ovg
11 =—1
Ox* (B:E* oy* i 2 oy* te ox* )’

II, €

12

(2.16)

(2.17)



2.1 Governing equations

where the following definitions were introduced:

3 1/3 £\ 2
We=—2 :{3" ”‘} , B=1+¢ (%) , 0" 9 (2.18)

p1 0Ny T, P3 9o ¢° Oz* ~ Onu

and We designates the Weber number. The non-dimensional form of the kine-

matic condition 2.6 is:

” dé*
Vlyems = (2.19)
and the velocity boundary conditions 2.7 at the wall take the form:
Uy = Ve = Wy = 0. (2.20)

Finally, non-dimensionalizing equations 2.8 (without the dissipation term), 2.9
and 2.10 yields:

0™ . 007 . 00" X € alch 1 9%
ot* tu Ox* v Ay* ~ PrRe (8x*2 + € dy2 )’
(2.21)
_90f 9 196f 5 00p 08" M99 o
Ox* dz* = € Oy* ¥ oz 0z ' € oy*’ yr=0—

where in the gaseous phase xy = Il, and in the liquid phase x = 1 with the
thermal diffusivity ratio Ilo = ag/a1 and thermal conductivity ratio I, =
kg /K1, the Prandtl number Pr and the dimensionless temperature difference
or:

LI T —"1To

=2 2.22
" A (2.22)

Pr =
whereby Tp is the liquid inlet temperature and T3, the wall temperature (de-
pending on the thermal boundary conditions, a different reference temperature
may be introduced). Consequently the dimensionless groups scaling falling

liquid films are:

Re, Fr, We, ‘sNT“ Pr, 1, I, I, I,.

It is interesting to note that the Weber number and not the Kapitza number

~1/3. —4/3
/Vl / (

Ka = Jpl_lgz which is used frequently in literature pertaining to

13



2 Falling film dynamics

film flow) results from the non-dimensionalization. However, the principal ad-
vantage of the Kapitza number is that it contains only liquid properties. Both

—5/3 and are both used in

dimensionless groups are related by We = 3'/% Ka Re
this thesis. Finally, Panga & Balakotaiah (2003) argued that the Weber num-
ber, which relates inertial forces to viscous and capillary forces, accounts for
the relative importance of “inertial forces” more accurately than the Reynolds
number. They further showed that, as a consequence, neutral stability curves
(see figure 2.4 in subsection 2.2.1) for different liquids collapse into one curve

when plotted against the Weber number instead of the Reynolds number.

2.2 Wave dynamics

According to equation 2.11, the primary flow of falling liquid films can be
described analytically. Yet in most instances such films are covered with in-
terfacial waves yielding a complex topology. These waves are the cause for
deviation from the characteristics of the primary flow, and understanding their
dynamics as well as modelling these is of principal technical interest. Thereby,
it is important to note that different waves or different stages in the evolution

of a wave result from different modes of instability.

2.2.1 Film instability

As stated previously, the primary flow of a vertically falling liquid film displays
instability at all values of the film Reynolds number Re, meaning that infinites-
imal disturbances are amplified under these conditions. Before addressing this
instability, the case of a horizontal liquid layer shall be considered here. The
corresponding conditions are illustrated in figure 2.2, wherein the liquid-gas
interface is disturbed harmonically in space. As can be observed when a rain
drop impinges on a water surface in a recipient, the film thickness 6 (z,t) at
a given position oscillates periodically in time as a result of the initial dis-
turbance. This film thickness oscillation propagates over the interface in the

shape of a traveling wave. For the case of inviscid flow, the resulting waves are

14



2.2 Wave dynamics
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Figure 2.2: Sketch of a horizontal liquid layer with harmonic interfacial dis-
turbance, showing the oscillatory liquid motion and the stabilizing
effect of surface tension. Tensile forces cause large values of static
pressure in the wave humps (plus sign) and small values in the wave
troughs (minus sign).

neutral, meaning that the amplitude of the oscillation neither decays nor grows
in time nor space, and their angular frequency is given by (see e.g. Whitham
(1974)):

(SIS

w= {(g + % a2) a tanh (a 50)} , (2.23)

whereby do specifies the mean film thickness and o the wave number in x-
direction. For this case, the cause for the sustained oscillation is the inertia
of the liquid, the effect of which is stabilized by the effects of surface tension
and gravity. From a dynamical point of view, the stabilizing effect of surface
tension results from its influence on the liquid pressure distribution. Indeed,
the interfacial pressure jump between liquid and gaseous phase is negative in
regions of positive interface curvature and vice versa as can be derived from
equation 2.17 for the inviscid case:
926 /0x?

D= pe = —0 K, K= 7 (2.24)
¢ (1 + (96/02)%)*"

introducing the interface curvature k. Assuming negligible pressure variations

in the gaseous phase, this leads to a pressure distribution forcing the liquid from

15



2 Falling film dynamics

the humps to the troughs (see figure 2.2) thus acting to suppress the waves.
The effect of gravity is also stabilizing as it accelerates liquid flowing from
hump to trough and decelerates liquid flowing from trough to hump (see figure
2.2). From a thermodynamical point of view, the film thickness oscillation
transforms kinetic energy of the flow into potential and surface energy and vice
versa, the total mechanical energy remaining constant. When fluid friction is
considered, the total mechanical energy is gradually transformed into internal
energy through dissipation, leading to decaying waves, which can be observed
in the example of the rain drop impinging on a water surface. Thereby, the
effect of viscous forces in the liquid is stabilizing as they always act counter to
the flow.

When considering a vertically falling liquid film instead of a horizontal layer,
the gravitational acceleration vector § pictured in figure 2.2 is to be rotated
so that it acts in x-direction. This change has several key consequences. First
of all it leads to the development of a mean flow in x-direction. In the undis-
turbed developed case this is the primary flow in which potential energy is fully
converted into internal energy. Further, as the component of § in y-direction
vanishes, gravity no longer exerts a stabilizing effect on the disturbed film. The
stabilizing effect of surface tension remains unaltered nonetheless. However, the
wavy motion of the interface can no longer be fully stabilized by the tensile
forces due to the asymmetry introduced by the orientation of the gravitational
acceleration vector. Indeed, the capillary-induced pressure force acting from
wave hump to wave trough is countered by gravity if it is oriented upstream and
supported by gravity if it is oriented down stream. The effect of gravity is thus
destabilizing. Due to this, the importance of viscous forces grows. Whereas in
the horizontal case even an inviscid liquid film is not unstable, owing to the
stabilizing effect of surface tension and gravity, viscous forces are essential to

stabilizing the vertical film.

The cause driving the ever growing deformation of the interface is the inertia
of the liquid as is the case in the horizontal film. Consequently, it is to be
expected that the falling liquid film can be fully stabilized for low values of
the Reynolds number and for conditions under which the stabilizing effect of

16



2.2 Wave dynamics

surface tension is strong. Having developed a physical understanding of the
film stability for the limiting horizontal and vertical cases, the behaviour of

inclined films can be interpolated accordingly.

The reasoning developed above provides a physical insight into the film insta-
bility but cannot yield any quantitative analysis. This however can be obtained
by applying linear stability analysis to the problem of falling liquid films, which
was first performed by Yih (1954) and later by Brooke Benjamin (1957) and Yih
(1963) (see Lin (1983) for a summary). When investigating the instability of
the primary flow, a 2-dimensional analysis suffices as according to Squire (1933)
and Yih (1955) every 3-dimensional instability is paired with a 2-dimensional

one, appearing at a lower Reynolds number.

The basis for linear stability analysis of falling liquid films is the Orr-Sommerfeld
equation written here in non-dimensional form (see e.g. Brooke Benjamin (1957)):

¢//// + ¢// [iRea* (E* o 3y* + 1.5y*2) o 20(*2] +
(2.25)
¢ [iRea* (73 o a*2 (é* o 32/* + 1.5y*2)) + a*4] — 07

where primes denote differentiation with respect to y* and the dimensionless
wave number o™ and complez wave celerity ¢* are introduced according to:
" ¢

o =adNg, ¢ =—. (2.26)
UNu

It can be derived from the dimensionless Navier-Stokes equations in 2.15 by
first eliminating the pressure terms through cross differentiation. Subsequently,
the resulting single equation is linearized around the primary solution (given
by the non-dimensional form of equations 2.11), yielding a differential equa-
tion for the velocity perturbations u* and v*', which express the departure
from the primary flow velocity field. Then, the velocity perturbations are ex-
pressed through the corresponding stream function perturbation ¥*' for which

the following ansatz is chosen:

T = ¢ (y") exp (ia” (" — & tY)), (2.27)

17



2 Falling film dynamics

where ¢ is a dimensionless function of the crosswise coordinate, and the stream-

wise coordinate is non-dimensionalized using dnu (i.e. L=0nu).

Four boundary conditions for the function ¢ can be derived (see e.g. Yih
(1963)) (similarly to the procedure adopted for the derivation of the Orr-
Sommerfeld equation) from the velocity boundary conditions at the wall (equa-
tions 2.20):

Olyro=0. &|._,=0, (2.28)
and the inter-phase coupling conditions given by equations 2.17, yielding:
(15 =) (8], +02 Blyey) +3 dlyesy =0, (2.29)
and:
(1.5 — &) (¢”’ oos — 3072 ¢ y*:l) —iRea" (15— ¢/| ._,

(2.30)

—iWeRe 'a™® ¢| ._, —isa*i—y B, =0,
x

Y
where the kinematic condition (equation 2.19) was employed additionally. It
should be noted that viscous forces in the gaseous phase have been neglected
here. The fourth order Orr-Sommerfeld equation (equation 2.25) and the four
boundary conditions in 2.28, 2.29 and 2.30 define the function ¢ uniquely for

given values of Re, We, o™, ¢ and gy/gz.

From a physical standpoint, as shown in section 2.1, the flow in the liquid
phase under the conditions considered here is well-defined by the dimensionless
quantities Re, Ka, F'r (F'r can be expressed in terms of g, /g, using the other
dimensionless groups) in addition to a® which defines the initial condition for
the dimensionless stream function. The complex wave celerity ¢* therefore does
not constitute a degree of freedom. Consequently, a condition for non trivial

solutions of ¢ in the following form can be derived:

¢ = f(Re,Ka,Fr,a™), (2.31)
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2.2 Wave dynamics

whereby the complex wave celerity is defined by’ & = ¢, +i¢;. Thus, the above

condition can be split into two equations:
c; = fr (Re,Ka,Fr,a™), c; = fi(Re,Ka,Fr,a™). (2.32)

The determination of these relations depends on the method employed to solve
the Orr-Sommerfeld equation and shall not be detailed here (see Brooke Ben-
jamin (1957); Yih (1963); Anshus & Goren (1966); Pierson & Whitaker (1977)
for details). From the perspective of stability analysis the second relation in
2.32 is of interest. Indeed, inserting the complex wave celerity into the ansatz
given by equation 2.27 yields:

V= ¢ (y) exp (a’cit) exp (ia” (a* — cit"), (2.33)

which shows that for ¢; < 0 initial perturbations are damped, hence the primary
flow is stable and for ¢; > 0 perturbations are amplified, hence the primary flow
is unstable. Consequently, the case ¢; = 0 defines the stability bound for the
primary film flow. Anshus & Goren (1966) developed a procedure to determine
equations 2.32 based on a simplified solution of the Orr-Sommerfeld equation,
by assuming that the streamwise velocity of the primary flow is constant over
the film thickness and corresponds to the surface velocity*. Later, Liu et al.
(1993) and Liu & Gollub (1994) showed that this approximate procedure yields
good agreement with experimental data. Thereby, the authors reformulated the
expression for the complex part ¢; in equations 2.32 as a function of dimension-
less wave frequency f* as opposed to dimensionless wave number o, owing to
the fact that, to induce surface waves in experiments, temporal perturbations

are generally employed:

a“cy _f ONu

CZ = fl (R67Ka7F1“7f*)7 f* = o e
u

(2.34)

THere ¢, designates the physical wave celerity.
*Two entries of matrix F (defined by equation 10 in the article) contain typographical
errors and should correctly read F (4,1) = (3 — ¢) 81 [iaNge (3 — ¢) + 3a? + ﬁf] and

F(4,3) = (2 —¢) B2 [iaNge (2 — ¢) + 30 + B3].
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Figure 2.3: Dimensionless growth rate as a function of dimensionless wave fre-
quency for a vertical film computed according to Anshus & Goren
(1966) for different film liquids encountered in this work: Re=15.

Figure 2.3 depicts the dimensionless growth rate a*c; as a function of the
dimensionless perturbation frequency f* for different values of the Kapitza
number as calculated with the method by Anshus & Goren (1966). All graphs
are plotted for Re = 15 and vertical conditions (i.e. F'r = co). The liquids
(see tables 4.1 and 4.3) corresponding to the different graphs as well as the
Reynolds number value are representative for conditions encountered in the
context of this thesis. All pictured graphs display positive growth rates (asso-
ciated with amplified disturbances) for small excitation frequencies (the region
of negative growth rates is not pictured here). It can also be observed that
disturbances are amplified selectively with respect to the excitation frequency,
yielding growth rate maxima for specific values of f*. The intersection points
of the different graphs with the f* axis (for f* > 0) define the respective
stability thresholds. Determining these for different values of the Reynolds
number, yields the stability bounds of the primary film flow plotted in figure
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Figure 2.4: Linear stability bound computed according to Anshus &
Goren (1966) for different film liquids and inclination angles
p—arctan(g./gy) encountered in this work.

2.4, whereby an additional curve corresponding to an inclined film flow was in-
cluded (for its calculation the method by Anshus & Goren (1966) was applied
to inclined films). The respective plots validate all principal conclusions drawn
in the previous physical discussion of film instability. Indeed, instability of
the film flow is seen to occur for small frequencies i.e. large wavelengths, which
weaken the stabilizing effect of tensile forces. Further, figure 2.4 shows that the
film flow can be destabilized by increasing the Reynolds number, owing to the
growing importance of inertia in relation to viscous forces. Finally, reducing
the inclination angle p—=arctan(gz/gy) of the film has a stabilizing effect as the
crosswise component of gravity increases. Indeed, in this case the intersection
of the corresponding graph with the Re-axis, which corresponds to the critical
Reynolds number Re. (i.e. the Reynolds number below which the flow is stable
for all perturbations) does not lie at the origin. Thus, inclined films as opposed

to vertical films do not display instability for all values of the Reynolds num-
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Smooth film 1=~ Single-peaked waves Multi-peaked waves - -+

| Primary instability (figure 2.6) | | 2-D instability |

| Linear filtering (figure 2.7) | | Bifurcation |

2-dimensional waves
| Subharmonic | | Sideband |

| Non linear evolution |

2-D spatio-temporal chaos, solitary waves
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Figure 2.5: Hierarchy of the liquid film instability and associated wave
dynamics.

ber. Accordingly, the critical Reynolds number is given by Re.=5g,/6g. (see
e.g. Yih (1955)). It should be reminded here that the linear stability analysis
is only accurate for infinitesimal disturbances of the interface and can conse-
quently only describe the inception of waves. Indeed, according to equation
2.33, surface waves would grow indefinitely for positive growth rates, which
is refuted by experimental observations. This aberration results from the fact
that for increasing wave amplitude the linearized governing equations no longer

describe all relevant dynamical effects.

2.2.2 Wave evolution

Having discussed the origin of falling film instability, attention here is directed
toward explaining the subsequent wave evolution, which leads to the interface
topology pictured in figure 1.2. The hierarchy of different stages of wave de-
velopment is illustrated in figure 2.5. Starting point of the following discussion
shall be the primary flow of a vertical film, which is subjected to spatial noise

in streamwise and spanwise direction at a position that shall be designated
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Figure 2.6: Linear stability bound for 3-dimensional perturbations as a function
of streamwise (a*) and spanwise (") dimensionless wave number
computed according to Chang et al. (1993) for different film liquids
encountered in this work: Re=15.

as inlet. As pointed out by Pierson & Whitaker (1977), the development of
the primary flow from an inlet channel influences the wave dynamics of the
film at large values of the Reynolds number. This influence is neglected in the

following analysis.

Although according to Squire’s theorem it suffices to consider two dimen-
sional perturbations when investigating the onset of film instability, the pri-
mary film flow is in fact unstable to 2- and 3-dimensional perturbations (see
Brooke Benjamin (1961); Chang et al. (1993)). This is evidenced by figure
2.6, which shows the stability bound of the primary flow with respect to 3-
dimensional perturbations of the form:

U = (y*) exp (i (@" 2" + 8" 2" — " a" t")), (2.35)

where 3* designates the dimensionless spanwise wave number. Results were
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Figure 2.7: Dimensionless linear growth rates o™ ¢; for 3-dimensional waves of
different dimensionless spanwise wave number 8% computed accord-
ing to Chang et al. (1993) for the glycerol-water mixture (Ka=6):
Re=15.

computed on the basis of the dispersion relation given by Chang et al. (1993)
(see equation 16 there), obtained by linear stability analysis, for the previously
considered liquids. The corresponding growth rates for the glycerol-water mix-
ture are plotted in figure 2.7. In addition to the influence of the streamwise
wave number o, these graphs show that the wave displaying maximal growth
rate is in fact 2-dimensional (i.e. 5*=0). It can thus be deduced that waves
caused by 3-dimensional inlet disturbances are filtered through a linear mech-
anism, yielding a 2-dimensional wave of defined streamwise wave number o
(see also Chang (1994)). As this 2-dimensional wave grows in amplitude, it
is increasingly dominated by non-linear mechanisms leading to its saturation
(Lin (1983) showed that the wave celerity decreases during this process which
is associated with a slight shift in wavelength as reported by Chang (1994)).
Experimental evidence of this saturation of surface waves was first published
by Kapitza & Kapitza (1949) (see also Kapitza & Kapitza (1965) for an En-
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glish translation). Subsequently, Lin (1969) and Gjevik (1970) (see also Pumir
et al. (1983)) on the basis of long-wave equation models derived from the gov-
erning equations of the film flow according to the method by Benney (1966)
(see subsection 2.2.3), provided analytical proof of wave saturation. In contrast
to Benney (1966), who did not observe the saturation, Lin (1969) and Gjevik
(1970) accounted for tensile forces in their models. Consequently, the effect
of surface tension is essential to the stabilization of non-linear 2-dimensional
surface waves. Kapitza & Kapitza (1949) showed that the saturated waves can
adopt two distinct forms, depending on their wave number. For large wave
numbers (i.e. small wavelengths), surface waves travel close to one another and
exhibit a single maximum (see e.g. figure 4.12 in subsection 4.1.1). For smaller
wave numbers (i.e. larger wavelengths), waves develop subsidiary maxima as
their separation increases. Decreasing the wave number further, neighbouring
waves become well separated by a residual film layer and travel independently
as so called solitary waves (according to Drazin & Johnson (1989) “so-called
because it often occurs as this single entity and is localised”) characterized by
a main wave hump and one or several preceding capillary waves, which develop
from the subsidiary maxima (see e.g. figure 3.21 in subsection 3.3.3). The differ-
ent non-linear waveforms were also predicted by Trifonov & Tsvelodub (1991),
Tsvelodub & Trifonov (1992) and Chang et al. (1993) (they refer to the two
wave forms as 71 and 72) based on a multiple-equation model and a boundary
layer model (see subsection 2.2.3) respectively. A clear picture of these differ-
ent wave topologies is provided in the numerical works of Ramaswamy et al.
(1996); Miyara (1999, 2000, 2001); Gao et al. (2003); Nosoko & Miyara (2004)
and Trifonov (2008). Further, Liu et al. (1993), on the basis of highly resolving
film thickness measurements for inclined films, determined the bound sepa-
rating single-peaked and multi-peaked waves, showing that noise-driven waves

filtered by the linear mechanism illustrated in figure 2.7 are multi-peaked.

The saturated amplitude waves described above are the result of primary
film instability (see subfigure 2.5(a)). Liu et al. (1993) proved experimentally
that these waves are subject to a secondary instability (see subfigure 2.5(b))

of 2-dimensional nature. Indeed, their experiments show that residual inlet
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noise causes neighboring wave peaks to coalesce. Further, by applying Fourier
analysis to the measured film thickness time traces they distinguish two dif-
ferent secondary instabilities of the saturated waves, depending on their wave
number. The subharmonic instability appearing at small wave numbers and the
sideband instability for large wave numbers. At the onset of both secondary
instabilities, the film thickness power spectra display the emergence of addi-
tional peaks in the neighborhood of the saturated wave number. In terms of the
film interface topology this corresponds to the coalescence of neighboring wave
peaks. Liu et al. (1993) determined that the bound between the two instabili-
ties in terms of wave number lies above the bound delimiting single-peaked and
multi-peaked waves. The physical demarcation of these respective instabilities
was elucidated by Cheng & Chang (1995). The authors find that the principal
difference between these instabilities is the number of wave peaks remaining
in a given region after the coalescence has taken place. For the subharmonic
instability they show that always two neighboring wave peaks coalesce (associ-
ated with the appearance of a subsidiary wave number peak at half the initial
wave number ), while the sideband instability leads to the simultaneous coa-
lescence of three wave peaks (associated with the appearance of a subsidiary
wave number peak on either side of the initial wave number). They also show
that the subsidiary peaks in the power spectrum are not monochromatic but
rather broad, leading to an irregular wave pattern bearing the characteristics of
2-dimensional spatio-temporal chaos (see Liu & Gollub (1993)). Liu & Gollub
(1994) argue that the local defects introduced by this irregularity lead to the
localized appearance of solitary waves due to further wave peak coalescence
and the inelastic nature of wave interactions (waves of different amplitude and
thus different celerity merge instead of passing through one another; see also
Malamataris et al. (2002)). Further, Chang et al. (1996b) (see also Meza &
Balakotaiah (2008)) show that the resulting solitary waves then coalesce to
form even larger ones, designating this mechanism as coarsening dynamics .

The cascade comes to a halt when the wave separation is such that new waves

fThis period-doubling was previously identified experimentally by Brauner &
Moalem Maron (1982) and confirmed numerically by Prokopiou et al. (1991).
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develop on the residual layer between wave peaks as a result of the primary
film instability. The halting of the cascade is in accordance with the obser-
vation by Chang et al. (1994) that there exists a threshold wave number for
solitary waves underneath which these are stable with respect to 2-dimensional

disturbances.

Because the different instabilities mentioned above are noise sustained (i.e.
perturbations over a wide range of wave numbers or frequencies are amplified)
the falling film wave dynamics are considerably influenced by the inlet con-
ditions, based on which two main wave evolution scenarios can be discerned.
When disturbances at the inlet consist of white noise, so called natural waves
develop. These result from the linear (and non-linear) filtering mechanism of
the primary instability and the subsequent subharmonic instability, develop-
ment of solitary waves and coarsening dynamics (see Chang et al. (1996a,b,
2002); Nosoko & Miyara (2004)). More simple wave dynamics are encountered
when a relatively strong monochromatic (temporal) excitation is superimposed
on the white inlet noise (see e.g. Nosoko et al. (1996)). In that case, a wave
of corresponding wave number develops close to the inlet, bypassing the linear
filtering mechanism. Due to the strong forcing, such ezcited waves saturate
close to the inlet and are maintained over a long distance before residual inlet
noise leads to the development of spatio-temporal chaos due to the secondary
instabilities. Nosoko et al. (1996) determined empirical expressions for the di-
mensionless physical wave celerityJr c* (see figure 2.8) and amplitude dmaz/ONu
(see figure 2.9) of these monochromatically excited 2-dimensional saturated
waves. Their results show that wave celerity decreases with increasing excita-
tion frequency and increases with wave amplitude. Natural saturated waves
have a considerably shorter lifespan since, due to their slower development, the

secondary perturbations are already more pronounced at the time of saturation.

Joo & Davis (1992) (see also Chang et al. (1993)), on the basis of a strongly
non-linear film thickness evolution equation, showed that saturated 2-dimensional

waves are unstable with respect to spanwise perturbations of small wave num-

TThe symbol ¢ will be used instead of ¢, in the remaining text.
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Figure 2.8: Wave celerity as a function of wave frequency computed according
to the empirical relations of Nosoko et al. (1996) for different film
liquids encountered in this work.

berf. Thereby, they determined the stability bound for this 3-dimensional
instability and found that it depends on the wave number of the considered
2-dimensional wave (the critical spanwise wave number is shown to increase
with the wave number of the 2-dimensional wave). Due to this instability,
residual inlet noise can cause 2-dimensional saturated waves to transit into
3-dimensional structures directly. Therefore, it shall be considered as a sec-
ondary instability (see figure 2.5(b)). First experimental evidence of this 3-
dimensional instability was published by Tailby & Portalski (1962) in the form
of photographs of the naturally developing film interface (similar photographs
were published later by Alekseenko et al. (1994)). Results show a highly irreg-
ular 3-dimensional interface topology sufficiently far downstream of the inlet.

The most compelling feature of the photographs are horseshoe-shaped wave

TChang et al. (1994) established that this is not the case for the non-linear evolution
leading up to saturation.
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Figure 2.9: Wave celerity as a function of wave amplitude computed according
to the empirical relations of Nosoko et al. (1996) for different film
liquids encountered in this work.

crests (horseshoe waves) preceded by capillary waves with equally shaped wave
fronts. Different horseshoe-waves are either separated from one another or
represent spanwise modulations of a connected originally 2-dimensional wave
front. According to Chang et al. (1994) the transition of saturated waves from
2- to 3-dimensional wave dynamics can take two paths in the considered case
of natural waves, depending on the level of residual spanwise noise in rela-
tion to residual streamwise noise. If sufficiently large spanwise perturbations
are present, the 2-dimensional wave fronts distort into a checkerboard pattern,
characterized by spanwise modulations which are out of phase for successive
wave fronts. If spanwise residual noise is weak, the 2-dimensional secondary in-
stability dominates further evolution of the saturated wave. As stated above,

this evolution culminates in the development of large well separated solitary

TConsequently, if the inlet noise does not favor perturbations of a specific direction the
onset of 2- and 3-dimensional secondary instability roughly coincides.
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waves, which are stable with respect to 2-dimensional perturbations. Accord-
ing to Chang et al. (1994) they are however unstable to spanwise disturbances,
which cause the 2-dimensional wave fronts to distort in spanwise direction. As
opposed to the checkerboard instability , the resulting spanwise modulations
on successive wave fronts are in phase (see figure 3.7 in subsection 3.2.1 and
figure 5.47 in subsection 5.5). Thereby, their crests distort into a horseshoe
shape. If these horseshoe crests expand sufficiently downstream, they pinch-off
due to the interaction of successive wave fronts. Waves then travel as solitary
isolated 3-dimensional disturbances, constituted by a large horseshoe-shaped
wave crest and several preceding capillary waves. Petviashvili & Tsvelodub
(1978) were the first to numerically construct a 3-dimensional wave of this
kind (strictly speaking they constructed a soliton as established in subsection
2.2.3). Recently, Alekseenko et al. (2005) validated the results of Petviashvili
& Tsvelodub (1978) experimentally using a Laser Induced Fluorescence (LIF)
technique to measure the film thickness as a function of stream- and spanwise
coordinates. Finally, the second of the above described evolution scenarios
proposed by Chang et al. (1994) was validated by Kunugi & Kino (2005), who
solved the full Navier-Stokes equations numerically for a vertical water film.

Trifonov (1990) was the first to differentiate the two 3-dimensional instabili-
ties discussed above based on numerical solutions of a multiple-equation model
(see subsection 2.2.3). Subsequently, Liu et al. (1992) (see also Liu et al. (1995)
for a detailed account) proved their existence experimentally. The authors in-
troduced the term synchronous instability to describe the second case. Based on
their experiments, the authors determined a bound delimiting the two result-
ing wave regimes in terms of the saturated 2-dimensional wave’s wave number,
showing that single-peaked waves develop checkerboard spanwise patterns and
waves with large separations develop synchronous spanwise patterns. A very
clear picture of the wave topology resulting from synchronous instability is
provided by the experiments of Park & Nosoko (2003). In their experiments,
the authors imposed a monochromatic spatial excitation in spanwise direction
in addition to the temporal excitation, thus bypassing the 2-dimensional sec-

ondary wave dynamics and yielding 3-dimensional waves of prescribed span-
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Figure 2.10: Hierarchy of models describing the dynamics of falling film surface
waves.

and streamwise wavelength near the inlet’. Subsequently, Scheid et al. (2006)
calculated the interface topology numerically for the regimes considered by
Park & Nosoko (2003) based on a multiple-equation model (see subsection

2.2.3), showing excellent agreement.

2.2.3 Wave modeling

Having established the physical basics and phenomenology of falling liquid film
wave dynamics, this section is dedicated to their modelling. As will be shown,
the detailed elucidation of transport processes in the falling film, to which this
thesis is devoted, can contribute to the improvement of such models. The
most common modelling strategies for film flows are listed in figure 2.10 in a
hierarchical manner. The common basis for the models are the boundary layer
equations of film flow, which can be derived from the Navier-Stokes equations
under the assumption that the wavelength A of surface waves is much larger
than the characteristic film thickness dnu. This assumption is often designated
as long-wave approrimation and is similar to the assumption underlying the
classical boundary layer theory by Prandtl (1938) (see also Schlichting (1951)).
Introducing the long-wave approximation e=dnu/A<1 in the 2-dimensional

Navier-Stokes and continuity equations 2.15 for the liquid phase and discarding

TOne of the cases considered by Park & Nosoko (2003) was simulated in this thesis (see
section 5.5).
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terms containing e to the second or higher order, yields the first order boundary
layer equations:
ou* L ou” L ou” op* 1 8% 3

ot* tu Ox* v Oy* T "0z ' ¢Re Oy*2 + eRe’

(2.36)
op" | € v 1 ou*  ov”

0=—
Oy* + Re 0y*2  Fr2’ Qz* + Oy

=0,

and analogously the inter-phase coupling conditions 2.17 (neglecting viscous

forces in the gaseous phase: II, < 1) reduce to:

2 ox * *
2 076" 2e Oy ouy —o (2.37)

pr —pg+Wee 0z*2 ~ Re dy* 0Oy*

Importantly, in the normal coupling condition the term containing the Weber
number is retained, although it includes €2. Omitting this term would eliminate
the effect of tensile forces, which are crucial to falling film wave dynamics as was
established in subsection 2.2.17. From figure 2.7 it can be discerned that Re—15
and e=a”/27~0.2. Consequently, the orders of magnitude neglected in the
above equations are 0(62/R6) =0.003, 0(62):0.04 and O(eB/Re) =0.0005, and
the retained orders of magnitude are O(e)=0.2, O(1/Re)=0.07, O(e/Re)=0.01
and O(€2W6) =0.004. It is evident here that due to the relatively large value
of Re (and relatively small value of We=0.1) the long-wave approximation is
not very accurate for the considered case. However, its quality increases dras-
tically with decreasing values of Re (strictly speaking O(Re)=1). The above
equations can be further simplified by integrating the crosswise momentum
equation from y* to 6™ using the normal inter-phase coupling condition. This
yields the pressure distribution which can then be inserted into the streamwise
momentum equation, taking the form:

936" 1 96" 3 1 9%u*

ou”* o ou* ot ou” Wee? + + 1
ot* ox* oy* Ox*3  Fr29x* eRe eRe oy*2’

(2.38)

TStrictly speaking the term can only be retained if the order of magnitude of the Weber
number is O(We)=e 1.
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whereby pressure variation in the gaseous phase was neglected (pg=const).

Introducing the following estimation for the wavelength A:

1 1
WeRe?v?\ 3 ONu 3 3
A= ( P ) TCT A T \WeRe) (2:39)

and adding the kinematic condition as well as the tangential inter-phase cou-

pling condition and the wall boundary conditions, finally yields the 2-dimensional

first order boundary layer equations of film flow:

ou”* L ou” L ou”
+u

{836* 182u*+ } 1 96"

ot ox* oy* 0z*3 | 3 Oy*2 Fr? gz’
ou*  ov* ou” . N _
o oy =Y By, Ve T Ve =00 (240)
o6* " 06" 2/3 Wel/3
It* = ly*:é* T o u |y*:6* , L =3 Re2/3

which depend only on two dimensionless groups namely Fr and IIgr. Note
also that the superscript [, differentiating interfacial conditions on the liquid
side from those on the gas side, has been dropped, as only the liquid phase is
of interest here.

Different modelling strategies pictured in figure 2.10 differ with respect to
the level of further approximation to the governing equations. A comprehensive
overview of available models as well as a characterization of their quality is
provided by the collectivity of the works by Demekhin et al. (1987); Alekseenko
et al. (1994); Chang et al. (1994); Frenkel & Indireshkumar (1996); Ruyer-
Quil (1999); Chang & Demekhin (2002); Mudunuri & Balakotaiah (2006) and
Trifonov (2008).

So called boundary layer models rely on the direct numerical solution of
the boundary layer equations 2.40. Such calculations have been performed by
Demekhin et al. (1983, 1987) and Chang et al. (1993, 1996a) for 2-dimensional
film flows, and by Chang et al. (1994) for 3-dimensional conditions. Thereby,
Demekhin et al. (1987) performed calculations under the same conditions as the
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2 Falling film dynamics

measurements by Alekseenko et al. (1985), showing good agreement between
numerical and experimental data. In general, the mentioned works show that
the boundary layer equations of film flow describe its dynamics with good
accuracy. This accuracy however, bears a considerable computational cost as
the numerical solution of equations 2.40, as is the case for the full system of
governing equations, has to be performed in the temporally varying liquid phase
domain, the free surface of which has to be tracked.

Due to this complexity, simplified modelling approaches for the prediction
of falling film wave dynamics have been studied ever since the pioneering work
of Kapitza (1948). One such approach consists of deriving a single evolution
equation for the film thickness, the so called long-wave equation , from the
boundary layer equations presented above. The first step in this approach is
the asymptotic expansion of the dimensionless stream function ¥™ in terms of

the length scale ratio e:

U =0k, + U = U, + 0 +eU) + €05 + ..,
(2.41)

Oy v Oz

aq/* % 8\11*_1}* ‘I/* _§ *275 *3

- - ) Nu — 23/ 6y )
whereby WY, signifies the dimensionless stream function for the developed
smooth film (¥y, and consequently ¥* are arbitrarily set to zero at the wall)
and U* the departure from that solution. This ansatz must then satisfy equa-

tion 2.38 written for the dimensionless stream function ¥* = Uy, + U™

aB,IJ*I B ERe 82\11*/ + 82\11*/ 8\11*/ U* B 8\11*/ 82\11*/ auﬁu
oy oy*ot- | dy*dx* | oy* Nl ™ g | ay*2 T Oy
9%6*  eRe 96"
3 —_
ReWee Oz*3  Fr2 oz*’
(2.42)

and the reformulated wall boundary, tangential inter-phase coupling and kine-
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matic conditions of equation 2.40:
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The different coefficients ¥}’ of the stream function expansion are successively
determined from equations 2.42 and 2.43 by neglecting all terms of orders higher
than the considered one (i.e.<e'). That is, to determine ¥} all terms of order
€ or higher in equation 2.42 are neglected, yielding a third order differential
equation for Uy, This equation is then solved with the boundary conditions
and the tangential coupling condition in 2.43. The obtained solution for ¥}’ is
then inserted into the normal coupling condition yielding a differential equation
for the dimensionless film thickness 6*. This zeroth-order approximation yields:
6™ 0

ot~ o

vy = g " = 1)y, (5. (2.44)

The procedure can be repeated to determine all remaining coefficients U7, the
final result always being a differential equation for §*. Thereby it should be
noted that at every step all lower order coefficients ¥;_; have been previously
determined and are thus known so that equation 2.42 always yields a differ-
ential equation for the current coefficient W;. The result for the first-order

approximation ¥}’ consequently is:

w3 6™ J Res™ 06" 1 ,3| Re 06" 936"
U= gy Regg 8 et 5 T {FTQ P
1 *2 *4 85* Re *85 835*
= 0 - == 5
oy she ox* Fr2  Ox* +e'ReWe Ox*3 |’
(2.45)
yielding the first order film thickness evolution equation:
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e
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whereby the temporal film thickness derivatives resulting from 2.42 were ex-
pressed as spatial derivatives using the zeroth-order approximation in 2.44 (this
is not a necessary step but simplifies the resulting long-wave equation). To de-
termine higher order approximations, the boundary layer equations considered
here can no longer be used as they themselves (with the exception of tensile
terms) only retain terms of magnitude e. In that case the full Navier-Stokes
equations along with corresponding boundary and coupling conditions have to

be considered.

The asymptotic expansion procedure described above was first applied to
falling liquid films by Benney (1966), which is why the resulting long-wave
equation is frequently designated as Benney equation or Benney-type equation
. However, Benney (1966) did not retain tensile terms in his first order approx-
imation, as he assumed O (We)=1. Strictly speaking, equation 2.46 was first
published by Gjevik (1970), who required O (We)=¢ 2, leading to the incorpo-
ration of tensile effects. As mentioned previously, Gjevik (1970) as opposed to
Benney (1966) showed his equation to predict saturated surface waves, proving
that accounting for tensile effects is essential to modelling falling film wave
dynamics. Thus, to avoid any confusion, the film thickness evolution equation
resulting from the asymptotic expansion method shall simply be designated as
long-wave equation. It is a non-linear partial differential equation for the local
instantaneous film thickness that can be solved numerically for given initial

and streamwise boundary conditions.

Table 2.1 lists different long-wave equation models along with the order at
which the underlying asymptotic expansion is truncated and the scaling em-
ployed to simplify the governing equations. Based on the works by Benney
(1966) and Gjevik (1970), Lin (1974) and Nakaya (1975) derived long-wave
equations by truncating the asymptotic expansion at second and third order
respectively. Thereby, the authors were able to impose less stringent restric-

tions on the Weber number in order to retain tensile terms. An evaluation
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Source Order Scaling Blow up
Benney (1966) 1 O (We)=1, O (Re)=1 yes
Gjevik (1970) 1 O (We)=e=2, O (Re)=1 yes
Lin (1974) 2 O (We)=e~1,0 (Re)=1 yes
Nakaya (1975) 3 O (Re)=1 yes
Ooshida (1999) 2 O (We)=e=2, O (Re)=1 no
Panga & Balakotaiah (2003) 6/5 O (We)=e"2, O(Ka)=1 yes
Panga et al. (2005) 6/5 | O(We)=e"2, O(Ka)=1 no

Table 2.1: List of long-wave equation models based on the asymptotic expan-
sion method by Benney (1966).

of the quality of predictions produced by the long-wave equations of Gjevik
(1970), Lin (1974) and Nakaya (1975) is provided in Panga et al. (2005) and
Ruyer-Quil & Manneville (2000). There, the authors compared linear stabil-
ity bounds and non-linear saturated wave celerities predicted by the respective
model equations. Results show that stability bounds for all mentioned long-
wave equations correspond well with those computed from the Orr-Sommerfeld
equation for large values of the Weber number as the employed scaling calls for
(see discussion regarding equation 2.37). Indeed, it is a general property of long-
wave equations, resulting from asymptotic expansion that the absolute stability
threshold (for vertical films We.=c0) is predicted accurately. This stems from
the fact that the long-wave assumption is exactly fulfilled i.e. a=e.=0 under
critical conditions. For smaller values of the Weber number Panga et al. (2005)
showed that long-wave linear stability bounds diverge considerably from the
Orr-Sommerfeld bounds. Interestingly they also demonstrate that increasing
the order of the expansion does not improve linear predictions. Concerning
the prediction of non-linear saturated wave celerity, Ruyer-Quil & Manneville
(2000) established a similar behaviour for the respective long-wave equations.
While at large values of the Weber number model predictions correspond well

with direct solutions of the first order boundary layer equations, they diverge
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considerably for smaller ones. Most importantly, the authors showed that be-
low a certain Weber number threshold the long-wave equations do not yield
saturated wave solutions. This behaviour was investigated by Pumir et al.
(1983) on the basis of the long-wave equation of Gjevik (1970). These authors
showed that below the threshold Weber number value an unlimited local in-
crease in film thickness arises, causing calculations to abort. They designated
this behaviour as finite time blow up and associated it with the presence of
highly non-linear terms in the film thickness evolution equation (up to 6*¢ in
equation 2.46). It is evident that finite time blow up constitutes a major limita-
tion of standard long-wave equations and attention here is now directed toward

remedies for this unwanted property.

As mentioned above, the strong non-linearity of standard long-wave equa-
tions causes finite time blow up. Consequently, the latter can be suppressed
by considering weakly non-linear forms of the long-wave equations, which are
derived under the assumption of small wave amplitudes. Therefore, the dimen-
sionless film thickness in the considered long-wave equation is expressed by
6" =14 yn*, whereby vn* designates the departure of the film thickness from
the smooth developed state and v is a small parameter (y < 1) quantifying
the amplitude of that deviation. Inserting this into the first order long-wave
equation derived by Gjevik (1970) (equation 2.46) yields:

877* *8')’]* 6 B 877* 8377*
48t*+6fy77 e € (Re — Rec) a£2+e 'yReWeag* RS
(2.47)
o*n* 18 on* on*
+ eReW 85*4+ v (2Re — Rec)_@{*@{*i ,

where the moving coordinate £*=z* + t* was introduced and only terms of
order v e or larger were retained. Further On*/0¢* was replaced with 9n* /9t*
in one instance. It is evident that the strong non linear terms of equation 2.46
are no longer present in this weakly non-linear equation. Assuming O (y)=e¢

and retaining only terms of order e the amplitude equation takes the following
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form:
OH H(?_H 8°H 9*H

T THoz o= T oE
where =, T and H are conveniently chosen substitutions for amplitude, time

=0, (2.48)

and moving coordinate:
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H=n"5 {%} ’ (ReWe)% (Re — Rec)7% .
In the literature, equation 2.48 is designated as Kuramoto-Shivasinsky equation
and was first published by Kuramoto & Tsuzuki (1974) (see also Kuramoto
& Tsuzuki (1976)) in the context of reaction kinetics. Later, Sivashinsky &
Michelson (1980) identified its applicability to film flows and used it to sim-
ulate falling film wave dynamics. Chang (1986) evaluated predictions of the
equation on the basis of experimental data by Alekseenko et al. (1985) with
respect to maximal film thickness and non-linear wave celerity, showing rea-
sonable agreement for small wave amplitudes. However, the equation has a
serious shortcoming as it does not describe dispersion i.e. the dependence of
wave growth rates on wavelength. Another weakly non-linear equation can be
obtained in a similar manner on the basis of the third order long-wave equa-
tion (see e.g. Nakaya (1975)). The equation is designated as Korteweg-de Vries
equation (see Korteweg & de Vries (1895) and Chang & Demekhin (2002)) and
shall simply be written here without derivation:
OH OH 8°H

a1 THeE TUam

=0. (2.50)
Thereby, the quantities H, T and = are defined differently to equation 2.49. A
significant property of the equation is its ability to describe the behaviour of
solitons i.e. solitary waves that preserve their properties after interacting with
one another (see Drazin & Johnson (1989)). Inertial and tensile effects however

are not accounted for. The 3-dimensional form of the equation was employed
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by Petviashvili & Tsvelodub (1978) to construct the first published solution of
a 3-dimensional soliton on a falling liquid film.

Another method of suppressing finite time blow up is by regularizing the
long-wave equations. This was first performed by Ooshida (1999) on the basis
of the second order long-wave equation of Gjevik (1970), deriving a regularized
long-wave equation model. Although predictions of the linear stability bound
for small Weber number values are considerably better than those of standard
long-wave equations (see e.g. Panga et al. (2005) for a comparison), Ruyer-Quil
& Manneville (2000) showed that non-linear wave celerities are considerably
underpredicted by the model. A further improvement was obtained by Panga
& Balakotaiah (2003) who introduced different scaling (O (Ka)=1 instead of
O (Re)=1) to derive a long-wave equation on the basis of an expansion up to
order 6/5. The model predicts the linear stability bound quite accurately up to
Weber number values of unity but is not free of finite time blow up as shown by
Ruyer-Quil & Manneville (2004). Later, Panga et al. (2005) regularized their
model using the same approach as Ooshida (1999), eliminating finite time blow
up. Although model predictions of linear stability suffer slightly in quality due
to this, the authors showed (see also Balakotaiah & Mudunuri (2004)) that their
regularized model predicts considerably higher non-linear wave celerities than
that of Ooshida (1999), however still underpredicting the boundary layer equa-
tion results by about 10% (see Panga et al. (2005) and Ruyer-Quil & Manneville
(2000)). In their article, Panga et al. (2005) also developed the corresponding
long-wave equation for 3-dimensional flow conditions. A drawback of the reg-
ularized version of the model is the fact that it contains two equations i.e. for
the film thickness and the local instantaneous flow rate per unit width. This
serves as proof that an accurate prediction of linear and non linear falling film
dynamics is not possible through the modelling of just one kinematic quantity
(in this case the film thickness) expected to enslave all others. Consequently,
other kinematic and dynamic quantities such as flow rate and wall shear stress
should be considered and modelled using adequate evolution equations. Such
so called multiple-equation models constitute the third class of wave dynamics

models distinguished in figure 2.10, and shall be addressed next.
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A considerable simplification of the boundary layer equations can be achieved
by applying the von Karméan-Pohlhausen approach to the liquid film i.e. inte-
grating the streamwise momentum equation and the continuity equation in 2.40
from the wall (y* = 0) to the interface (y* = §*). The critical modelling step
being the assumption of a realistic instantaneous local profile for the streamwise
velocity v, this method leads to two evolution equations for the film thickness
0" and instantaneous local flow rate per unit width ¢*. Applying Leibniz’s in-
tegration rule and allowing for the wall and interface boundary conditions (as
well as the kinematic condition) in 2.40, the integral streamwise momentum

and continuity equations take the form:
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The first authors to use this approach for falling films were Kapitza (1948) and
Shkadov (1967) (see also Prokopiou et al. (1991)). Thereby, Shkadov (1967)

assumed a self-similar semi-parabolic local instantaneous velocity profile:

* *2
w = {y* -y } : (2.52)
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the resulting model being referred to as Shkadov’s 2-equation model . In phys-
ical terms the above equation signifies that the flow is locally developed at all
times, which is clearly not the case in real films. Shkadov and co-workers (see
Demekhin et al. (1987)) later reviewed his model by comparing its results to ex-
perimental data and direct solutions of the boundary layer equations. Thereby
linear stability analysis of Shkadov’s model showed that it yields differing pri-
mary stability bounds compared to those obtained from the Orr-Sommerfeld
equation (the authors also show that this deviation is already present in sta-
bility bounds obtained from the boundary layer equations). Considering the

evolution scenario of natural waves outlined in subsection 2.2.1, this is an im-
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portant restriction. Further analysis of the model by Demekhin et al. (1987)
showed that it predicts the nonlinear wave dynamics for monochromatically
excited waves reasonably well, also predicting wave saturation. With respect
to capillary wave dynamics however, the model deviates significantly from ex-
perimental data and the solution of the boundary layer equations. Demekhin
et al. (1987) stated that this is due to the complexity of the capillary wave
region’s velocity field. Interestingly, the boundary layer solution exhibits back-
flow in this region, which in the course of this thesis will be shown to coincide
with significant deceleration and acceleration of the flow. In fact, as will be
developed, backflow is the result of flow separation, nucleating at the wall.
Therefore the streamwise velocity profile has to be at least of third order to
capture this effect, which is not the case for the assumed profile in equation
2.52. Due to the importance of the capillary wave region for scalar transfer,

this is another important restriction of the model.

In the last 10 years up until most recently, significant advances in the mod-
elling of film flows based on Shkadov’s approach have been achieved by the
groups of Professor Balakotaiah at the University of Houston and Professor
Manneville at the Ecole Polytechnique in Paris. Different multiple-equation
models developed by both groups are listed in table 2.2 (only the most impor-
tant models are described in the text). The first significant improvement was
achieved by Yu et al. (1995) by applying Shkadov’s approach to the second
order boundary layer equations, obtained by retaining terms containing € in
equations 2.15 and 2.17. Thereby, the authors employed the traditional bound-
ary layer scaling of O (Re) >1 (as opposed to the scaling employed to derive
equations 2.36 and 2.37), and their calculations were consequently performed
for extremely high values of the Reynolds number (Re=600). Under such con-
ditions falling films are generally turbulent. Nonetheless, the authors show
that linear stability bounds obtained from the second order boundary layer
equations correspond far better to solutions of the Orr-Sommerfeld equation
than those obtained from the first order boundary layer equations and attribute
this improvement to the retention of the %u/9z> term in the streamwise mo-

mentum equation. Using Shkadov’s approach, the authors constructed a second
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2 Falling film dynamics

order four-equation model, which predicts experimental film thickness statistics
reasonably well. The addition of two further equations (compared to Shkadov’s
model) is owed to the assumption of a fourth-order polynomial for the stream-
wise velocity profile and thus the introduction of two additional degrees of
freedom. Interestingly, the authors mention as a quality of their model the fact
that it does not predict negative wall shear stress. However, the presence of
negative wall shear stress in falling liquid films is by no means unphysical as

will be shown in this thesis.

Ruyer-Quil & Manneville (1998), on the basis of the second order boundary
layer equations (derived with usual film scaling i.e. O (Re)=1, O (We)=¢™ 1),
and by assuming an eighth order polynomial for the streamwise velocity profile,
derived a three-equation model (for the flow rate per unit width, film thickness
and a wall shear stress correction respectively). Thereby, the authors limited
the number of evolution equations by deriving relations for the additional poly-
nomial coefficients from the governing equations by so called collocation (see
e.g. Villadsen & Michelson (1978); Brauner & Moalem Maron (1983)). These
relations are chosen such that an asymptotic expansion of the model yields the
corresponding long-wave equation. Thus, by design the model predicts the sta-
bility threshold accurately. Importantly, it is shown that the 3-equation model
relaxes coupling between wall shear stress, film thickness and flow rate per unit
width. On the basis of a comparison with experimental data, this relaxation is
shown to improve the model predictions of non-linear wave dynamics. Indeed,
as opposed to Shkadov’s model, the three-equation model predicts the num-
ber of capillary waves preceding a solitary wave accurately although slightly
overestimating their amplitude. Moreover, model predictions of multi-peaked
interacting waves are excellent and linear stability predictions are good. How-
ever, the model has a significant drawback as it fails to predict wave saturation
for large Reynolds numbers (caused by finite time blow up). Ruyer-Quil &
Manneville (2000) later remedied this deficiency with a 4-equation second or-
der model assuming a 14th-order polynomial for the velocity profile. Thereby,
instead of using the collocation approach to determine polynomial coefficients

they applied a weighted integration technique to the streamwise momentum
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equation using weight functions of different orders. The authors subsequently
derived a second order two-equation model from the four-equation model as-
suming a parabolic velocity profile. Linear predictions of both models are
reported in Ruyer-Quil & Manneville (2002) and display excellent agreement
with experimental data. For the two-equation model, Ruyer-Quil & Manneville
(2002) also show that non linear wave dynamics are predicted accurately. How-
ever, an asymptotic expansion of the model (as opposed to the four-equation
model) does not yield the corresponding long-wave equation and thus, although
linear predictions are accurate for the investigated conditions, the authors pre-
sume the model cannot generally predict the stability threshold. Slightly be-
fore Ruyer-Quil & Manneville (2000), Nguyen & Balakotaiah (2000) published
a 3-equation second order model derived on the basis of a parabolic velocity
profile. The model is shown to predict the linear stability bound accurately
over a large Reynolds number range and model predictions of the saturated
wave amplitude display very good agreement with experimental data for small
values of the Weber number. However, the authors again state that their model

does not predict negative wall shear stress.

Scheid et al. (2006) remedied the asymptotic deficiency of the two-equation
model of Ruyer-Quil & Manneville (2000) by applying a regularization tech-
nique to the corresponding four-equation model, obtaining a second order two-
equation model based on a 6th-order velocity profile. This model is shown
to yield excellent agreement with experimental data and numerical solutions
of the full Navier-Stokes equations (by Salamon et al. (1994)) both in terms
of linear stability and non-linear wave dynamics. Indeed, capillary waves are
predicted accurately both in wavelength and amplitude. Most importantly,
from the point of view of this thesis, the model predicts backflow in the capil-
lary wave region with velocity profiles agreeing very well with those obtained
from direct numerical simulation and displaying a distinctly non parabolic be-
haviour. Further validation of the model was recently performed by Trifonov
(2008) on the basis of direct numerical solutions of the full governing equations.
Shortly thereafter, Mudunuri & Balakotaiah (2006) introduced a second order
two-equation model on the basis of a parabolic velocity profile, which yields
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2 Falling film dynamics

excellent agreement with experimental film thickness time traces obtained by
Nosoko & Miyara (2004). Further, the authors confirm that the model predicts

negative wall shear stress in the capillary wave region.

Scheid et al. (2006) in their paper also introduce a second order four-equation
model for three-dimensional film flow assuming a 6th-order velocity profile (the
corresponding equations were derived previously by Ruyer-Quil & Manneville
(2000)). They then applied the regularization technique to the four-equation
model to obtain a two-equation model for three-dimensional film flow. Agree-
ment between the predictions of this model and the experimental film thickness
data obtained by Liu et al. (1995) for 3-dimensional films is excellent. Most
recently, Trevelyan et al. (2007) (see also Ruyer-Quil & Manneville (2005);
Scheid et al. (2005)) applied Shkadov’s integral approach to the energy equa-
tion, obtaining a model capable of predicting wave dynamics and interfacial
temperature. Thereby, as is the case for the wave dynamics models, the crucial

underlying assumption concerns the crosswise temperature profile in the film.

From the foregoing elaborations it is clear that the most promising approach
to modelling falling liquid film dynamics is that of multiple-equation models.
It has also been established that the assumption of a physically meaningful
crosswise velocity profile is crucial to these models. This task is extremely
difficult in the important capillary wave region where the velocity field is most
complex and an ad hoc approach is bound to fail. For this reason, detailed
investigations of transport processes taking place in the capillary wave region
(as well as other regions) and their mechanistic elucidation are needed to further
drive the development of models capable of predicting the most relevant aspects

of falling liquid films.

As a result of the investigations presented in this thesis, it was established
that flow separation takes place in the capillary wave region of falling liquid
films (see Dietze et al. (2008, 2009)), causing a reversal of the flow. This
capillary flow separation originates at the bounding wall, which directly leads
to the conclusion that the velocity profile assumed in multiple-equation models
needs to be at least of third order to predict the phenomenon and thereby

account for its influence on wave dynamics and scalar transfer. It is herewith
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2.3 Liquid phase transport

clear that the detailed investigation of flow separation in falling liquid films is

of considerable interest to the modelling of their dynamics.

2.3 Liquid phase transport

Having established the state of knowledge with respect to falling film wave
dynamics and their modelling, attention in this section is directed toward mo-
mentum and scalar transport in the liquid phase. Thereby, the effect exerted

on these transport processes by interfacial waves is of particular interest.

2.3.1 Momentum transport

For the simplest case of falling liquid film flow, the primary flow, only trans-
port of streamwise momentum takes place in the liquid phase. Momentum
is convected yet maintained in streamwise direction. Streamwise momentum
produced by gravitational forces being transported away by crosswise diffusion
from the interface to the wall. The resulting streamwise velocity is then given
by equation 2.11 which can be rearranged to yield:

1
%oy Y _[3qn]®
unu (y) = ) {2 . 61%]“} y Onu = { 0 . (2.53)

Figure 2.11(a) illustrates the resulting liquid phase streamwise velocity field
for an arbitrary regime of vertical film flow (Re=10.7, Ka=509). As stated
previously, the developed state of the smooth film evolves over an entry re-
gion where the film thickness, starting from the value imposed by the liquid
film inlet, asymptotically reaches its final value dnu (see e.g. Cerro & Whitaker
(1971) and Wilkes & Nedderman (1962)). Over this region the streamwise ve-
locity profile develops from a parabolic shape (usually imposed by a rectangular

inlet channel) to the semi-parabolic form shown in figure 2.11(a).

Experimental investigations of the liquid phase velocity field have mainly
focused on the streamwise velocity component. An overview of main contribu-

tions to the literature, including the investigated flow conditions, is presented in

47



2 Falling film dynamics

y (mm)

» (mm)

y (mm)

0 0.102030.40.50.6

500 0.10.20.30.40.50.6 50 020406081.01.2

u (m/s)

50 10

0.33 0.47
0.28 0.40
53 53 0.23 0.33
0.18 109 0.26
0.13 0.19
56 56 0.08 0.12

0.0
-0.02 113 0.02

65 65

close-up

68 68 125
(a) Smooth film: Re=10.7, (b) Wavy film: Re=10.7, (c) Wavy film: Re=20,
Ka=509 Ka=509, f=16 Hz Ka=124, f=20 Hz

Figure 2.11: Liquid phase velocity field for vertical smooth and wavy films il-
lustrated with contours and crosswise profiles of the streamwise
velocity component.

table 2.3. Wilkes & Nedderman (1962), using a stereoscopic Particle Tracking
Velocimetry (PTV) technique, measured streamwise velocity profiles (meaning
crosswise profiles of the streamwise velocity component) in smooth vertically
falling liquid films (produced at small Reynolds number values of Rex0.1), and
confirmed equation 2.53 for these conditions. Cook & Clark (1971), using an
improved PTV technique, performed measurements in the smooth inlet region
of vertically falling water films at relatively large Reynolds number values and
corroborated the conclusion of Wilkes & Nedderman (1962). Later, Mudawar
& Houpt (1993a) considered the cylindrical case by performing Laser Doppler
Velocimetry (LDV) measurements in falling films, developing on the outside of

a vertical tube, at large Reynolds number values (Re~1000) and confirmed the
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Autors Re Ka Wave inception
Friedman & Miller (1941) 6-375 126-3877 natural
Grimley (1945) 3-89 3012 natural
Brauer (1956) 0.4-40 66-3877 natural
Wilke (1962) 20.5-195 47-4512 natural
Wilkes & Nedderman (1962) | 0.07-1.06 2-7 smooth film /natural
Portalski (1964b) 1-1000 29-3919 natural
Ho & Hummel (1970) 31-700 136-458 natural
Cook & Clark (1971) 75-250 3919 smooth film
Nakoryakov et al. (1977) 5-14.5 195 excited
Semena & Mel’nichuk (1978) | 270-1640 3919 natural
Mudawar & Houpt (1993a) | 1435-4997 | 23.4, 47.4 smooth film
Mudawar & Houpt (1993b) 209-414 23.4, 474 natural
Adomeit & Renz (2000) 27-200 1044.8 natural
Moran et al. (2002) 11-220 20.7 natural
Leefken et al. (2004) 15, 30 117.2 excited
Alekseenko et al. (2007) - - excited rivulets

Table 2.3: List of experimental investigations of the velocity field in falling lig-
uid films. Where liquid properties were not specified, literature val-
ues were used instead, assuming a working temperature of 25°C if
not specified otherwise.

validity of equation 2.13, which pertains to cylindrical smooth films. As op-
posed to Wilkes & Nedderman (1962) and Cook & Clark (1971), they ensured
the existence of a sufficiently long smooth film by employing working liquids
with large kinematic viscosity, leading to large wavelengths and small growth
rates for the primary instability (the considered large Reynolds number values
also contribute to this effect). As can be deduced from figure 2.6, the criti-
cal dimensionless wave number a* for 2-dimensional waves does not depend
strongly on the Kapitza number. As the former is non-dimensionalized with

Onu, the dimensional wavelength increases drastically with kinematic viscosity.

Although the smooth film velocity distribution (as given by equations 2.11
and 2.13) is of relevance, allowing the validation of velocity measurement tech-

niques and scaling of fluid dynamical quantities in falling liquid films, con-
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siderable efforts have been undertaken to elucidate the velocity field in the
more frequently encountered wavy film flow. There are two main reasons for
this. First, the need to evaluate assumptions (with respect to the liquid phase
streamwise velocity profile), underlying multiple-equation models introduced
in subsection 2.2.3 and secondly, the desire to clarify the effect of surface waves
on liquid phase scalar transport (see subsection 2.3.2). Figures 2.11(b) and
2.11(c) illustrate contours of the streamwise velocity component for two exam-
ples of wavy liquid film flow (figure 2.11(b) corresponds to the case of smooth
film flow depicted in figure 2.11(a)) along with selected streamwise velocity
profiles at different positions in the wave. The underlying data result from the
author’s own full numerical simulations which will be described in more detail
in chapters 3 and 5 (data for figure 2.11(c) were taken from Dietze et al. (2006))
and shall serve as a basis for the discussion of the liquid phase velocity field
of falling films in this subsection. At first sight, the velocity profiles in figures
2.11(b) and 2.11(c) seem to obey a semi-parabolic function in most regions of

the wave. In general, a semi-parabolic profile can be parametrized as follows:

2
_ y vy
u(y) = ul,_, {25 - ﬁ} : (2.54)
which corresponds to the self-similar profile defined by equation 2.52 and yields
a constant value for the ratio of interfacial and mean cross sectional velocity:

u|y:6
U

=15 a=

SN

5
/u(y) dy. (2.55)

First velocity measurements in wavy films were conducted with the goal of
verifying if the constant ratio in equation 2.55 holds, i.e. if the streamwise
velocity profile is semi-parabolic in general. Friedman & Miller (1941), using a
dye-tracer, and Brauer (1956), using plastic platelets distributed on the liquid-
gas interface, measured the temporally averaged interfacial streamwise velocity
as well as the temporally averaged mean cross sectional velocity over a wide

range of Reynolds number values for different working liquids. In fact, the
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averaged mean cross sectional velocity was not measured directly. Friedman
& Miller (1941) approximated it by the ratio of flow rate per unit width and
temporally averaged film thickness, while Brauer (1956) approximated it with
the relation for smooth film flow in equation 2.12. Both authors established
that the ratio of surface velocity to averaged mean cross sectional velocity (or
rather its approximation) departs from the value 1.5 at a certain threshold
Reynolds number value (which depends on the working liquid and is inferior to
the turbulent threshold), converging toward a value of approximately 2.2, and
attributed this increase to the effect of surface waves (the same conclusion was
drawn by Grimley (1945) from his velocity measurements). Although these
authors measured temporally averaged quantities, it can be concluded from
their results that the streamwise velocity profile is not semi-parabolic in all
regions of the liquid phase for all laminar flow conditions. It should be stated
here that Portalski (1964b) concluded from his measurements that the ratio of
interfacial to mean cross sectional velocity does not deviate considerably from
the value 1.5 over the entire range of laminar flow regimes. However, some

doubts remain about the validity of the employed measurement procedure.

The first spatially resolved measurements of the streamwise velocity profile
were performed by Grimley (1945), Wilkes & Nedderman (1962), Wilke (1962)
and Ho & Hummel (1970). Wilke (1962), using a rather intrusive technique
(which by his own account significantly distorted his measurement data), ac-
tually measured the temporally averaged volume flux profile, which deviates
from that of the averaged streamwise velocity for wall distances larger than
the minimal film thickness (i.e. for positions that due to the propagation of
surface waves do not at all times lie within the liquid phase). The measured
profiles are shown to deviate from the smooth film profile in equation 2.53 in
the near wall region. Ho & Hummel (1970), using a photochromic dye-tracer
technique, measured the temporally averaged streamwise velocity profile for
relatively large Reynolds number values (Re>100). They show that measured
profiles are parabolic but deviate from the profile of equation 2.53. Later, Se-
mena & Mel’nichuk (1978) confirmed this conclusion by measuring the mean
streamwise velocity profile with LDV. Wilkes & Nedderman (1962) measured
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Figure 2.12: Profiles of the streamwise velocity component w at different
streamwise positions z, corresponding to figure 2.11(b). Symbols
highlight numerical data, solid lines corresponding profiles satis-
fying u = ul,_; [2y/6 — (y/6)?] and dashed lines corresponding
profiles satisfying u = (g.0°/211) [2y/6 — (y/6)*].

instantaneous streamwise velocity profiles but were not able to relate these to
specific regions in the wave. However, the authors showed that these profiles
deviate from equation 2.53.

In a landmark study, Nakoryakov et al. (1977) performed simultaneous stream-
wise velocity and film thickness measurements in falling liquid films with excited
2-dimensional surface waves, using PTV (similar to Cook & Clark (1971)) and
a shadow graph technique respectively. The authors were able to record instan-
taneous velocity profiles in different regions of a surface wave for flow regimes
of varying wave dynamics. Investigated conditions ranged from single-peaked
waves to solitary waves with preceding capillary waves. The main results of
their article are summarized in figures 2.12 and 2.13, which depict streamwise

velocity profiles (highlighted by symbols) at different positions within the wavy
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Figure 2.13: Profiles of the streamwise velocity component u at different
streamwise positions z, corresponding to figure 2.11(c). Symbols
highlight numerical data, solid lines corresponding profiles satis-
fying u = ul,_; [2y/6 — (y/6)?] and dashed lines corresponding
profiles satisfying u = (g.0°/211) [2y/6 — (y/6)*].

liquid films illustrated in figures 2.11(b) and 2.11(c) respectively. In addition,
the figures include profiles, satisfying equation 2.54, which are distinguished by
solid lines. Figure 2.12 shows that for the wave with smaller maximal to resid-
ual (pertaining to the residual layer) film thickness ratio, streamwise velocity
profiles are predicted accurately by the semi-parabolic profile of equation 2.54
in the wave peak as well as the wave back and residual layer. In the capillary
wave region, the velocity data recorded by Nakoryakov et al. (1977) display a
large scatter and the authors restricted their analysis to the statement that the
streamwise velocity profile is not parabolic there. The cause for this scatter
is of course the phenomenon of flow separation at the core of this thesis and
consequently, discussion of the velocity field in the capillary wave region shall

be deferred to the latter stages of this subsection. For the wave with larger
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maximal to residual film thickness ratio, streamwise velocity profiles depicted
in figure 2.13 are qualitatively different. In accordance with the results of Nako-
ryakov et al. (1977), the profile in the wave peak is significantly “fuller” than
the semi-parabolic profile of equation 2.54. Nakoryakov et al. (1977) also es-
tablished that the profile in the wave back is less “full” than the semi-parabolic
profile (which is not shown here in order to avoid plotting too many intersecting
lines in figure 2.13). In the residual layer, equation 2.54 is shown to predict the
streamwise velocity profile accurately. In addition, Nakoryakov et al. (1977)
compared their measurement results in this region to a semi-parabolic profile
obtained when inserting the local instantaneous film thickness into equation
2.53:

5562 2
u(y) = 92 . {2% - 2’_2} A (2.56)

Profiles satisfying this equation are also plotted in figures 2.12 and 2.13, using
dashed lines. In accordance with Nakoryakov et al. (1977) the streamwise ve-
locity profile is shown to agree relatively well with equation 2.56 in the residual
layer. However, outside the residual region, equation 2.56 no longer holds. This
is of course due to the fact that the underlying physical implication, namely
that the flow is locally developed, is only valid in the residual layer, which is
characterized by a relatively small streamwise variation of film thickness. In all
other regions, fluid elements, due to their inertia, lag the spatio-temporal evo-
lution of film thickness. Wasden & Dukler (1989b) showed this mathematically
by evaluating the left-hand side (lhs) of the momentum equation for stream-
wise momentum (i.e. the resulting streamwise inertial “force” per unit volume)
normalized with respect to the corresponding gravitational acceleration and
evaluated at the interface (where its magnitude is maximal) from the velocity
profile given by equation 2.56 and the kinematic condition 2.6:

g Lot Tz "oy

T oz

(2.57)

1 |Ou ou ou 00 [dc [ 53
y=b m 2 v

From this relation it is clear that the applicability of equation 2.56 is restricted

TWasden & Dukler (1989b), as opposed to the treatment here, did not account for non-
steady effects.

54



2.3 Liquid phase transport

to waves with small interface inclination (i.e. small values of 9§/9x), when
inertial “forces” are dominated by gravitation. Wasden & Dukler (1989b) as-
serted that equation 2.56 holds for O (86/0x)=10"2, yet the wave front in
figure 2.11(c) has an inclination of 96 /9z~1.5.

Since the work of Nakoryakov et al. (1977), many detailed and mainly nu-
merical investigations have focused on the streamwise velocity profile in wavy
liquid films and have confirmed the results illustrated in figures 2.12 and 2.13.
Examples of numerical investigations are those of Miyara (1999), Malamataris
et al. (2002) and Gao et al. (2003), while Stuhltriger et al. (1995) principally
confirmed the same results for falling liquids films formed by condensing wa-
ter vapour. In addition, Miyara (1999) showed that the temporally averaged
velocity profile for wall distances inferior to the minimal film thickness is well
approximated by equation 2.53. Finally, experimental confirmation of the con-
tour plot depicted in figure 2.11(c) was provided by Leefken et al. (2004), who
measured the liquid phase streamwise velocity field with LDV for excited waves

of large maximal to residual film thickness ratio.

The studies reported above can be attributed to two main categories. Inves-
tigations of technically relevant (and thus complex) film flow regimes with rel-
atively coarse measurement techniques in the earlier works and investigations,
using highly resolving optical measurement techniques, which were however
applied to films with highly controlled wave dynamics (e.g. two dimensional
monochromatically excited waves). There are two experimental studies of the
velocity field in falling liquid films that stand out by combining the aspects of
complex flow dynamics and highly resolving measurement techniques, namely
those of Adomeit & Renz (2000) and Moran et al. (2002). Adomeit & Renz
(2000) concluded from their Particle Image Velocimetry (PIV) measurements
in 3-dimensional falling liquid films that the instantaneous liquid phase veloc-
ity profile is semi-parabolic in most regions of the film. They also confirmed
substantial deviations of these profiles from equation 2.56 (in accordance with
the results of Nakoryakov et al. (1977)) except in the residual layer. These
results were later corroborated by Moran et al. (2002), who in addition found

that the mean ratio of interfacial to mean cross sectional streamwise velocity
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is very close to the value of 1.5 (resulting from equation 2.54) over the range
of investigated flow conditions. The latter conclusion seems to contradict the
results of Friedman & Miller (1941) and Brauer (1956), which can be explained
by the fact that the encountered wave dynamics in the respective studies were
significantly different. Indeed, film thickness time traces measured by Moran
et al. (2002) show that the interface structure in their experiments was domi-
nated by waves of small maximal to residual film thickness ratio, whereas the
regimes investigated by Brauer (1956) displayed values as large as 10 for the

average maximal to minimal film thickness ratio.

Concurrently to the studies described above, some investigations of the liquid
phase velocity field were performed from a different perspective. These works
focused on the elucidation of the transient effect of wave dynamics on the lig-
uid phase momentum transport. Mudawar & Houpt (1993b) (using the same
setup as Mudawar & Houpt (1993a) at considerably lower Reynolds number
values) simultaneously measured streamwise velocity and film thickness time
traces using LDV and a parallel wire film thickness probe. By evaluating the
cross correlation function of these signals the authors were able to determine
the effect of surface waves on the streamwise velocity component, and retained
two main conclusions. Firstly, that the degree of correlation between the two
quantities increases with wall distance and secondly, that increasing residual
layer thickness and decreasing dynamic viscosity exert a decoupling effect on
the two quantities. Both conclusions can be explained from the point of view
of crosswise diffusional momentum transport. As the dynamic viscosity is the
transport coefficient in Newton’s law of viscosity it scales the crosswise mo-
mentum flux an thereby effects the temporal change in momentum. Increasing
the residual layer thickness or decreasing wall distance acts to increase the dis-
tance over which momentum is to be transported from the interface and thus
increases the response time to interfacial fluctuations. In principle, these find-
ings are supported by numerical investigations performed by Stuhltriager et al.
(1993), who evaluated the root-mean-square (rms) of streamwise velocity time
traces in the liquid phase. The authors show that there exists a liquid layer near

the wall where velocity fluctuations are negligible, and which is thus almost un-
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affected by surface waves. Increasing the wall distance beyond this layer leads
to an increase in the degree of correlation of film thickness and streamwise ve-
locity. The authors also show that the rms of the crosswise velocity component
is two orders of magnitude smaller than that of the streamwise component.
Mudawar & Houpt (1993b) also measured the crosswise velocity component
(which was the radial component in their case), concluding that its value is
negligible compared to the streamwise velocity component. This finding con-
curs with numerical investigations of inclined liquid films by Malamataris et al.
(2002). The authors showed that the crosswise variation of liquid phase static
pressure is hydrostatic in nature for all regions of the film except the capil-
lary wave region, i.e. that crosswise transport of crosswise momentum is not
significant in those regions. In the capillary wave region however, conditions
are different and their investigation is the subject of this thesis. For the sake
of completeness it should be stated here that the wave dynamics encountered
by Mudawar & Houpt (1993b) and Stuhltriger et al. (1993) did not display

significant capillary waves.

In summary, it can be concluded that the locally developed profile defined
by equation 2.56 is not able to predict the streamwise velocity distribution
in wavy liquid films outside the residual layer. Although the general semi-
parabolic profile defined by equation 2.54 and assumed by Shkadov (1967) in
his 2-equation model yields a significantly better prediction, deviations still

remain in waves with large maximal to residual film thickness ratio.

This discrepancy for large waves is caused by the occurrence of a charac-
teristic phenomenon of liquid phase momentum transport, that fundamentally
alters the nature of the velocity field in the wave crest as the maximal to
residual film thickness ratio exceeds a certain threshold value, leading to the
creation of so called rolling waves . A similar term, roll waves, is historically
associated with turbulent water flows in man made or natural water courses
such as aqueducts. Balmforth & Mandre (2004) provide an overview of the
dynamics of these waves as well as a photograph of their occurrence in a labo-
ratory model (see also Dressler (1949) for a picture of naturally occurring roll

waves in an open conduit taken from the book of Cornish (1934)). They also
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point out (without further specification) that an analogon to these roll waves
exists in falling liquid films. The first to specify the phenomenological basis of
such waves in conjunction with falling liquid films was Portalski (1964a). He
employed the term rolling wave to designate waves that, when observed with
an “imaginary camera” traveling at the same speed, would display streamlines
in the shape of a closed eddy. Later, Nakoryakov et al. (1976) used the same
designation to differentiate waves with large maximal to residual film thick-
ness ratios. As both works note the principle aspects of the phenomenon in

question, the same terminology shall be adopted in this thesis.

Figures 2.14(a) to 2.14(c) represent streamlines viewed in a coordinate sys-
tem moving with wave celerity (i.e. a wave-fized reference frame), as suggested
by Portalski (1964a), for the waves depicted in figures 2.11(a) to 2.11(c) re-
spectively. Or, in other words, streamlines in figures 2.14(a) to 2.14(c) were
determined based on the velocity vector [u — ¢, v]”. Superimposed arrows il-
lustrate the local flow direction. For the wave with largest maximal to residual
film thickness ratio, figure 2.14(c) shows that the scenario of a vortex in the
wave crest (envisaged by Portalski (1964a)) is indeed correct. Thereby, liquid
inside the vortex is “trapped” and recirculated as the wave travels downward
(this entrapment was also indirectly suggested by Dukler (1976)). For such a
vortex to exist, the interfacial liquid velocity, evaluated in a wall fixed coordi-
nate system, must exceed the wave celerity at some position along the wave.
The occurrence of a vortex in the wave-fixed reference frame may be more easily
understood when considering the phenomenon from another point of view. Chu
& Dukler (1974) and later Brauner & Moalem Maron (1988) contended that
conditions in a surface wave could be simulated by moving a wetted bounding
wall upward with wave celerity, thus obtaining an interfacial structure that is
fixed in space. Technically, the encountered situation would then be one of
liquid withdrawal from a reservoir as opposed to a falling liquid film. In this
situation, the large wave would represent a cavity into which liquid is conveyed
due to the movement of the wall. Based on this picture, it is clear that, de-
pending on the depth of the “cavity” (i.e. the difference between maximal and

minimal film thickness) and the withdrawal rate, the flow entering the cavity
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Figure 2.14: Liquid phase streamlines in a coordinate system moving with the
respective wave celerity for smooth and wavy films corresponding
to figure 2.11 (in subfigure 2.14(a), the same wave celerity as in
subfigure 2.14(b) is employed).

may separate, creating a separation vortex.

The concept of flow separation in the wave crest was first introduced by
Brauner et al. (1987). Based on an analysis of the governing equations at the
interface the authors came to the conclusion that for certain flow conditions a
characteristic point appears on either side of the wave’s maximum. They sub-
sequently showed that these points could either be stagnation points connected
by a separation streamline or extremal points, the latter scenario having been
refuted by Malamataris et al. (2002), who showed that the interfacial velocity
varies monotonically with the local film thickness. Brauner & Moalem Maron

(1983) had previously supposed the existence of a single upstream stagnation
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2 Falling film dynamics

point and applied laminar withdrawal theory (see Groenveld (1970)) to obtain
relations for the residual film thickness d,es and the film thickness dsp at the

stagnation point:

cl

1
Ores = 0.52 |:—:| , Osp= |:
g

(2.58)

which quite accurately predict dres=0.23 mm and dsp=0.63 mm for the wave
in figure 2.14(c) (c=0.41 m/s, 11=4.7 - 107°% m?/s).

Having introduced and explained the phenomenon of rolling waves in falling
liquid films, a brief historic overview of different contributions to the proof of

its existence is presented here.

Nakoryakov et al. (1977) concluded from their velocity measurements in
rolling waves (which they defined according to Nakoryakov et al. (1976)) that
interfacial velocity does not exceed wave celerity at any position along the wave.
However, as their data points did not extend sufficiently close to the liquid-gas
interface, these are also open to the contrary interpretation. This was later
confirmed by Demekhin et al. (1987), who solved Shkadov’s 2-equation model
numerically for one of the said regimes, showing that a vortex in the wave crest
is indeed observed in the wave-fixed reference frame’. Further contributions
to the elucidation of the phenomenon were mainly of numerical nature, since
adequately resolved velocity measurements in falling liquid films are extremely
difficult.

Moalem Maron et al. (1989) and Wasden & Dukler (1989a,b) were the first
to solve the full Navier-Stokes equations to investigate the phenomenon. They
considered the situation as a liquid withdrawal problem, prescribing the wave
geometry and moving the wall with wave celerity, directly obtaining the velocity
field in the wave-fixed reference frame. Moalem Maron et al. (1989) synthesized
typical rolling waves with an asymmetric film thickness distribution described
by two different sine functions matched at the wave peak. Thereby, the au-

thors arbitrarily prescribed the wall velocity, and thus the wave’s celerity, which

fMalamataris & Balakotaiah (2008) have recently come to the same conclusion based on
a numerical solution of the full Navier-Stokes equations for the same regime.
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means that the considered wave dynamics were not necessarily realistic. Later,
Jayanti & Hewitt (1997) remedied this deficiency by adapting the wave veloc-
ity iteratively until obtaining a periodic streamwise pressure distribution in the
wave. Two principle conclusions can be drawn from the work of Moalem Maron
et al. (1989). Firstly, the authors show that the occurrence of a vortex in the
wave-fixed reference frame is governed by the ratio of maximal to residual film
thickness. Only when this ratio exceeds a certain threshold value, a vortex de-
velops. The relations in equation 2.58, obtained by Brauner & Moalem Maron
(1983) from laminar withdrawal theory, yield the value 2.72 for this threshold,
which was corroborated by the numerical experiments of Moalem Maron et al.
(1989), who show the value to lie between 2.5 and 3.0. Secondly, the authors
found that rolling waves develop a second vortex in the wave crest as their base

length increases.

Wasden & Dukler (1989b) improved the methodology of Moalem Maron et al.
(1989) by prescribing a realistic wave geometry based on their own film thick-
ness measurements at technically relevant flow conditions’. Because wave dy-
namics under those conditions were not developed (i.e. wave celerity varied
along the wave), the authors prescribed a wall velocity profile, which was it-
eratively adjusted to fulfill both the periodicity of the streamwise pressure
distribution and the agreement of numerically and experimentally determined
wall shear stress distributions. Thereby, Wasden & Dukler (1989b) investi-
gated three different waves of varying maximal to residual film thickness ratio,
confirming the finding of Moalem Maron et al. (1989) that increasing the ratio
increases the size of the vortex in the wave-fixed reference frame. The authors
state that due to the resulting recirculation of liquid in the wave crest, rolling
waves could be viewed as “lumps of liquid overrunning a slow moving substrate”
and carrying most of the liquid mass. The latter assertion was quantitatively
verified by Mudawar & Houpt (1993b), who determined mass fluxes at differ-
ent positions in the wave, concluding that rolling waves transport between 40
and 70% of liquid mass. Wasden & Dukler (1989b) also communicated some

fThey also accounted for capillary forces in the normal interfacial boundary condition as
opposed to Moalem Maron et al. (1989).
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observations on the velocity field underneath the recirculation zone, showing
that the region near the stagnation points displays large values of the cross-
wise velocity component (see figure 2.14(c)). They also demonstrated that the
wave trough region is associated with considerable streamwise acceleration of
the flow, while the wave crest and the wave back are associated with moderate
deceleration’. Further, the authors showed that the streamwise velocity profile
in rolling waves is well approximated by a third order polynomial, confirming
the finding reported earlier in this section that parabolic profiles are inadequate
under these conditions. Subsequently, Wasden & Dukler (1989a) employed the
same methodology as Wasden & Dukler (1989b) to investigate binary interac-
tions between different rolling waves (i.e. coalescence and splitting of waves).
They showed that such interactions lead to rolling waves with large base length
(similar to the ones investigated by Moalem Maron et al. (1989)) and multiple
peaks displaying multiple vortices in the wave-fixed reference frame. In addi-
tion, the authors concluded that, next to the maximal to residual film thickness
ratio, the wave shape exerts considerable influence on such multiple (or single)

vortices.

More recent numerical studies of rolling waves considered the problem in
its full complexity, i.e. the wave geometry was treated implicitly (as variable)
and obtained as part of the solution procedure. The first investigation of this
kind was published by Miyara (1999). Therein, the author demonstrated the
development of a surface wave from small initial interfacial disturbances to a
large rolling wave with an internal vortex in the wave-fixed reference frame
(subsequently referred to as mowving frame vorter) for a flow regime with large
maximal to residual film thickness ratio. Since then, several other authors
have obtained similar results (see e.g. Miyara (2001), Leefken & Renz (2001),
Kunugi & Kino (2003), Gao et al. (2003), Kunugi et al. (2005) and Malamataris
& Balakotaiah (2008)). Two more detailed investigations of the phenomenon
are those of Miyara (2000) and Trifonov (2008). Miyara (2000) investigated
moving frame vortices for a wide range of wave dynamics by systematically

varying the governing dimensionless groups Re, We, f* and Fr. Thereby, nu-

TThe regimes considered by Wasden & Dukler (1989b) did not display capillary waves.
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merical data were validated with experimental data of Liu & Gollub (1994).
These simulations confirm that the principal quantity influencing the occur-
rence of a moving frame vortex is the maximal to residual film thickness ratio,
which increases with the Reynolds number (increasing the size of the moving
frame vortex) and decreases with the Froude and Weber numbers respectively
(decreasing the size of the moving frame vortex). Miyara (2000) also made an
interesting observation about the influence of the excitation frequency, showing
that, for small wave separations (obtained for large values of the excitation fre-
quency) the secondary instability described by Liu et al. (1993) sets in, which
in turn leads to the intermittent creation and destruction of moving frame vor-
tices in the wave crests’. The results of Miyara (2000) were largely confirmed
by Trifonov (2008), who added a further insight into regimes of high maximal
to residual film thickness ratios. Indeed, the author stated that for large val-
ues of Re/Ka (and large wavelengths) his solution procedure failed, which he
attributed to the steepening of wave fronts and possibly the subsequent onset
of wave breaking and formation of droplets shearing-off from the wave crest.
Counsidering the vorticity inherent in the moving frame vortex, this hypothesis

seems quite probable.

The first and up to date only direct experimental proof of a moving frame
vortex in the wave crest of rolling waves was recently published by Alekseenko
et al. (2007) (see table 2.3). The authors performed PIV measurements of the
velocity field in a rolling wave developing on the outside of an inclined tube.
This situation is more associated with rivulet flow than with the flow of a falling
liquid film, but the general wave behaviour is similar. Further, Alekseenko et al.
(2007) showed that the size of the vortex increases with increasing maximal to
residual film thickness ratio. Finally, just like Trifonov (2008), the authors
invoked the possible significance of the moving frame vortex for the creation of

droplets from the wave crest.

With that, characteristics of the liquid phase velocity field have been dis-
cussed for all regions of the falling liquid films illustrated in figures 2.11 and

TThe picture presented by Miyara (2000) is not entirely correct, as he did not take into
account that the wave celerity varies along the waves under these conditions.
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Autors Re Ka Type of investigation
Kapitza (1948) - - 2-equation model
Brauer (1956) 66 3877 experimental
Portalski (1964a) - - 2-equation model
Massot et al. (1966) - - 2-equation model
Nakoryakov et al. (1977) 12.4 195 experimental
Demekhin et al. (1983) - - boundary layer equations
Demekhin et al. (1987) 12.4 195 boundary layer equations
Salamon et al. (1994) 6.1 528.6 Navier-Stokes
Miyara (1999) 100 2969.8 Navier-Stokes

Adomeit et al. (2000) 13, 16, 50 | 1044.8 | experimental/Navier-Stokes
Leefken & Renz (2001) 30 Navier-Stokes

Malamataris et al. (2002) 19.33 252.3 Navier-Stokes
Tihon et al. (2003) 91 8101 experimental
Tihon (2003) 91 8101 experimental
Kunugi & Kino (2005) 75 3919 Navier-Stokes
Tihon et al. (2006) 13-57 1480 experimental

Table 2.4: List of experimental and numerical investigations pertaining to back-
flow in falling liquid films. Where liquid properties were not speci-
fied, literature values were used instead, whereby the working tem-
perature was assumed to be 25°C if not specified otherwise.

2.14 except for one, the region of capillary waves. Elucidation of the velocity
field in this region is precisely the goal of this thesis, and a detailed account of
the state of knowledge before the publication of the author’s main findings on
the subject (see Dietze et al. (2008, 2009)) is presented next. To that end, a
list of relevant works is presented in table 2.4.

In order to distinguish different subregions of the capillary wave region some
appropriate terminology shall be introduced here. Referring to figure 2.11(b),
capillary waves shall be numbered in ascending order with increasing stream-
wise position relative to the main wave hump to which they belong. Further, the

terms capillary mazimum and minimum shall pertain to the points of maximal

TResults by other authors that were published later are introduced in section 5 and dis-
cussed with respect to the main results of this thesis.

64
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and minimal film thickness in the corresponding capillary wave. As is evident
in figure 2.11(b), the streamwise velocity profile at the first capillary minimum
exhibits a striking feature. Indeed, the streamwise velocity component there is
negative over the entire cross section of the liquid film. This flow reversal or
backflow is nota bene directed opposite to the gravitational acceleration vector

as viewed in a wall-fized coordinate system.

The first to conjecture the existence of such backflow in falling liquid films
was Kapitza (1948). He solved his 2-equation model (see subsection 2.2.3)
analytically, using a harmonic ansatz for the spatio-temporal evolution of film
thickness, exploiting that the two model equations in 2.51 can be uncoupled

for periodic waves, using the following relation:

1 1
¢ =c =8 +q, T = /q*dm*7 = /5*dx* (2.59)
0

0

between film thickness ¢* and flow rate per unit width ¢*. In the above equa-
tion, a bar denotes averaging over the wavelength A, which was used to non-
dimensionalize the streamwise coordinate. Kapitza (1948) evaluated his analyt-
ical solution for an exemplary wavy film flow of prescribed mean film thickness
6* and wavelength A, and illustrated the resulting flow field in the film’s cross
section. This illustration has been reproduced in figure 2.15. Most interest-
ingly, the figure shows the occurrence of backflow at the wave trough. Thereby,
the backflow region is bounded by two lines normal to the wall on which the
streamwise velocity component vanishes, which suggests that a kind of cellular
pattern exists at the wave trough. Although the wave dynamics investigated by
Kapitza (1948) differ substantially from those in figure 2.11(b), a wave trough
such as the one pictured in figure 2.15 is encountered in principle at all capillary
minima. A first experimental indication of the validity of Kapitza’s conjecture
is contained in the work of Brauer (1956). Indeed, Brauer (1956) briefly men-
tioned! that, during his measurements of the interfacial streamwise velocity
component (performed by photographically tracking platelets dispersed on the

TSee his comments regarding figure 35 on page 25.
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Figure 2.15: Sketch of the flow pattern at the wave trough of a vertically falling
liquid film with harmonic surface waves as illustrated by Kapitza
(1948) based on an analytical solution of his 2-equation model.

liquid-gas interface), upward motion was observed for intermediate Reynolds
number values. Later, Portalski (1964a) tried to provide a physical explana-
tion of the back flow phenomenon exhibited by Kapitza’s analytical solution,
introducing two important terms. Firstly, he stated that “at a fixed point the
flow is periodically brought to rest and then reversed by the passage of the
wave, so that separation is bound to occur...as in a boundary layer with ad-
verse pressure gradient”. Secondly, he introduced the notion of eddy formation
at the wave trough, speculating that the lines of vanishing streamwise velocity
component are not normal to the wall but rather “bent forward” in streamwise
direction and that the center of an eddy lies on each of these lines. Thereby,
the two eddies were supposed to rotate in opposite directions. A continua-
tion of Kapitza's investigations was then provided by Massot et al. (1966).
The authors, although making some improvements’ to the 2-equation model
used by Kapitza (1948), generally employed the same methodology to analyze
the flow field in the region of backflow in greater detail. Most significantly,
the authors evaluated the streamwise and crosswise velocity components over
the entire cross section and constructed the resulting streamlines, confirming
the notion of a cellular pattern in the backflow region as suggested by figure
2.15. Further, the authors introduced a quantitative criterion, requiring that
¢* (8hax — 6*) > 1 for backflow to occur.

Following this first set of investigations on the back flow phenomenon, no

TThey for instance retained the term 62u/612 in the streamwise momentum equation,
which was later recommended by Yu et al. (1995).
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advances in this matter were made roughly for the next twenty years up until
the work of Demekhin et al. (1983). During that period, the experimental
investigations of the liquid phase velocity field by Nakoryakov et al. (1977)
may have played an important role. Indeed, streamwise velocity data measured
by Nakoryakov et al. (1977) in the capillary wave region for different wave
dynamics exhibit no negative values, which may have led to the conclusion
that flow reversal does not occur in falling liquid films. However, these velocity
data, as pointed out by the authors themselves, display a significantly larger
scatter than data in other regions of the wave. On the one hand, this means
that the employed measurement technique displays resolution problems in the
capillary wave region caused by the short transition time of capillary waves
due to their small wavelength. On the other hand, it can be concluded that
the flow field in the capillary wave region undergoes extreme spatio-temporal
modifications. Another interesting feature of these velocity data in the capillary
wave region is that they seem to indicate a positive curvature at least in some
parts of the streamwise velocity profile, which would be opposed to the negative

curvature encountered in all other regions of the wave.

As previously mentioned, the next contribution to the elucidation of the
back flow phenomenon was provided by Demekhin et al. (1983), who numer-
ically solved the first order boundary layer equations 2.40 for a wavy liquid
film with relatively small maximal to residual film thickness ratio. Although
the computed wave dynamics do not exhibit capillary waves, they are closer
to the situation pictured in figure 2.11(b) than the harmonic case considered
by Massot et al. (1966). In principle, Demekhin et al. (1983) confirmed the
streamline pattern calculated by Massot et al. (1966) for their case, showing
the existence of a cellular region of backflow at the wave trough. The authors
also show a streamwise velocity profile at a position that appears to lie in the
backflow region, and which exhibits a positive curvature at the wall'. Further,
the authors stated that backflow occurs for Re!'/?Ka™1/% > 1.2537/9 in their
calculations. Subsequently, Demekhin et al. (1987) published more detailed

THowever, there seems to be a contradiction with the streamline pattern, as this profile
does not display negative values.
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findings concerning the backflow phenomenon by solving the first order bound-
ary layer equations numerically for one of the regimes that were experimentally
investigated by Nakoryakov et al. (1977) (more precisely, the regime with large
maximal to residual film thickness ratio). On the basis of streamwise velocity
profiles plotted at different positions, stretching from the wave front to the
second capillary minimum, the authors showed that backflow indeed occurs in
the capillary wave region. Thereby, velocity profiles at the first and second
capillary minimum are parabolic and display positive curvature with negative
velocity values over the film’s entire cross section. This situation is reversed at
the first capillary maximum where the profile displays negative curvature and
positive velocity values. Interestingly, while changing its shape from the first
capillary maximum to the second capillary minimum, the streamwise velocity
profile is shown to develop a point of inflexion associated with a change in
near wall curvature. At the corresponding position, only near wall streamwise
velocity values are negative. Demekhin et al. (1983) stated that, during this
streamwise change of the velocity profile, fluid elements are accelerated and
decelerated with a magnitude of up to twice the gravitational acceleration. In
accordance with Portalski (1964a), the authors hypothesized that backflow is

caused by “rapidly moving eddies” in front of the large wave.

Recent investigations pertaining to the backflow phenomenon have been pub-
lished over the last ten years. These investigations are distinguished by the fact
that the falling liquid film flow was considered in its full complexity, either by
numerically solving the full Navier-Stokes equations, or by way of sufficiently
resolved measurements. Salamon et al. (1994) performed numerical simula-
tions of a wavy liquid film with an interfacial structure comparable to that of
figure 2.11(b). The authors showed a contour plot of the streamwise velocity
field in the liquid phase, confirming the existence of backflow in the capillary
wave region (and showing the same characteristic features as the contour plot
in figure 2.11(b)). Miyara (1999) conducted a similar numerical investigation
focused on a wavy film with larger maximal to residual film thickness ratio
and a larger number of capillary waves. His results show that the streamwise

velocity profile at the first capillary minimum exhibits negative values over
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the film’s entire cross section and that it is “fuller” than the profile defined by
equation 2.54. Further, the author concluded that the wavy film’s interfacial
structure influences the near wall flow field. Numerical results similar to those
of Miyara (1999) were also obtained by Adomeit et al. (2000) and Leefken &
Renz (2001). In their work, Adomeit et al. (2000) additionally presented very
convincing experimental proof of the backflow phenomenon in the form of a
photograph (recorded with large exposure time) showing loop-shaped pathlines
of particles illuminated with a pulsed laser in the capillary wave region. Leefken
& Renz (2001) investigated the velocity field in the capillary wave region from a
different perspective by evaluating the distribution of the streamwise wall shear
Stress Twz = 8u/8y|y:0T (subsequently also referred to as wall shear stress)
from their 2-dimensional numerical data. The authors showed that wall shear
stress and film thickness exhibit a correlated streamwise evolution, each cap-
illary extremal value being associated with a corresponding wall shear stress
extremum. Further, the wall shear stress distribution exhibits a sign change at
several of the first capillary minima, indicating backflow at those positions. A
detailed numerical investigation of the streamwise velocity profile in the cap-
illary wave region was performed by Malamataris et al. (2002), who came to
similar conclusions as Demekhin et al. (1987). Indeed, the authors confirmed
that the profile develops from a parabolic shape with negative near wall cur-
vature and positive velocity to a profile with positive near wall curvature and
negative velocity over a (not precisely specified) stretch of the capillary wave
region. During this change in shape, the profile is shown to develop an inflex-
ion point near the wall. These numerical simulations were based on regimes
of inclined liquid film flow previously investigated experimentally by Liu et al.
(1993), and exhibited good agreement with the experimental data in terms of
wave dynamics. Further, Malamataris et al. (2002) investigated the influence of
the excitation frequency on velocity profiles in the capillary wave region. Their
results show that reducing the excitation frequency increases the height and
separation of main wave humps as well as the number of capillary waves. As a

result, the corresponding streamwise velocity profiles in the capillary wave re-

TI.e. the streamwise shear stress exerted by the liquid on the wall.
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gion depart more significantly from the semi-parabolic form, eventually exhibit-
ing backflow. The authors concluded by stating that the backflow phenomenon

“must be considered as a destabilizing event for the film flow”.

An important experimental confirmation of the backflow phenomenon was
obtained by Tihon et al. (2003). The authors simultaneously measured time
traces of the local wall shear rate 0u/dy|,_, (with an electrodiffusion method)
and film thickness (with a capacitance method) in an inclined wavy liquid film
with relatively large maximal to minimal film thickness ratio and a large num-
ber of capillary waves. Indeed, the experimental data exhibit a sign change
(from positive to negative) of the wall shear rate at times corresponding to the
first two capillary minima’. In further accordance with the results of Leefken
& Renz (2001), wall shear rate and film thickness time traces were shown to
be closely correlated. Later, Tihon (2003) additionally presented photographs
of particles in the capillary wave region recorded using a macroscopic lens
assembly under the same conditions as in Tihon et al. (2003). The authors
stated that flow reversal could be discerned from successive pictures, but the
evidence does not seem to be clear. Recently, using the same measurement
techniques as Tihon et al. (2003), a detailed study of wall shear stress in the
capillary wave region of inclined wavy liquid films was performed by Tihon
et al. (2006). The main results of the study are simultaneous time traces of
local wall shear stress and film thickness measured at different Reynolds num-
ber and excitation frequency values. Based on these parametric studies the
authors elucidated the effect of Reynolds number and excitation frequency on
the wavelength of capillary waves. This wavelength was shown to decrease with
increasing Reynolds number and decreasing excitation frequency, which Tihon
et al. (2006) attributed to the occurrence of “higher waves that need steeper
ripples in order to be stabilized”. This conjecture seems to be supported by the
fact (also shown by the authors) that minimal film thickness dmin and corre-
sponding streamwise velocity umin = ¢ 62y, (3 1/1)_1 are more adequate scales to

describe the observed wave dynamics, suggesting that the capillary wave region

TThe authors specified a minimal wall shear rate value of Ou/0oyl,_o=-755 1/s at the first
capillary minimum. The wall shear rate for the corresponding smooth developed film
flow is dunu/0yl,_,=3086 1/s.
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has a considerable effect on the dynamics of large wave humps. The wall shear
stress time traces were shown to exhibit the same characteristics as previously
observed by Leefken & Renz (2001) and Tihon et al. (2003), confirming the
existence of backflow at the capillary minima closest to the main wave hump.
Further, the authors showed that both the maximal (associated with the main
wave hump) and minimal (associated with the first capillary minimum) values
of wall shear stress display an extremum in their dependence on the Reynolds
number value. The associated decrease in magnitude of these extrema at large
Reynolds number values can be attributed to the fact that under these condi-
tions, the ratio of maximal to minimal film thickness increases degressively with
the Reynolds number. As a consequence, the relative importance of the resid-
ual layer’s resistance to diffusional crosswise momentum transport to the wall
increases (see also the previous elaborations concerning the results of Mudawar
& Houpt (1993b)), attenuating the effect of the interfacial structure on the
near wall velocity field. Tihon et al. (2006) also performed their own numerical
simulations, which were shown to compare favorably with experimental data.
Finally, the authors, based on their simultaneous film thickness and wall shear
stress time traces, confirmed that the streamwise velocity profile defined by
equation 2.56 is inadequate. Indeed, this profile yields 8u/3y|y:0 =pgo,
meaning that the time traces of dimensionless film thickness and wall shear
stress (both non-dimensionalized with the respective mean values), would be
identical if equation 2.56 were to hold, which is clearly not the case for most
of the data presented by Tihon et al. (2006). However, the authors showed
that a more favorable comparison is obtained for waves with relatively small
maximal to residual film thickness ratio, yielding smaller interfacial inclination,
which reduces the effect of inertial “forces” as pointed out by Wasden & Dukler
(1989b). Figure 2.16 depicts streamwise distributions of wall shear stress and
the quantity p1 g d for the smooth and wavy films pictured in 2.11(a), 2.11(b)
and 2.11(c) respectively, illustrating the main findings of Leefken & Renz (2001)
and Tihon et al. (2006), regarding wall shear stress and its correlation with in-

terfacial topology.

An interesting insight into the complexity of the backflow phenomenon was
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2 Falling film dynamics

recently provided by Kunugi & Kino (2005). The authors, in addition to
2-dimensional numerical simulations similar to those discussed above, also
performed the first full numerical simulation of a falling liquid film with 3-
dimensional wave dynamics. The results of their 2-dimensional simulations
largely confirm previous findings, i.e. flow reversal at the first capillary minima
accompanied by sign changes of the wall shear stress, and are shown to be in
agreement with the empirical correlations of Nosoko et al. (1996). Further, the
authors (see also Kunugi et al. (2005)) provided the first visualization of the
vector field in the cross section of the capillary wave region as obtained from the
full Navier-Stokes equations, and in principle confirmed the picture drawn by
Kapitza & Kapitza (1949) (see figure 2.15). Thereby, they designate the back-
flow regions appearing at the first two capillary minima in their simulation as
vortices, which they envisage as having an effect on wave dynamics. The most
significant contribution of their work are contour plots of film thickness and
wall shear stress evaluated from 3-dimensional simulation data. First of all,
the calculated 3-dimensional film thickness distribution agrees very well with
experimental visualizations published in the book of Alekseenko et al. (1994),
so that the underlying wave dynamics can be considered realistic. Thereby, the
wave topology sufficiently far downstream of the liquid inlet is characterized
by 3-dimensional solitary waves, interacting with one another and preceded
by capillary waves, which cover a considerable region of the interface. The
corresponding wall shear stress distribution in these extensive regions exhibits
negative values, showing that the backflow phenomenon plays an important
role in the liquid phase momentum transport of falling liquid films under real-
istic flow conditions. Finally, Kunugi & Kino (2005) discussed the evolution of
2-dimensional waves to 3-dimensional horseshoe-shaped waves from the point
of view of the backflow phenomenon. They conjectured that this phenomenon

is responsible for the 3-dimensional instability of 2-dimensional waves'

, stating
that during this transition the vorticity vector in the back flow region changes

from a spanwise orientation toward a streamwise orientation “like a hair-pin

TKunugi & Kino (2005) also considered heat transfer and the temperature dependence of
fluid properties, so that thermal effects such as Marangoni-convection must be taken
into account when interpreting their results.
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2.3 Liquid phase transport

vortex motion”. Evidence pointing in this direction is provided in section 5.5
(see subfigure 5.51(b) therein).

In summary, it can be concluded that the velocity field in laminar falling lig-
uid films has been elucidated by various contributions to the literature in all but
one sub-region of the liquid phase under wavy conditions, namely the capillary
wave region (characterized by length scales of 100 pm and time scales of 1 ms).
Some advances concerning this region have also been reported, establishing
that extreme changes in the velocity distribution and even backflow can occur
there. However, at the onset of investigations documented in this thesis, no
physical explanation of this backflow phenomenon neither from the kinematic
nor from the dynamic point of view had been proposed. This lack of under-
standing has led to a relative “negligence” of the phenomenon in falling liquid
film research, although all indications point to the possibility of it exerting a
great influence on wave dynamics and liquid phase transport. Consequently,
the stated goal of this thesis, i.e. the mechanistic elucidation of the backflow
phenomenon, is a logical consequence of research conducted on the topic of

falling film momentum transport up until now.

Before concluding this review of literature on liquid phase momentum trans-
port, two last topics shall be addressed. First, a more general discussion of the
wall shear stress distribution followed by some considerations on turbulence in
falling liquid films.

The streamwise wall shear stress 7wz =g 3u/8y|y:0, the distribution of which
is illustrated in figure 2.16, can be understood as the normal flux of streamwise
momentum from the liquid to the wall. Although this quantity is a deriva-
tive of the velocity field, its evaluation can nonetheless be useful in itself. For
instance, as was discussed above, the wall shear stress allows for the identifi-
cation of backflow in the capillary wave region. Further, knowledge of the wall
shear stress distribution can be useful for the prediction of patterns resulting
from material erosion or deposition at the bounding wall (see e.g. Pozrikidis
(1988)). Also, due to the analogy between momentum and scalar transport,
the wall shear stress distribution can yield more general conclusions regarding

transfer between the wall and the liquid film. For smooth falling liquid films
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Figure 2.16: Wall shear stress distributions corresponding to figures 2.11(a),
2.11(b) and 2.11(c). Solid lines (bottom ordinate): wall shear
stress p;gd obtained from equation 2.56; circles (top ordinate):
wall shear stress obtained from numerical simulation.

(see figure 2.16(a)), the wall shear stress follows from equation 2.11 and is given

by Twz=p1 gz Onu. Brauer (1956), based on his experiments with water, showed
that the temporally averaged wall shear stress 7w, in laminar wavy films lies
above that value (this was later confirmed by Moran et al. (2002), while the
results of Alekseenko et al. (1973) show a rather good agreement between the
two quantities). Further, Brauer’s results show that the measured dependence
of 7wz on the Reynolds number (over a range of Re=15-2000) displays five dis-
tinct regions, which he attributed to five different regimes of wavy film flow

(see also table 2.5), formulating an empirical wall shear stress correlation for
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2.3 Liquid phase transport

each one of them.

Since the work of Brauer (1956), several experimental investigations (see
Miya et al. (1971), Alekseenko et al. (1973), Wasden & Dukler (1989a,b),
Adomeit & Renz (2000) and Moran et al. (2002)) have focused on the temporal
correlation of wall shear stress and film thickness (more specifically the quan-
tity p1 gz ). In principle, the main findings of these investigations are contained
in the streamwise distributions’ presented in figure 2.16 and in the previously
discussed works of Leefken & Renz (2001) and Tihon et al. (2006). They shall
thus be discussed on the basis of figures 2.16(b) and 2.16(c). By comparing
the quantities 7w, and p) g, ¢ locally, some of the above mentioned authors
sought to deduce the state of acceleration of the liquid film at the considered
position. However, integration of the streamwise momentum balance over the
thickness of the liquid film (neglecting the contribution of interfacial forces)
yields that the substantial derivative of streamwise momentum (per unit wall
area) is equal to the difference between the streamwise gravitational force (per
unit wall area) p g 6 and the wall shear stress and streamwise pressure deriva-
tive respectively. Consequently, in order to assert the state of cross sectional
acceleration of the liquid film, information about the pressure distribution is
needed. To that end, figures 2.17(a), 2.17(b) and 2.17(c), depicting the stream-
wise distribution of wall pressure, and corresponding to figures 2.16(a), 2.16(b)
and 2.16(c) have been included. As mentioned previously, the wall pressure
distribution in falling liquid films has been investigated by Malamataris et al.
(2002), who showed that the crosswise variation of liquid pressure is almost

purely hydrostatic (with the exception of the capillary wave region).

As can be deduced from figures 2.16(b) and 2.16(c), the wall shear stress
exceeds the quantity p1 g, d in the residual layer and the wave back as well as the
wave front, while it is inferior in the wave crest. These findings corroborate the
results of Wasden & Dukler (19894,b) and Adomeit & Renz (2000). Moran et al.
(2002) concluded (without taking into account the effect of pressure forces)

that the liquid film is decelerated in the residual layer and the wave back

TFor locally developed film flow (see equation 2.56) the spatial and temporal evolutions of
the two quantities are equivalent.
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Figure 2.17: Wall pressure distributions, corresponding to figures 2.11(a),
2.11(b) and 2.11(c). Solid lines (bottom ordinate): film thick-
ness; circles (top ordinate): difference between wall pressure and
gaseous phase reference pressure p,=101325 Pa.

and is accelerated in the wave crest and the wave front!. When taking into
account the pressure distribution, one can come to the following conclusions.
In the residual layer and the wave back, the streamwise pressure derivative
is negligible (see figures 2.17(b) and 2.17(c)). Combined with the fact that
Twa > P19z 0 there, one can conclude that the flow is indeed decelerated. In
the wave front, the pressure derivative is very large and negative. Combined
with the fact that 7w, and p1g.é do not differ substantially there, one can

conclude that the flow is strongly accelerated in the wave front. With respect

TThe latter assertion however is not entirely consistent with their own line of thought.
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2.3 Liquid phase transport

to the wave crest, no clear conclusion can be drawn from figures 2.16 and 2.17

without a careful quantitative analysis.

Another characteristic feature of the distributions in figure 2.16 is the occur-
rence of a peak and subsequent sharp decrease (or “relaxation”) of wall shear
stress in the wave front. This was partially confirmed by the respective stud-
ies of Alekseenko et al. (1973), Wasden & Dukler (1989a,b), Adomeit & Renz
(2000) and Moran et al. (2002). However, some discrepancies between these
works are to be noted. Firstly, Moran et al. (2002) did not detect the sharp
drop in wall shear stress. Secondly, Alekseenko et al. (1973) and Adomeit &
Renz (2000) measured a wall shear stress peak in the wave back as opposed to
the wave front, which at least in the first case may be due to an insufficient
dynamical response of the shear stress measurement (as pointed out by Tihon
et al. (2006)). These discrepancies have not been fully explained and could be
due to significantly different wave dynamics investigated in these works, which

as mentioned earlier focused on more technically relevant regimes of film flow.

Finally, the wall shear stress measurements of Miya et al. (1971), which were
conducted in a shear driven horizontal water film, point to another important
characteristic property of momentum transfer in liquid films. Indeed, the wall
shear stress time trace measured by Miya et al. (1971) at Re=574 exhibits
strong oscillations of high frequency in the wave back and part of the residual
layer, indicating the occurrence of turbulence there. However, these oscillations
were shown to disappear, as the wall shear stress experiences its sharp decrease
in the wave front, indicating the relaminarization of the flow. This is a clear
sign that turbulence in falling liquid films is a localized phenomenon, which is
strongly influenced by the local wave topology. Miya et al. (1971) attributed the
relaminarization of the flow to its acceleration in the wave front, citing, amongst
others, the work of Kline et al. (1967). However, the above considerations
concerning the state of acceleration of the flow pertain to the whole cross section
of the liquid film, whereas the wall shear stress is a local quantity. As will be
shown in this thesis, the dynamics of the capillary wave region, preceding a
large wave bear characteristics that could better explain the relaminarization
of the flow observed by Miya et al. (1971).
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2 Falling film dynamics

With this, focus is now directed toward turbulent momentum transport in
falling liquid films, which shall be addressed with a brief overview of relevant
literature. The most comprehensive work on this topic is that of Brauer (1956),
who used local measurements of the wall-side heat transfer coefficient h and the
maximal film thickness dmax, performed for a wide range of working liquids and
Reynolds number values, to demarcate the flow regimes of falling liquid films
with naturally occurring surface waves. Thereby, limits for the different regimes
follow from salient points exhibited by plots of the heat transfer coefficient and
maximal film thickness versus the Reynolds number. The resulting Reynolds
number limits are listed in table 2.5 along with the corresponding changes in
flow dynamics observed or inferred by Brauer (1956), as well as the curve based
on which the regime limit was identified. From the point of view of laminar
to turbulent flow transition, the salient points of the h-Re-curve are decisive,
as they imply a fundamental change in the mechanisms of momentum and
scalar transport. Brauer (1956) found two such points, but only considered
the one corresponding to the higher Reynolds number value (i.e. Re=400) as a
transition point, while barely discussing the implications of the other. He thus
concluded that falling liquid films are turbulent for Re>400. This threshold
value was approximatively confirmed by Alekseenko et al. (1973) based on
their wall shear stress measurement data, which display a salient point between
Re=300 and Re=400.

The salient points of the dmax-Re-curve delimit changes in wave dynamics,
which have in part been previously discussed in section 2.2. The fact that
Brauer (1956) observed a threshold Reynolds number value for the onset of
harmonic waves is to be attributed to limitations in the film thickness mea-
surement resolution and the test section length, since Brooke Benjamin (1957)
later proved that vertically falling liquid films are always unstable to surface
perturbations. The second characteristic Reynolds number in table 2.5 per-
tains to the previously discussed occurrence of solitary waves, which exhibit
large maximal to residual film thickness ratios. Brauer (1956) also shows that
the streamwise velocity ratio u|y:0 /Unu starts to deviate from the value 1.5 at

this threshold Reynolds number value, which concurs with the earlier elabora-
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No Re-limit Salient point Flow characteristics

1 0.306 Ka®/'®  §pax-Re-curve Occurrence of harmonic waves

2 0.72 Kqa3/10 dmax-Re-curve  Occurrence of solitary waves

3 1.35 Ka®/1° dmax-Re-curve  Saturation of streamwise velocity
ratio ul,_, /Unu

4 0.0181 Ka h-Re-curve No mention of changes in flow
characteristics by Brauer (1956)

5 35.0 Ka®/1° dmax-Re-curve  Appearance of parasitic ripples on
large waves; saturation of maxi-
mal film thickness

6 400 h-Re-curve Onset of turbulence

Table 2.5: Characteristic Reynolds number values, delimiting regimes of falling
liquid film flow according to Brauer (1956).

tions on the change in nature of the streamwise velocity profile as the maximal
to residual film thickness ratio increases. The streamwise velocity ratio is then
shown to saturate at the third characteristic Reynolds number value. A pre-
viously unmentioned change in wave dynamics was observed by Brauer (1956)
at Re—35.0 Ka®/'°, demarcating the occurrence of small parasitic waves, that
cover the entire wavy interface. Further, at this point, the maximal film thick-
ness is shown to saturate. Brauer (1956) also briefly mentions the occurrence
of surge-like waves at Re>800 for his measurements with water, but did not

attempt to determine a general threshold for this transition.

Later, Ishigai et al. (1972) performed experiments similar to those of Brauer
(1956) and proposed a different regime classification, which is presented in ta-
ble 2.6. The deviation regarding the threshold for harmonic waves is to be
expected, as no such threshold exists and consequently, measured values de-
pend highly on the employed measurement techniques. Further, Ishigai et al.
(1972) determined limits of wave dynamics regimes from plots of the dimension-
less maximal film thickness 6}, = dmax/Onu versus the Reynolds number. The
Omax-Re-curve exhibits just two salient points as opposed to the dmax-Re-curve,
and accordingly yields one less characteristic Reynolds number value than pro-
posed by Brauer (1956). Based on this, Ishigai et al. (1972) differentiated the
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No Re-limit Salient point Flow characteristics
1 0.47 Ka*/1° 6% ..-Re-curve Occurrence of harmonic waves
2 2.2 Kq%/10 Omax-Re-curve Onset of stable wavy film flow;

saturation of 0}, ; onset of wave-
induced turbulence
3 75 Omax-Re-curve Onset of wall-induced turbulence
4 400 see Brauer (1956) Full wall-induced turbulence

Table 2.6: Characteristic Reynolds number values, delimiting regimes of falling
liquid film flow according to Ishigai et al. (1972).

following flow regimes. For 0.4 Ka*/*<Re<2.2 Ka®/'°, the dimensionless max-
imal film thickness was shown to strongly depend on the Reynolds and Kapitza
numbers and the corresponding regime was designated as “first transition re-
3/10 - Re<75, was designated

as “stable wavy flow”. In this regime, §;,.. was shown to be independent of

gion”. The second regime, delimited by 2.2 Ka

the Reynolds and Kapitza numbers. Further, waves assume a constant ampli-
tude over the length of the employed test section, as opposed to the ensuing
third regime (75<Re<400), where dmax increases over the entire test section
length. This probably indicates the onset of the coarsening dynamics discussed
in section 2.2 at Re=T75.

In addition to the demarcation of wave dynamics regimes, Ishigai et al. (1972)
investigated the occurrence of turbulence in their work by applying Reynolds’
dye experiment to falling liquid films. By identifying the conditions under
which the inserted dye started to exhibit strong lateral dispersion, the authors
made the following observations. Turbulent “motions” were shown to appear
even in the first wavy regime i.e. for 2.2 Ka**<Re<75. Therein, turbulent
flow conditions were localized and associated with the large waves. These
findings thus corroborate the experimental observations of Miya et al. (1971).
Ishigai et al. (1972) conjectured that the generation of turbulence is caused
by the “destruction of wave crests”. The authors further hypothesized that,
starting at Re=75, this wave induced turbulence generation is accompanied by

the traditional wall-induced production mechanism, the influence of which was

80
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stated to increase with the Reynolds number. Ishigai et al. (1972) concluded
by hypothesizing that for Re>400 the production of turbulence in falling liquid

films is exclusively wall-induced.

Stirba & Hurt (1955), by way of detailed mass transfer measurements in
falling liquid films, determined that turbulence occurs for Re>75, which does
not contradict the results of Ishigai et al. (1972) and even those of Brauer
(1956)". However, the criterion for the transition to turbulence employed by
the authors could be misleading. Indeed, transition was assumed to occur
once the apparent diffusivity (determined from the measured mass transfer
rate on the basis of a smooth film model) deviated from the molecular diffusion
coefficient. Such a deviation could also be caused by surface waves without the
flow conditions being turbulent. Further, Stirba & Hurt (1955) showed that the
apparent diffusivity does not depend on whether interfacial or wall-side mass
transfer is considered, deducing that turbulent flow conditions do not vary over
the cross section of the film. This could be conceived as a contradiction of the
hypothesis by Ishigai et al. (1972) that turbulence generation at large Reynolds
number values predominantly occurs at the wall.

Having roughly established under which conditions (both in terms of Reynolds
number and wave dynamics) turbulence occurs in falling liquid films, the un-
derlying mechanisms shall be addressed here. More specifically, this discussion
will focus on the role of surface waves, which has already been implied by the
previously evoked observations of Miya et al. (1971) and Ishigai et al. (1972).
An important result in this regard was obtained by Stirba & Hurt (1955),
who showed that by adding a surfactant (which suppressed surface waves) to
a falling liquid film, the onset of turbulence could be delayed to much larger
Reynolds number values (Re=750 in their experiments). Although the transi-
tional criterion employed by the authors is somewhat ambiguous, this result is
a strong indication that turbulence in wavy falling liquid films is initiated by

surface waves.

More systematic investigations of this kind were performed by Brauer (1956),

TAs listed in table 2.5, Brauer (1956) also found a salient point in this range (i.e.
0.0181 Ka=70 for water).
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who used the second salient point of his h-Re-curve as a criterion for the onset
of turbulence and obtained the following results for a water film. Firstly, he
showed that the transitional Reynolds number’ value was not affected by the
presence of a tripping wire, which implies that the film would be laminar in
the absence of waves. The latter implication was proven by Brauer (1956), by
adding a surfactant to the working liquid, which, although not entirely sup-
pressing surface waves, reduced their amplitude. Under these conditions the
transitional Reynolds number value was shown to increase to Re=500% in the
presence of a tripping wire, whereas in the absence of the wire it increased
to Re=850. Further, when the initial development of waves was entirely sup-
pressed by the surfactant, turbulence occurred at Re=1300 accompanied by the
sudden appearance of surface waves. Finally, on the basis of measurements for
different working liquids, Brauer (1956) showed that at the onset of turbulence,
local wave induced fluctuations, which he characterized with an averaged wave
frequency, were identical. In summary, these results indicate that turbulence in
falling liquid films is indeed induced by surface waves, and consequently, in ac-
cordance with the observations of Miya et al. (1971) and Ishigai et al. (1972), is
intermittent in nature. This intermittency was also observed by Ho & Hummel
(1970), who recorded the occasional appearance of eddies in the cross section
of the film in their dye-tracer experiments. In addition, the authors proposed
some potential explanations for the intermittency. Principally, they identified
the residual layer as an inhibitor for the development of turbulence. According
to the authors, the small residual film thickness limits streamwise transport of
momentum and vorticity and interrupts the turbulence cascade at relatively
small eddy sizes, thereby inhibiting the transfer of energy from the main flow
to the turbulence carrying vortices. However, the actual mechanism of wave in-
duced turbulence generation has not been elucidated yet. A phenomenological
indication was provided by Brauer (1956) (qualitatively) and later by Adomeit
& Renz (2000) (quantitatively), who observed the appearance of turbulent spots

on the surface of large waves.

TThis term shall refer to the laminar to turbulent transition.
*Interestingly, the critical Reynolds number value for pipe flow Rep=2300 translates to
Re=575 when introducing the hydraulic diameter of film flow as characteristic length.
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Finally, the experimental works of Ueda & Tanaka (1975) and Mudawar &
Houpt (1993a) shall be discussed briefly. These investigations are notewor-
thy in the sense that turbulence was not encountered although measurements
were performed at large Reynolds number values (up to Re=1425 by Ueda &
Tanaka (1975) and up to Re=1000 by Mudawar & Houpt (1993a)). Thereby,
in both cases, the onset of turbulence or lack thereof was investigated in detail
on the basis of velocity fluctuations measured by hot wire anemometry and
LDV respectively. In the case of Mudawar & Houpt (1993a) the investigated
falling films were smooth due to the use of working liquids with large kine-
matic viscosity (and small Kapitza number values). Consequently, the authors
concluded that the absence of turbulence results from the absence of surface
waves, and that turbulence could develop farther downstream. However, these
smooth films stayed laminar even in the presence of a tripping wire, which
suggests that the transitional Reynolds number for smooth films is also a func-
tion of the Kapitza number. Ueda & Tanaka (1975) explained the absence of
turbulence in their experiments in a shear driven inclined film by the stabiliz-
ing effect of the crosswise component of the gravitational acceleration, which

implies an influence of the Froude number as suggested by Freeze et al. (2003).

2.3.2 Scalar transport

Having treated falling film wave dynamics and liquid phase momentum trans-
port, a basis has been established to discuss the characteristics of liquid phase
scalar transport, which is most relevant from a technical standpoint. The term
scalar transport refers to the transport of a scalar quantity governed by a
convection-diffusion equation in the form of 2.21. Examples for such scalars are
temperature and the mass fraction of a particular species. Importantly, only
passive scalars, i.e such that do not affect momentum transport, are considered
in this thesis. The overview of scalar transport characteristics, presented in
this subsection, will later allow to assess the significance of flow separation in
falling liquid films from the perspective of heat and mass transfer. In com-

pliance with section 2.1, formulae shall be developed for the example of heat
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transfer with temperature as the transported scalar. Further, the term scalar
transfer shall be distinguished from the term scalar transport. Scalar trans-
fer designates transport across a material boundary (e.g. a wall surface or the
liquid-gas interface), while the term scalar transport shall pertain to diffusional

and convective transport in the liquid phase.

Before addressing wavy liquid films, it is useful to establish the characteristics
of scalar transport in smooth films. Figure 2.18 depicts two such films for
different heat transfer scenarios i.e. wall-side heat transfer and interfacial heat
transfer. In both cases, the flow is hydrodynamically and thermally developed,
so that velocity profile uny and film thickness dny are given by the definitions

in 2.11. Introducing a dimensionless temperature ©*:

SNu

Td
o T=Ta . _ [ prerunaTdy (2.60)
T T — Ty’ T SN ’ ’
[ praunedy
0

where T designates the mean (or bulk) liquid temperature and Ty the tem-
perature at the diabatic boundary, the condition of thermally developed flow
can be expressed as 90" /dx=0 or in terms of the heat transfer coefficient h' as
Oh/Ox=0. Under these fully developed conditions and assuming that stream-
wise diffusive transport is negligible, the liquid phase energy equation 2.21 can
be simplified to yield:

3 2 ax e

{§y -3y } Nu = Fre (2.61)
for the case of a constant heat flux (or Neumann) condition at the diabatic
boundary, and:
0?0~
8y*2

{ﬁyﬂ - 3y*} Nu®™ = (2.62)

2

for the case of a constant temperature (or Dirichlet) condition at the dia-

TIf not otherwise specified, h is to be considered as the ratio between the local heat flux at
the diabatic boundary and the difference between boundary temperature Tq and mean
temperature Ty,.
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Figure 2.18: Qualitative velocity and temperature profiles in a smooth hydro-
dynamically and thermally developed film for wall-side and inter-
facial transfer.

batic boundary. The above equations can be solved for the Nusselt number
Nu=hdnu/k and the dimensionless temperature ©*, assuming that the op-
posing crosswise boundary is adiabatic, i.e. with the following boundary con-
ditions:

A At B—" (2.63)
Oy |0 Oy* |1

for the case of wall-side transfer, and:
09" —o, % — _Nu (2.64)
Oy* | ye—o Oy* | e

for the case of interfacial transfer. Results for the four different scenarios are
summarized in table 2.7. For the constant heat flux boundary condition the
boundary value problem given by equations 2.61 and 2.63 can be solved analyt-
ically, and the exact Nusselt number and temperature profile are given in table
2.7 for wall-side and interfacial transfer respectively. By contrast, no closed

form solution has been obtained for the case of a constant temperature bound-
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Wall-side transfer Interfacial transfer
Dirichlet ~ Nu—1.88 (Kays (1966)) Nu=3.41 (Brauer (1971))
Neumann Nu=35/17 Nu=140/33

@*:NU [%y*47%y*3+y*] @*:NU [%y*47%y*3+%]

Table 2.7: Liquid phase Nusselt number and temperature profile, corresponding
to figures 2.18(a) and 2.18(b) for conditions of constant temperature
(Dirichlet) or constant heat flux (Neumann) at the respective dia-
batic boundary.

ary condition, although several authors have derived approximate solutions,
using iterative methods or series expansions for the dimensionless temperature
(see e.g. Nusselt (1923), Kays (1966) and Limberg (1973) regarding wall-side
transfer and Brauer (1971) regarding interfacial transfer’). For this case, only
the (approximate) Nusselt number values are listed in table 2.7 for wall-side and
interfacial transfer respectively, as the (approximate) solutions for the temper-
ature profile cannot be written in closed form or are too cumbersome. Nusselt
(1923) solved the energy equation without the assumption of thermally devel-
oped flow, using an iterative method, and obtained the following approximate

relation for the Nusselt number averaged over a considered transfer length x:

Nu|, = 1 /Nu (%) di ~ 1.88 +0.0942b, b= Re prod (2.65)
X X
0

This relation was stated to hold for b<1/0.15 and, for thermally developed
flow (b—0), converges toward the value 1.88 (see table 2.7). Brauer (1971)
(see also Emmert & Pigford (1954)) derived a similar relation for the case of
interfacial mass transfer with constant interfacial mass fraction, which can be

reformulated for the corresponding case of heat transfer to yield:

0.276 b~ 12

Nul, ~ 341 4 —20°%
ul t 102007

(2.66)

TThe solutions obtained by Nusselt (1923), Brauer (1971) and Limberg (1973) are not sub-
ject to the assumption of thermally developed flow and thus also describe the streamwise
development of ©* and/or Nu.
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2.3 Liquid phase transport

For thermally developed flow (b—0), the above relation converges toward the
value 3.41 (see table 2.7), while in the limit of a vanishing boundary layer
(b—0o0) it tends toward Nu|, = (6b/7)"/2. The latter result was obtained by
Higbie (1935), by considering the film as a semi-infinite layer traveling with the
interfacial velocity. It is clear from table 2.7 that the Nusselt number value is
larger for interfacial transfer compared to wall-side transfer and larger for the
constant heat flux boundary condition compared to the constant temperature

boundary condition.

The discussion of scalar transport in wavy liquid films shall be conducted in
two steps. First, a basis of evidence concerning the wave effect on scalar trans-
fer shall be established, before discussing the underlying liquid phase scalar

transport mechanisms.

Reviews of early investigations concerning wall-side scalar transfer can be
found in the article by Seban & Faghri (1978) and the monograph by Alek-
seenko et al. (1994). Wilke (1962) published the first rigorous investigations
of wall-side heat transfer to wavy liquid films, considering laminar and turbu-
lent flow regimes for different working liquids under the condition of constant
wall temperature. By measuring the streamwise evolution of the temporally
averaged heat transfer coefficient h, he was able to show that a drastic increase
occurs at the onset of surface waves, after which the flow is thermally developed,
i.e. h assumes a constant value. As a result of this increase, the heat trans-
fer coefficient is approximatively doubled under laminar flow conditions and
tripled under turbulent conditions. Further, Wilke (1962) established that the
temporally averaged Nusselt number Nuoo, in the thermally developed region
departs from the value 1.88 for smooth films as the Reynolds number exceeds a
threshold value, which itself decreases with increasing Prandtl number. Above
this threshold, Nuso was shown to increase with Red/15
and with Re%/% in the turbulent range (i.e. for Re>400). Similar results to
those of Wilke (1962) were obtained by Miyara (1999), who numerically simu-

lated liquid films developing from condensing steam. The author showed that

in the laminar range

the temporally averaged Nusselt number begins to deviate from the smooth
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film solution of Nusselt (1916)" at a certain streamwise position in the wavy
region. This position was shown to move downstream with increasing Prandtl
number. Wilke (1962) made a similar observation based on his experiments,
showing that, for large Prandtl number values, the streamwise evolution of the
temporally averaged Nusselt number Nu followed equation 2.65 for smooth
films even though waves were present. This effect of increasing Prandtl num-
ber values can be attributed to a decrease in boundary layer thickness. As is
well established in heat and mass transfer, the thickness of boundary layers

decreases with increasing Prandtl, Schmidt and Reynolds number values.

Following initial departure from the smooth film solution, the Nusselt num-
ber increased in streamwise direction toward an asymptotic limit which itself
increased with the Prandtl number. For large Prandtl number values this limit
exceeded the corresponding smooth film Nusselt number by roughly 50%.

On the basis of measurements in a horizontal shear driven film, Frisk & Davis
(1972) established the influence of surface waves on wall-side heat transfer very
clearly. In their case, the film was hydrodynamically developed at the start
of the heating section, which imposed a condition of constant wall heat flux.
Results showed that films with large surface waves assumed a thermally devel-
oped state at short distances from the start of the heating section (confirming
similar observations by Wilke (1962)). Indeed, by comparing the measured
streamwise distribution of Nu with an analytical solution for smooth films, the
thermal entry length for the wavy films was shown to be substantially shorter.
Moreover, Nuoo reached values approximatively twice as large as the value 2.06
for smooth films. Most interestingly, the authors artificially generated smooth
films at the same operating conditions as corresponding wavy films by adding
a surfactant to the working liquid. Before introducing their results, a brief

discussion of the effect of surfactants on film instability is in order.

Indeed, considering that surfactants generally reduce surface tension, the

stability analysis results presented in figure 2.4 would suggest that their ad-

TNote that reference is made to the earlier work of Nusselt, which treated film condensa-
tion.

*Wilke (1962) confirmed this, at least in regard to the Reynolds number, through mea-
surements of the temporally averaged liquid phase temperature profile.
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2.3 Liquid phase transport

dition to a liquid film has a destabilizing effect. However, Blyth & Pozrikidis
(2004) and Pereira & Kalliadasis (2008), on the basis of linear stability analysis
accounting for surfactant transport at the liquid-gas interface, showed that the
addition of surfactants increases the critical Reynolds number for the onset of
surface waves. They explained this effect by variations in the interfacial sur-
factant concentration, which would arise due to surface waves, in turn causing

soluto-capillary or Marangoni-convection believed to stabilize the film.

Getting back to the work of Frisk & Davis (1972), experimental data for their
artificially generated smooth films were shown to follow the analytical relation
for Nu closely. As the only difference between the two sets of experiments was
the presence or absence of surface waves, the observed substantial increase of
Nueo can be irrefutably attributed to the wavy nature of the film. Further,
Frisk & Davis (1972) established that small parasitic waves, covering the al-
ready wavy interface, had a negligible effect on wall-side heat transfer. Finally,
the authors mentioned the potential significance of “turbulent eddies that pre-
cede the wave crests” for the wave induced intensification of heat transfer. It
will be established in this thesis that the phenomenon of flow separation in
falling liquid films, which, although being laminar, fits the above description

quite well, bears such a significance.

Comprehensive measurements of the temporally and spatially averaged wall-
side mass transfer coefficient A were performed by Oliver & Atherinos (1968)
for laminar liquid films developing on an inclined wall of dissolving material.
This configuration led to a condition of constant wall mass fraction for the
transfered component. For a wide range of wavy operating conditions (of vary-
ing Reynolds and Froude number values), the authors found that hum could be
predicted by an analytical smooth film relation obtained by assuming a lin-
ear velocity profile in the convection-diffusion equation (see Lévéque (1928)).
They explained this apparent contradiction to heat transfer data, i.e. the ab-
sence of a wave effect, by the fact that mass fraction boundary layers are gen-

erally substantially thinner than temperature boundary layers. This is owed

tNote that the unit of ki is kg/(m?s).
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2 Falling film dynamics

to significantly smaller values of the diffusion coefficient DT compared to the
thermal diffusivity au, the ratio between mass and temperature boundary layer
thickness scaling with D/a;. Consequently, the authors concluded that the em-
ployed measurement section was too short for the growing boundary layer to be
penetrated by wave induced fluctuations. Chand & Rosson (1965) confirmed
the validity of this conclusion with temporally resolved measurements of the
wall heat flux in the thermally developing region of a wavy film. They showed
that increasing the mean wall heat flux, and thus the local boundary layer
thickness, without altering the wave dynamics led to an amplitude increase of
the instantaneous wall heat flux oscillation. The results by Oliver & Atheri-
nos (1968) largely confirm the previously published findings of Iribarne et al.
(1967), who performed similar mass transfer measurements for vertically falling
liquid films. However, Iribarne et al. (1967) additionally investigated the effect
of the Schmidt number Sc=v1/D on the Sherwood number Sh=hm onu/ (1 D)
by using different working liquids. Although their experimental data for the
temporally and spatially (see corresponding smooth film Nusselt number def-
inition in equation 2.65) averaged Sherwood number ﬁp agree well with the
Lévéque-type smooth film solution at large Schmidt number values for both
laminar and turbulent flow conditions, deviations were observed at lower val-
ues. Indeed, at intermediate values of Sc, mass transfer data for turbulent flow
conditions increased in comparison to the smooth film solution, and at even
lower values this also occurred for laminar conditions. This influence of the
Schmidt number conceivably emanates from its effect on the boundary layer

thickness.

Although early investigations conclusively showed a substantial wave-induced
increase of the temporally averaged wall-side heat (or mass) transfer coefficient,
they did not provide much insight into the nature of this wave effect. Some
progress was made in a series of experimental investigations through the tempo-
rally resolved simultaneous measurement of film thickness and wall-side transfer
coefficient. Brauner & Moalem Maron (1982) measured the local instantaneous

film thickness and wall-side mass transfer coefficient h,, for inclined liquid films

fNote that the unit of D is m?/s.
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in a dissolution experiment. Time traces in the fully developed’ region of the
flow were shown to be highly correlated, mass transfer coefficient data slightly
lagging film thickness data. The maximal mass transfer coefficient value was
thus attained in the wave back. These observations were later confirmed by
measurements of the wall-side heat transfer coefficient in vertically falling liquid
films under laminar (see Al-Sibai et al. (2003)) and turbulent flow conditions
(see Lyu & Mudawar (1991a)). Further, the experimental data of Brauner &
Moalem Maron (1982) further showed that Ay, was modulated immediately at
the onset of large surface waves, while short wavelength parasitic waves, su-
perimposed on the already wavy interface, had a negligible effect. The former
observation was later clearly confirmed by full numerical heat transfer simu-
lations of Kunugi & Kino (2005), while the relative insignificance of parasitic
waves was also concluded by Ganchev & Trishin (1987), who performed simul-
taneous measurements of instantaneous wall temperature and film thickness
in films heated with a constant wall heat flux. Their data showed that the
frequency spectrum of film thickness time traces extended toward significantly
greater frequencies compared to that of corresponding wall temperature time

traces.

As Brauner & Moalem Maron (1982) did not calibrate their measurement
technique, no absolute information about h,, was obtained. However, they
were able to evaluate relative quantities such as the rms of h,, related to the
temporally averaged value hn,. The dependence of this ratio on the stream-
wise position and the Reynolds number was investigated for a wide range of
flow regimes. The ratio was shown to increase in streamwise direction, at-
taining constant values of 20% for laminar conditions and 35% for turbulent
conditions in the fully developed flow. The authors explained this spatial evo-
lution by the concurring streamwise development of surface waves, including
the coarsening dynamics discussed in section 2.2, and the simultaneous down-
stream growth of the mass fraction boundary layer. The ratio rms(hm)/hm

was also shown to increase with the Reynolds number value, which the authors

TIn the non-steady case, “fully developed” signifies that the temporally averaged transfer
coefficient is spatially independent.
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attributed to an increase in wave amplitude. However, the rate of increase
diminishes at large Reynolds number values (up to Re=860), possibly result-
ing from the saturation of wave amplitude. Heat transfer measurements by
Lyu & Mudawar (1991a) show that, at even larger Reynolds number values
(Re >3000), the ratio rms(h)/h diminishes with Re and converged toward a
constant value, which the authors attributed to increasing “levels of turbulence
mixing”. Experiments by Ganchev & Trishin (1987), also conducted under tur-
bulent conditions, yielded similar results, showing the rms of wall temperature
to decrease with the Reynolds number. Thereby, for waves of saturated am-
plitude, the Reynolds number determines the thickness of the residual layer,
which, as stated earlier (see Mudawar & Houpt (1993b)), represents a resistance
to crosswise momentum transport and dampens the effect of wave-induced fluc-
tuations on near-wall conditions (see also Lyu & Mudawar (1991b)). The con-
sequences for wall-side heat transfer were established by Ganchev & Trishin
(1987), who in addition to wall temperature and film thickness also measured
the instantaneous liquid temperature at a constant crosswise position in the
film. Their data shows that the amplitude of wall temperature fluctuations is

significantly lower than that of temperature fluctuations in the film.

Detailed investigations of the instantaneous wall-side heat transfer coeffi-
cient were performed by Al-Sibai et al. (2002). The authors used a resistively
heated thin constantan foil, along the surface of which a laminar vertically
falling liquid film developed, to impose a condition of constant wall heat flux.
The spatio-temporal distribution of wall temperature was measured with an
infrared camera, collecting radiation from the rear side of the foil, which was
dyed black. First of all, Al-Sibai et al. (2002) confirmed the findings of the pre-
viously discussed works, concerning the temporally averaged Nusselt number.
Their results show that Nu increases with streamwise position and Reynolds
number and attains values twice as large as the corresponding smooth film Nus-
selt number (Nu=2.06) in the fully developed region of the flow. In addition,
the authors quantified the Prandtl number influence on the Nusselt number in
both the developing and developed region of the flow, by performing experi-
ments with different working liquids. In the fully developed region, the ratio
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between the temporally averaged Nusselt number for wavy film flow and the
corresponding value for smooth film flow increases with the Prandtl number.
On the basis of Nusselt number time traces obtained from numerical simula-
tions for three different Prandtl number values (at a constant Reynolds number
value) and evaluated in the developed region of the flow, the authors were able
to elucidate the cause for this increase. While the three different time traces
exhibit equivalent maximal values for Nu, which were periodically attained as
waves passed the considered position, minimal values, and consequently the
temporal average, increase with the Prandtl number. Since the wave dynam-
ics were identical in the three cases and the flow was fully developed, barring
the influence of boundary layer evolution, the authors attributed this effect to
the scaling of liquid phase convective transport by the Prandtl number. In-
deed, as can be deduced from the dimensionless energy equation in 2.21, the
product Re Pr, which corresponds to the Péclet number, scales the convec-
tive transport terms. Consequently, the importance of liquid phase convective
transport and with it the effect of wave-induced velocity fluctuations increases
with the Prandtl number’. Unfortunately, Al-Sibai et al. (2002) did not si-
multaneously measure film thickness time traces so that it was not possible to
discern which part of the wave gains influence as the Prandtl number increases.
The authors merely stated that the investigated liquid films were covered by
3-dimensional waves over most of the heated section with the exception of a
short 2-dimensional region were the flow was not thermally developed. In this
region, Al-Sibai et al. (2002) found the Prandtl number to exert a different
influence on wall-side heat transfer. Indeed, Nusselt number time traces mea-
sured at a constant streamwise position for different working liquids exhibit
larger fluctuations with decreasing Prandtl number, which is to be attributed
to an increase in boundary layer thickness (see also Chand & Rosson (1965)). It
should be mentioned here that none of the regimes investigated in the works of
Brauner & Moalem Maron (1982), Lyu & Mudawar (1991a) and Al-Sibai et al.
(2002, 2003) displayed significant capillary waves in front of large wave humps.

T This argument was previously presented by Wilke (1962) and also explains his observation
that the threshold Reynolds number value for wave induced intensification of wall-side
heat transfer decreases with increasing Prandtl number.
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As will be established subsequently, the presence of such waves significantly

alters the behaviour of wall-side scalar transfer.

The characteristics of wall-side heat transfer in 2-dimensional falling liquid
films with pronounced capillary waves have been elucidated only recently, by
way of full numerical simulations (Adomeit et al. (2000) and Kunugi & Kino
(2005)) and detailed experiments (Schagen et al. (2006)). Adomeit et al. (2000)
computed streamwise distributions of instantaneous film thickness and wall-side
heat transfer coefficient at different times in the evolution of a surface wave,
consisting of a large wave hump and several preceding capillary waves. The
heat transfer coefficient h was shown to exhibit a global maximum at the first
capillary minimum and a global minimum in the large wave. Moreover, all
capillary waves were associated with local heat transfer coefficient minima and
maxima, corresponding to respective capillary maxima and minima, while no
variation of h was observed in the residual layer. Similar numerical results
were obtained by Miyara (2001) for films developing as a result of steam con-
densation. Importantly, Adomeit et al. (2000) showed that this modulation
of h depends highly on the Prandtl number. At very low Prandtl number
values, h varies almost inversely with the film thickness. Consequently, the
global minimum of h coincides with the wave crest, and is approximatively
five times smaller than the maximum. With increasing Prandtl number, the
ratio of maximal to minimal heat transfer coefficient decreases, while the posi-
tion of the global minimum moves upstream toward the wave back. Thereby,
the maximal streamwise velocity at the interface was shown to slightly exceed
the wave celerity, meaning that a moving frame vortex is present in the large
wave hump. To illustrate the findings by Adomeit et al. (2000), a selection of
the author’s own simulation data for the case of wall-side heat transfer and
constant wall temperature is depicted in figure 2.19. Pictured are simultane-
ous time traces of the wall-side Nusselt number! as well as the film thickness
for films corresponding to subfigures 2.11(b) and 2.11(c). Subfigures 2.19(b)
and 2.19(c) display the influence of the Prandtl number for one of the flow

t Nu was evaluated with the difference between wall and instantaneous mean (see equation
2.60) temperature, while Adomeit et al. (2000) used the temperature difference between
wall and interface.
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Figure 2.19: Nusselt number time traces for wall-side heat transfer and constant
wall temperature, corresponding to figures 2.11(b) and 2.11(c).

Solid lines (bottom ordinate): film thickness; circles (top ordi-
nate): Nusselt number.

regimes. It is important to note that Adomeit et al. (2000) applied periodic
boundary conditions for the temperature field in their numerical simulations,
which is incorrect. Nonetheless, their results regarding the heat transfer co-
efficient were qualitatively confirmed by the measurements of Schagen et al.
(2006), who used a Laser Induced Luminescence technique to measure the in-
stantaneous liquid phase temperature profile as well as the film thickness, and
also found a heat transfer coefficient maximum at the first capillary minimum.
However, spatial temperature information was obtained indirectly through the

solution of an inverse problem based on the assumption of a parabolic liquid
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phase velocity profile without accounting for the possibility of backflow in the
capillary wave region. Recently, Kunugi & Kino (2005) (see also Kunugi &
Kino (2003); Kunugi et al. (2005)), by way of full numerical simulations of
the Navier-Stokes equations for a vertically falling water film, confirmed the
existence of a heat transfer coefficient maximum at the first capillary minimum
unambiguously. In this region, the simulation data exhibit a roughly twofold
increase in the Nusselt number, which was defined based on the temperature
difference between wall and interface. Interestingly, different results were ob-
tained depending on the nature of the diabatic boundary condition (constant
wall heat flux or constant wall temperature), which the authors attributed to
effects of coupled heat and momentum transport e.g. thermo-capillary effects.
Indeed, capillary waves were shown to be less pronounced for the constant wall
temperature condition, which resulted in a lower maximal to minimal Nusselt
number ratio (approximately 1.8) in the fully developed region of the flow, the
other wave characteristics remaining largely unchanged. As mentioned previ-
ously, Kunugi & Kino (2005) also reported results of a 3-dimensional numerical
simulation, displaying a complex wave pattern and associated wall shear stress
distribution. Heat transfer data for this case show that the wall-side heat trans-
fer coefficient is strongly correlated with film thickness and wall shear stress

data and attains maximal values wherever capillary waves are present.

The findings reported above indicate that the region of capillary waves
strongly influences wall-side scalar transfer in falling liquid films. It is also
reasonable to assume that the previously discussed occurrence of backflow in
this region could be responsible for the drastic increase of the wall-side heat
transfer coefficient observed by Adomeit et al. (2000), Kunugi & Kino (2005)
and Schagen et al. (2006). Indeed, it will be shown in this thesis (see section
5.3) that the phenomenon of flow separation in the capillary wave region (which

causes the backflow) provides a physical explanation for these observations.

Although only wall-side scalar transfer is explicitly considered in this thesis, a
brief discussion of interfacial transfer in wavy liquid films is presented next. As
the difference between these cases is simply a matter of boundary conditions,

the principle characteristics established above must also hold for interfacial
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transfer. However, in the latter case, the diabatic boundary coincides with
the interface, which is the origin of the film’s waviness. Consequently, the
wave-induced intensification of scalar transfer is conceivably stronger for this
scenario, which has been confirmed by different experimental investigations.
Concerning the capillary wave region, a mechanistic explanation for this differ-
ence between interfacial and wall-side transfer shall be provided in this thesis
(see section 5.3). It is with this in mind that the ensuing literature review was

conducted.

An excellent overview of early investigations was summarized by Seban &
Faghri (1978) and Henstock & Hanratty (1979) (see also the book of Alek-
seenko et al. (1994)). Seban & Faghri (1978) compared measurement results of
different experimentalists for the temporally and spatially averaged Sherwood
number ﬁh with a smooth film relation similar to equation 2.66, showing that
ﬁp is three (data of Emmert & Pigford (1954)) to four (data of Kamei & Oishi
(1956)) times larger in wavy films, independently of the boundary layer’s state
of development (characterized by the parameter b = Re Sc¢dny/x). In contrast,
as was established earlier, the temporally averaged wall-side Nusselt number
follows the corresponding smooth film relation closely even in the wavy region
of a film, if the boundary layer thickness is sufficiently small and thus confined
to a layer hydrodynamically unaffected by waves. Further, as reported pre-
viously, in the wave-affected region of the flow, the wall-side Nusselt number
increase compared to the corresponding smooth film solution was roughly 100%,
which is lower than the 200-300% increase reported by Seban & Faghri (1978)
for interfacial transfer. The review of Seban & Faghri (1978) also enables a
comparison of temporally averaged Nusselt (or Sherwood) numbers for the two
transfer scenarios in the fully developed region of the flow. Indeed, the authors
correlated experimental data of Kamei & Oishi (1956) for the temporally aver-
aged Sherwood number Sho in terms of the Reynolds and Schmidt numbers,
yielding the same power for Re as in the Nusselt number correlation of Wilke
(1962) for wall-side transfer. When relating these two correlations, one obtains
a factor of roughly 1.26 for the ratio between interfacial and wall-side Nusselt

(or Sherwood) number, which is inferior to the corresponding ratio obtained for
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smooth film flow (see table 2.7). Later, Henstock & Hanratty (1979) proposed
a more general relation for the interfacial Sherwood number by correlating the
experimental data of nine different authors. Their results show that data by
Kamei & Oishi (1956) were systematically larger than data of other workers

and thus represent an upper bound.

More recent investigations have focused on elucidating the influence of dif-
ferent control parameters, such as wave frequency, Reynolds number, transfer
length and inclination angle on the wave-induced intensification of interfacial
scalar transfer, in order to identify optimal regimes of operation for technical
apparatuses. An excellent example of such investigations is that of Rastaturin
et al. (2006). The authors investigated the influence of the frequency of excited
surface waves on the temporally and spatially averaged Sherwood number ﬁh
by way of 2-dimensional numerical simulations. With increasing frequency, as
the wave dynamics change from solitary waves with preceding capillary waves
to multi-peaked interacting waves and finally to harmonic waves, the Sherwood
number exhibits a local maximum in each of these three regions, while the global
maximum occurs for the solitary wave regime. By comparing these results
with their own computations for naturally arising waves (see Demekhin et al.
(2007)), the authors showed that mass transfer could be significantly enhanced
through the imposition of controlled monochromatic disturbances. This fre-
quency dependence, at least for the region of solitary waves, was also observed
experimentally by Nakoryakov et al. (1982) and Yoshimura et al. (1996), who
provided a physical explanation. These authors contended that an increase in
frequency in the range of low values, while increasing the number of waves cov-
ering the transfer section, does not cause solitary waves to change significantly
in shape. Consequently, the wave induced transfer intensification, and with it
ﬁp, increases. At large frequency values, neighbouring waves constrain each
other, reducing their respective amplitudes and consequently their effect on lig-
uid phase transport, and cause ﬁp to decrease with frequency (Nakoryakov
et al. (1982) also cited this effect to explain, why their measured Sherwood
number values are lower for 3-dimensional waves compared to 2-dimensional

waves excited at the same frequency). As both effects are countercurrent, a
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maximum is established at intermediate frequency values. Yoshimura et al.
(1996) showed that this maximum moves toward higher frequency values with
increasing Reynolds number. Further, the maximal value of ﬁh related to
the corresponding value for smooth film flow was shown to increase with the
Reynolds number, attaining an asymptotic limit of roughly 2.5. Nakoryakov
et al. (1982) and Oliver & Atherinos (1968) had earlier come to similar con-
clusions, and Oliver & Atherinos (1968) remarked that the observed saturation
sets in when the Weber number exceeds unity. Park & Nosoko (2003) mea-
sured ﬁh in falling liquid films with naturally arising surface waves over a
wide range of Reynolds number values, observing the same wave-induced in-
crease of mass transfer as in the previously mentioned studies. Further, their
results exhibit salient points of the ﬁh—Re relation at Re=400, i.e. at the
onset of turbulence, and at Re=40, which coincides with the “disintegration”

of 2-dimensional waves into 3-dimensional structures.

Alekseenko et al. (1996) found that, similar to the influence of wave fre-
quency, an optimum (in terms of ﬁp) exists for the length of the transfer
section, while Oliver & Atherinos (1968) showed that the wave-induced inten-
sification of interfacial transfer increases with the inclination angle. Oliver &
Atherinos (1968) also demonstrated that artificially imposed parasitic waves,
covering the already wavy interface, have no effect on the Sherwood number.
For highly turbulent wavy films, Freeze et al. (2003) came to the opposing con-
clusion, establishing that small scale parasitic waves attenuate the stabilizing
effect of surface tension on turbulence near the interface. This process was

shown to intensify with increasing inclination angle.

The only temporally resolved experimental investigations of interfacial scalar
transfer in wavy liquid films are those of Stainthorp & Wild (1967), Wolff &
Hanratty (1994) and Schagen & Modigell (2005). Stainthorp & Wild (1967),
using an optical measurement technique, determined the instantaneous film
thickness and mean (or bulk) liquid phase mass fraction of the transfered com-
ponent. Time traces of these two quantities were shown to be highly correlated,
the mean mass fraction’s maximum slightly lagging the wave crests near the
liquid inlet and leading them further downstream. Schagen & Modigell (2005),
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Figure 2.20: Sketch of possible mechanisms for the intensification of scalar
transport in wavy falling liquid films.

using the previously mentioned Luminescence technique, simultaneously mea-
sured instantaneous mass fraction profiles as well as the local film thickness
and found that the interfacial mass flux is highest in the capillary wave region
compared to the wave crest and wave back. The investigations of Wolff & Han-
ratty (1994), who also measured instantaneous mass fraction profiles using a
LIF technique without measuring the film thickness, had previously shown a
substantial temporal variation of the interfacial mass flux in wavy films. For
the case of film condensation, which is characterized by both interfacial and
wall-side heat transfer, Miyara (2001) numerically showed that the interfacial
heat transfer coefficient is modulated by waves in a much stronger fashion than

is the case for the corresponding wall-side coefficient.

To conclude this chapter, an overview of literature, concerning liquid phase
transport mechanisms at the origin of the above established wave-induced scalar
transfer intensification, is provided next. Different possible mechanisms of this
sort have been proposed thus far, and are illustrated by means of a typical
solitary rolling wave in figure 2.20. The first of these mechanisms pertains
to the wave-induced increase in interfacial area, which could be conceived to
augment interfacial scalar flow similarly to the effect of a fin. However, Portalski
& Clegg (1971), through careful film thickness measurements, established that
the interfacial area increase caused by waves is only of the order of 1%, thus

refuting the significance of this effect for scalar transfer in falling liquid films.

For the case of liquid films developing from condensing steam (or evaporating
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liquid films for that matter), i.e. with constant temperature conditions at both
the wall and the interface, the so called film thinning effect has been evoked by
a series of authors. Due to these boundary conditions, streamwise temperature
changes are largely suppressed, leaving only crosswise convective transport to
distort an otherwise linear liquid phase temperature profile. Consequently, the
smooth film Nusselt number, based on the temperature difference across the
film, is unity, i.e. heat is transported by pure conduction from the wall through
the film and into the gaseous phase. For small Prandtl number values (or, more
generally, small Péclet number values) the crosswise conduction term in the
energy equation dominates, yielding linear instantaneous temperature profiles
also in wavy films (see the numerical simulations of Adomeit et al. (2000)).
Under such conditions, the temporally averaged Nusselt number satisfies Nu =
(SN—U/(S, which, depending on the wave shape, may deviate significantly from
unity. In fact, as the average of the reciprocal value of a given quantity is
generally smaller than the reciprocal of that quantity’s average, and as the
mean film thickness tends to the smooth film thickness dnu, 5N—u/6 is generally
larger than unity. This conductive-kinematic intensification of heat transfer in

wavy liquid films is termed the film thinning effect.

Jayanti & Hewitt (1997) performed a detailed analysis of this effect by nu-
merically solving the Navier-Stokes and energy equations for predefined wave
shapes as explained in subsection 2.3.1 for a liquid with Pr=1. For all in-
vestigated cases the instantaneous heat transfer coefficient closely follows h =
k1/d, indicating linear temperature profiles. For harmonic and distorted har-
monic wave shapes, the authors showed that Nu increases with distortion (only
slightly) and wave amplitude, attaining values roughly 25% larger than unity.
The strongest film thinning effect (an increase in Nu of roughly 35% over
unity) was observed for rolling waves, which, as stated earlier, transport most
of the liquid and thereby leave behind long stretches of thin residual layer. Al-
though these rolling waves were shown to slightly distort the temperature field,
pointing to the significance of convective transport, this contribution is small

compared to the film thinning effect.

For larger Péclet number values, Faghri & Seban (1985) (using a different
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2 Falling film dynamics

numerical approach) had previously shown that m accounts for only a part
of the wave-induced increase of interfacial and wall-side mean Nusselt numbers.
The rest was attributed to convective transport. Indeed, for their largest Péclet
number value, the Nusselt number maximum was observed in the wave hump
and the minimum in the wave trough. Further, interfacial transfer was shown to
be affected more strongly by waves than wall-side transfer. Both of these obser-
vations not being compatible with pure crosswise conduction. The authors also
discarded the effect of streamwise conduction caused by wave-induced stream-
wise temperature gradients based on a solution of the 2-dimensional Fourier
equation in the liquid phase. Nusselt number values derived from these data
closely agree with those obtained under the assumption of pure crosswise con-
duction’. Finally, the authors showed Nu to be strongly influenced by wave
amplitude, attaining values of up to 1.75 as a result of the combined effects of

film thinning and convection.

A thorough numerical investigation of the respective relevance of these two
effects was performed by Miyara (1999). The author simulated condensate films
of varying Prandtl number and found that for low values (Pr <1) the tempo-
rally averaged wall-side Nusselt number closely follows Nu = m, exceeding
unity by roughly 37% (see also Stuhltriger et al. (1995) and Miyara (2001)).
As the Prandtl number is increased (10< Pr <100), Nu attains values of ap-

proximately 1.56, while dnu/d stays unchanged. Temperature contours under

these conditions were shown to be distorted in the wave hump (Stuhltriger
et al. (1995) and later Adomeit et al. (2000) showed that temperature profiles
deviate from a linear shape in the wave hump), pointing to the relevance of con-
vection, while, at low Prandtl number values, isothermal lines closely follow the
wave shape (indicating linear temperature profiles). Miyara (1999) concluded
from his investigations that, at small Prandtl number (or, more generally, Pé-
clet number) values, the film thinning effect is dominant, while for larger values
it is accompanied by a mechanism of wave-induced convective transport inten-

sification. As stated earlier, this influence of the Prandtl (or Péclet) number

TLater, Roberts & Chang (2000) modelled the wave induced streamwise conduction effect
by likening it to Aris-Taylor dispersion and also found it to be weak.
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2.3 Liquid phase transport

follows from its scaling property of convective terms in the energy equation.
Later, these results, were also obtained by Leefken & Renz (2001), using a

different numerical approach.

The convective effect of the wave hump is evident in the previously discussed
temporally resolved wall-side Nusselt number data obtained numerically by
Adomeit et al. (2000) and Al-Sibai et al. (2002) (see also Leefken & Renz
(2001)). Indeed, both authors showed the minimal value of Nu, which was
attained in the wave hump, to increase with the Péclet number. Adomeit et al.
(2000) quantified the convection effect by evaluating the streamwise distribu-
tion of hd/ki. This quantity was shown to exhibit a global maximum (with a
value of roughly 2 for a Péclet number value of 50) in the wave hump and sev-
eral local maxima (also in excess of unity) associated with respective capillary
maxima, pointing to the significance of convective transport (compared to the
film thinning effect) in these regions. Later, Leefken & Renz (2001) showed
that the global maximum of h d/k1 decreases significantly with the Péclet num-
ber, while the local maxima in the capillary wave region are less affected. It
should be stated that in the investigations by Miyara (1999), Adomeit et al.
(2000) and Leefken & Renz (2001) surface waves exhibit a moving frame vortex

in the main wave hump.

Although the above elaborations establish the significance of liquid phase
convective transport for the wave-induced intensification of scalar transfer, as
well as identify regions of the wavy film where this contribution is important
(i.e. the main wave hump and the capillary wave region), the actual transport
mechanisms responsible for this effect have not been discussed. In principle,
three such mechanisms have been distinguished in the literature. Firstly, cross-
wise convective transport induced by the variation of film thickness. Secondly,
mixing in the wave hump caused by a mowving frame vortez, and thirdly an

effect resulting from the existence of backflow in the capillary wave region.

Intensification due to crosswise convective transport refers to Prandtl’s well
established mixing length concept, which states that diffusive transport can
be effectively (or apparently) augmented by velocity oscillations superimposed

on the mean flow. In essence these fluctuations cause fluid elements to make
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2 Falling film dynamics

excursions into regions of different temperature where they heat up or cool
down before returning to their region of origin, thus completing (convective)
transport on a smaller scale than the mean flow but on a larger sale than
the diffusion process. This contribution can be described with an effective
thermal diffusivity given by aeg = 0 [, where ¢ and [ designate the characteristic
mixing velocity and mixing length respectively. Arguably, in falling liquid
films, it is in crosswise direction that this effect is most significant, as crosswise
temperature gradients are significantly larger than streamwise gradients and
due to the fact that, in streamwise direction, convection by the mean flow
dominates all other transport mechanisms. Thereby, the crosswise convective
transport under consideration here is caused by wave-induced fluctuations of
the crosswise velocity component. The potential relevance of this effect was
demonstrated by O’Brien (1967), who, for a modelled wave, showed that the
wall heat flux is increased by 100% at large Péclet number values, due to

crosswise convective transport.

Wasden & Dukler (1990) approximated the near wall crosswise velocity com-
ponent by v ~ —0.5y? ji) 0w, /Ox, relating it to the streamwise derivative of
wall shear stress. Consequently, crosswise velocity fluctuations, and thereby
the crosswise convection effect, are concomitant with fluctuations in wall shear
stress. This explains the previously discussed correlation between wall shear
stress and wall-side heat transfer coefficient observed by Kunugi & Kino (2005),
which is evident when comparing figures 2.16 and 2.19 (see also Leefken & Renz
(2001)). Wasden & Dukler (1990) singled out the region near the front stagna-
tion point in a rolling wave as exhibiting strong crosswise convective transport
(which is evident from the streamlines in subfigure 2.14(c)). This effect is clear
in their simulations of interfacial mass transfer as the scalar field is signifi-
cantly distorted in this region (to be precise, the region near the stagnation
point is characterized by smaller gradients of the transported scalar than in
the surrounding regions) and the local interfacial mass flux is maximal. A
similar yet weaker effect was observed at the back stagnation point. Lyu &
Mudawar (1991b) confirmed these results with highly resolved measurements

of the liquid phase temperature field, showing “temperature excursions” in the
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2.3 Liquid phase transport

regions where the moving frame stagnation points were suspected. Further, the
authors observed strong temperature fluctuations in the residual layer, which
are correlated with corresponding film thickness fluctuations. Oliver & Atheri-
nos (1968) provided a direct experimental proof of the significance of crosswise
convective transport in the liquid phase by observing the spread of dye inserted
at different wall distances. Indeed, the dye, when injected close to the wall,
stayed confined to a narrow trace in streamwise direction, while, when injected

further from the wall, it spread considerably in crosswise direction.

Some experimentalists have tried to measure the distribution of the effective
diffusivity, resulting from crosswise convective transport, directly. Wilke (1962)
determined mean profiles of the effective thermal diffusivity from his temper-
ature measurements, showing aes to exhibit a maximum inside the residual
layer and to vanish at the wall. Further, the magnitude of aes was shown
to be up to four times larger than the corresponding molecular value and to
depend on the Reynolds and Prandtl numbers. Jepsen et al. (1966) came to
similar conclusions for the case of interfacial mass transfer. Later, Schagen &
Modigell (2005) and Schagen et al. (2006) evaluated instantaneous profiles of
the effective diffusivity for wall-side heat transfer and interfacial mass transfer,
showing these to exhibit maxima at a wall distance of roughly half the local
film thickness in all regions of the wave. Finally, Adomeit et al. (2000) and
Leefken & Renz (2001) also evoked the effect of crosswise convective transport
to explain their simulated distributions of the wall-side Nusselt number without

elaborating its contribution in detail.

The contribution of moving frame vortices to the intensification of scalar
transport has been more rigorously investigated from the perspective of inter-
facial mass transfer, as due to the greater proximity of the phenomenon to
the interface its effect is stronger in this case. Dukler (1976) was the first
to conjecture a mixing action inside large wave humps, causing the homoge-
nization of a transfered component’s mass fraction there. This conception was
later validated, based on numerical simulations, by Wasden & Dukler (1990),
who showed that this mixing action is performed by a moving frame vortex

developing in rolling waves. Dukler (1976) also proposed a mechanism for the
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2 Falling film dynamics

intensification of interfacial mass transfer by these well mixed wave humps. He
designated this mechanism as one of renewal, echoing a previous conjecture by
Dankwerts (1951) (see also Banerjee et al. (1967)). A detailed description of
the mechanism was later provided by Yoshimura et al. (1996), who termed it
surface renewal mechanism. The surface renewal mechanism is based on the
conception that a large wave passing over a residual film interrupts the growth
of the interfacial boundary layer developing in that film, the liquid of which is
engulfed by the mixing action of the wave hump. After passage of the wave, a
“fresh” (in terms of the homogeneity of the mass fraction distribution) residual
film is left behind, which subsequently re-initiates the development of a bound-
ary layer. Due to the intermittent interruption of boundary layer growth by
large wave humps, the mean boundary layer thickness is considerably reduced,
leading to large Sherwood number values. Dukler (1976), in his conception
assumed that the liquid engulfed by the wave hump would be fully mixed in a
large mixing zone in the wave hump similar to the moving frame vortex later
observed by Wasden & Dukler (1990). However, the streamlines of such a
moving frame vortex (see e.g. figure 2.20) are closed and thus always contain
the same liquid. Consequently, the evoked mixing action must be provided
by the crosswise transport mechanisms discussed earlier. In such a case it is
conceivable that liquid left behind by a large wave is not fully mixed but rather
exhibits a “relaxed” boundary layer near the interface. Yoshimura et al. (1996)
introduced the concept of successive convoluted boundary layers to describe
this effect. According to Roberts & Chang (2000) however, the mixing action
of rolling waves is considerably increased if moving frame vortices are subject to
intermittent disintegration and redevelopment due to wave coalescence events
(see Miyara (2000)). Under such conditions liquid in the moving frame vortex is
intermittently shed after having been mixed and “new” liquid from the residual
film is entrapped anew as the vortex redevelops. The moving frame vortex then
acts as a well mixed buffer reservoir. As stated by Roberts & Chang (2000), the
surface renewal mechanism is not restricted to rolling waves, as waves without
a moving frame vortex also “relax” the boundary layer of the engulfed liquid

due to the crosswise convective transport arising from its “expansion” into the

106
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wave hump (to be understood in a moving frame of reference).

In addition to the surface renewal mechanism, interfacial transfer to a rolling
wave hump is also directly enhanced by the recirculation there. As established
by Bontozoglou (1998) and Roberts & Chang (2000), the growth of the inter-
facial boundary layer in the wave hump is limited by the moving frame vortex,
which “sucks” enriched liquid from the front stagnation point and recirculates it.
As this liquid is recirculated, the transfered component diffuses into the vortex
core and the near wall region to the other side, thereby being “refreshed” before
it attains the interface again in the wave back. This mixing mechanism stays
significant until the moving frame vortex is saturated. An excellent overview
of the two intensification mechanisms of the moving frame vortex is provided
by Rastaturin et al. (2006).

Miyara (1999) investigated the effect of moving frame vortices from the point
of view of wall-side heat transfer in a condensate film. The author, in agreement
with the previously discussed investigations, observed that, for large Prandtl
number values, such vortices mix the liquid confined in the wave hump, caus-
ing the homogenization of the temperature field within this region (at small
Prandtl number values, no such effect was observed, the isothermal lines fol-
lowing the wave shape closely). Thereby, with increasing Prandtl number, this
almost isothermal region was shown to expand beyond the actual vortex in the
direction of the wall thus establishing a near wall boundary layer. The author
concluded that the accompanying increase in the near wall crosswise tempera-
ture derivative is responsible for the intensification of wall-side scalar transfer
beneath the wave. This effect of moving frame vortices was later confirmed
by Adomeit et al. (2000), Leefken & Renz (2001) and Kunugi & Kino (2003),
as opposed to Jayanti & Hewitt (1997), who observed only a comparatively
small mixing action. This however was due to the small Prandtl number value

considered in the latter study.

Only a few investigations have considered the effect of backflow in the cap-
illary wave region on scalar transfer. Portalski (1964a) conjectured that the
cellular pattern in the backflow region he obtained from Kapitza’s two equa-

tion model caused “vigorous bulk mixing” and ensured “fast surface renewal”.
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This scenario was also proposed by Banerjee et al. (1967) and later Kunugi &
Kino (2005) and Kunugi et al. (2005). In this thesis (see section 5.3), a mech-
anistic understanding of the effect of backflow on liquid phase scalar transport
shall be developed, explaining the substantial increase of transfer coefficients in
the capillary wave region observed by several authors (see e.g. Adomeit et al.
(2000) and Kunugi & Kino (2005)). Further, this understanding will allow to
explain the difference in effects on wall-side and interfacial transfer and, by ex-
tension, will shed light on some of the transport mechanisms in the wave hump.
Oliver & Atherinos (1968) inferred from dye tracer experiments that, under 3-
dimensional flow conditions, “corkscrew” type vortices cause lateral mixing in
the film and could help to explain the wave induced transfer intensification.
The authors estimated these vortices to lie within the main wave hump and
did not specify if they were to be viewed in a moving frame of reference or not.
As will be shown in this thesis, such vortices indeed develop in the capillary
wave region of 3-dimensional falling liquid films, causing both backflow and

strong spanwise convective transport (see section 5.5).

A discussion of liquid phase scalar transport would not be complete without
mentioning the effect of turbulence. Concerning this topic, the reader is referred
to the works of Banerjee et al. (1968), Ueda & Tanaka (1975), Lyu & Mudawar
(1991a) and Freeze et al. (2003) on the subject.

Summarizing this review of relevant literature, it can be stated that the
elucidation of the backflow phenomenon occurring in the capillary wave region
is an important step toward completing the understanding of falling liquid
films. It has been shown that the backflow phenomenon, barring turbulence, up
until now has remained the only unexplained and unaccounted for aspect of the
liquid phase velocity field. Further, it has been shown that the characteristics of
this phenomenon are potentially critical to the development of multi equation
models. Further, it is conceivable that backflow could be connected to the
secondary instability of surface waves. Finally, the potential significance of
the phenomenon in the context of wave-induced intensification of liquid phase
scalar transport has been established. All these points warrant a detailed fluid

mechanical investigation of the backflow phenomenon in falling liquid films.
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3 Numerical simulation using the Volume of
Fluid method

In the context of this thesis, numerical simulations have been performed in
order to gain insight into the dynamics of the flow in the falling film’s capillary
wave region. In combination with experiments, which will be discussed in
chapter 4, these simulations directly contributed to the elucidation of physical
mechanisms. Consequently, great care had to be taken to ensure their accuracy
and capacity to resolve the relevant phenomena. In this context, it is the goal
of this chapter to establish the employed numerical methodology as well as to
demonstrate its validity. Thereby, emphasis will be placed on the numerical
methods used to account for the multiphase character of the falling film flow.
These will be presented first (section 3.1). Subsequently, a detailed account
of all relevant numerical settings for the investigated flow conditions will be
rendered (section 3.2). Finally, the consistency of the employed methods shall
be demonstrated on the basis of analytically tractable test cases and through
the comparison with own experimental data obtained for falling liquid films
(section 3.3).

The Navier-Stokes equations as well as the energy equation were solved nu-
merically for both the liquid and gaseous phase with the approach of Patankar
(1980) based on the Finite Volume method of spatial discretization and using
a non-staggered grid with all variables defined at cell centers. Two compu-
tational Fluid Dynamics (CFD) codes implementing these methods were em-
ployed, namely FLUENT (version 6.3.26) for 2-dimensional simulations and
OpenFOAM (version 1.5) for one 3-dimensional simulation, using a periodic

boundary condition, which was not applicable in the first code.
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3 Numerical simulation using the Volume of Fluid method

3.1 Employed numerical multiphase methods

Since the general finite volume based procedure for the numerical solution of the
Navier-Stokes equations as well as additional scalar transport equations is well
established, a detailed account of numerical details is forgone here. Instead,
the employed conceptual approach for the numerical tractation of multiple
incompressible fluid phases, respectively governed by the Navier-Stokes equa-
tions, will be presented in this section. An exhaustive overview of different

approaches can be found in the book of Prosperetti & Tryggvason (2007).

Before introducing the employed numerical methods, a brief discussion re-
garding the application of the Finite Volume approach to computational do-
mains containing fluid interfaces is provided first. Indeed, when integrating the
differential equations governing the flow over a computational cell, as is done
in the context of the finite volume approach, some special considerations are
necessary in the presence of fluid interfaces, as illustrated in figure 3.1. First,
the effect of surface tension must be accounted for and second, the jump of

fluid properties across the interface.

Since the effect of surface tension is not accounted for in the Navier-Stokes
equations, the spatially discretized form of momentum conservation is obtained
by directly applying Newton’s second axiom to the mass of fluid contained in
the finite control volume sketched in figure 3.1, which contains material of two
different phases at the considered point in time and can be conceived as a
computational cell. This yields:

NS AA As

d(AP;

% = / (pg,') av + / Sji njdA—‘y-/&i]’k on; dsg, (31)
0 0

0

where AV and AA designate the total volume and surface area of the control
volume. The right-hand side of equation 3.1 formulates the contributions of
volume, surface and line forces to the integral momentum balance. Thereby,
the effect of surface tension enters in the form of a line integral (last term on

the right-hand side) evaluated along the closed intersection line of length As
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Figure 3.1: Finite control volume containing a portion of the gas-liquid inter-
face. Arrows highlight different contributions to the integral mo-
mentum balance. The letters n, s, e, w, b and t pertain to different
control volume faces (see Patankar (1980)), while the liquid and
gaseous phase are differentiated by | and g respectively.

between the interface and the control volume’s outer surface, which is high-
lighted in the bottom right view of figure 3.1 and parametrized by the coordi-
nate s. In the integrand of the line integral, ;1 is the Levi-Civita permutation
tensor and n; the normal interfacial unit vector defined by equation 2.2. The
line integral yields the total tensile force acting on that part of the interface,
which is contained in the control volume. This becomes clear when writing the

integral in vector notation instead of Einstein’s notation:

As As

—
/sijk on;dsy = /ds X ofl. (3.2)
0 0
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The left-hand side of equation 3.1 constitutes the substantial temporal deriva-
tive of the components of momentum AP; owned by the mass Am contained

in the control volume. It can be reformulated as a volume integral, yielding:

AV AV AA

%:%/(pui)dV:%/(pui)dV+/(pu¢ujnj)dA, (3.3)

0 0 0

where the substantial derivative was expressed in terms of the respective partial
derivatives and Gauss’s divergence theorem was applied to obtain the surface
integral (last term on the right-hand side).

Assuming that all quantities remain constant in each of the respective phase
volumes contained in the control volume, the integrals in equations 3.1 and 3.3
can be expressed in terms of the center (subscript P) and face (subscripts n,
e, s, w, t and b) values of these quantities, yielding the discretized momentum

balance. For the x-component of momentum this yields the following equation':
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(3.4)
where the volume and area fractions ¢ and ¢ of the respective phases have
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been introduced along with the volume and area averaged densities p and p:

p=(por+pspg), p=(p1d1+ pgdg) (3.5)

and all terms have been divided by AzAyAz. The operator €;; (55 = 1 for

i =j and ;5 = —1 for ¢ # j) was introduced to avoid writing out all terms in

1LAssuming a 2-dimensional velocity field.
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the above equation and the subscripts 1 and g pertain to the liquid and gaseous

phase respectively.

The left-hand side of equation 3.4 assumes a form, which deviates from that
obtained for single-phase flow only by the appearance of volume and area aver-
aged densities. This is due to the fact that velocity components are continuous
across the interface. The same holds for the gravitational term. However, the
formulation of surface forces (i.e. pressure and shear forces) necessitates a dis-
tinction between the respective contributions of the liquid and gaseous phase,
as they are discontinuous across the interface, leading to the more complicated
second, third and fourth terms on the right-hand side of equation 3.4. The sur-
face tension term has not been discretized at this stage and will be addressed

later.

The above elaborations concerning the x-momentum balance also apply to
momentum balances in all other directions as well as, in principle, to the energy
balance. Meanwhile, the total mass balance is given in differential form by:

9p , 9(uip)
— +———==0. 3.6
ot " o (3.6)

3.1.1 The Volume of Fluid method

The relatively simple way in which the flow’s multiphase character is accounted
for by the left-hand side terms of equation 3.4, suggests modelling the different
phases by a single fluid governed by an appropriately modified set of transport
equations. This single-fluid approach is the common basis for a class of nu-
merical methods enabling the simulation of multiphase flows. Prosperetti &
Tryggvason (2007) provide a general overview of such methods and designate
them as Imersed Boundary methods. The Volume of Fluid method, which was
employed in this thesis, is part of this class. A helpful succinct description of
the method can be found in the paper of Gao et al. (2003), who applied it to
the simulation of falling liquid films in much the same way as was done in this
thesis. The same holds for the investigations of Kunugi & Kino (2003) (see also
Kunugi & Kino (2005) and Kunugi et al. (2005)). For completeness, it should
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be mentioned that a series of numerical investigations of falling liquid films
have been performed, using various other methods including other methods of
discretization. The earliest simulations of falling liquid films were performed
by Wasden & Dukler (1989a), Wasden & Dukler (19895) and Moalem Maron
et al. (1989) based on a prescription of the interface shape and using the fi-
nite difference approach of discretization. Later, using the same discretization
approach, simulations incorporating the implicit computation of the interface
were performed by Stuhltriager et al. (1993), Miyara (1999), Miyara (2001)
and Miyara (2000). The finite element methodology has also been widely ap-
plied to falling film simulations, using different methods for the computation
of phase distribution and interfacial coupling conditions. See e.g. Ho & Patera
(1990), Bach & Villadsen (1984), Kheshgi & Scriven (1987), Moalem Maron
et al. (1989), Malamataris & Papanastasiou (1991), Salamon et al. (1994), Ra-
maswamy et al. (1996), Malamataris & Bontozoglou (1999), Malamataris et al.
(2002), Tihon et al. (2006) and Trifonov (2008).

The modified single-fluid momentum, continuity and energy equations, which
are solved in the context of the Volume of Fluid method, are given by:
9(pu) 0 o 0 (_ ous

ot T ar P = "5t an P,

)+ﬁw+nz
(3.7)
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where fluid properties of the single fluid are obtained through volume averaging

of respective phase properties i.e.:
p=(me+ps(1=9)), p=(me+p(l-9p)),
(3.8)
t=(aptce(l-9), k=(ky+ks(1-9p)).
In the above equations, as well as in all subsequent elaborations, the case

of two immiscible fluid phases (one liquid and one gaseous) is considered, so

that volume fractions of the respective phases are related by ¢1 + ¢ = 1.
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Consequently, the properties of the single-fluid can be parametrized by a single

volume fraction ¢ which was chosen as that of the liquid phase ¢ = ¢.

Next to the appearance of averaged fluid properties, the Navier-Stokes equa-
tions in 3.7 further deviate from their single-phase form by the inclusion of a
volume force F./, modelling the effect of surface tension. This term will be

discussed later in greater detail.

Integrating the equations in 3.7 over the finite control volume sketched in
figure 3.1 then yields the discretized transport equations for the single-fluid

approach. The discretized x-momentum balance for example takes the form:

n
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which can directly be compared with equation 3.4. From this, it is clear that
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the left-hand side of equation 3.4 is well modelled by the single-fluid approach
(assuming that the volume fraction at a given cell face ¢ is a good estimator
of the corresponding area fraction ¢y, there). However, the interfacial jump of
surface forces cannot be resolved in a numerical implementation of the single-
fluid approach, as it occurs inside a single cell. Consequently, the contribution
of surface forces to the integral momentum balance is smoothed over the re-
spective cell faces. Finally, since the formulation of F/ has not been specified,
no assessment of its accuracy can be made at this stage. It should also be
noted that the single-fluid continuity equation in 3.7 imposes a divergence-free
velocity field also for cells containing part of the interface as opposed to the
exact multiphase mass balance given by equation 3.6.

Compared to the Finite Volume based numerical simulation of single phase
flows, the Volume of Fluid method introduces one main complication i.e. the
necessity to compute the spatio-temporal evolution of the volume fraction .

This volume fraction represents a differentiator between phases. In the liquid
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phase, p=1 and the governing equations for the pure liquid are recovered and
vice versa in the gaseous phase where ¢=0. In a spatially discretized domain,
¢ can assume values between 0 and 1, thus identifying cells containing both
liquid and gas i.e. interfacial cells. In these cells, the governing equations of the
single-fluid lead to the more or less accurate application of a multiphase momen-
tum balance (compare equations 3.9 and 3.4), which is equivalent to applying
the interfacial coupling conditions introduced in section 2.1 (see equations 2.4
there). As will be shown later, the effect of surface tension, which is modeled

by way of the volume force F.”, is also selectively applied to interfacial cells.

Consequently, the accurate computation of the volume fraction field is the
paramount task in the context of the Volume of Fluid method. It is also the
primary differentiator for different Volume of Fluid based approaches developed
over the years. The most cited contribution in this context is the landmark
paper by Hirt & Nichols (1981), who introduced the term Volume of Fluid
or VOF method. The authors derived a differential equation, governing the
transport of ¢, from a phase-specific mass balance. For the case of fluids with

constant density, this yields:

Op | 0 (uiy)

— + ———==0. 3.10
Note that the equation is written in its conservative form here and that, due
to the immiscibility of the two fluids, no diffusional transport needs to be
considered. The numerical solution of equation 3.10 is not as straight forward

as it may seem, and will be treated in the next subsection.

3.1.2 Interface reconstruction

When applying conventional Finite Volume based methodology for the numer-
ical solution of equation 3.10, the spatio-temporal propagation of the volume
fraction ¢ may be considerably overestimated, which, in multi-dimensional
cases, leads to the creation of flotsam i.e. detached regions of a considered
phase. To illustrate this specificity, a simple example of one-dimensional uni-

form convection (i.e. as the result of a one-dimensional uniform velocity field)
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3.1 Employed numerical multiphase methods

of ¢ is considered heref. Under these conditions, equation 3.10 reduces to:

Op | Op _
5 g =0 (3.11)

Integrating it over a control volume and one time step (using a first-order
upwind approximation for the face values of ¢ and an explicit formulation of
time dependence) yields the following relation for updating the volume fraction

in a given cell:

i i ulAt oy i
op = op + Ax (SOW - QOP) . (3.12)

Here, the subscript P refers to the considered cell and subscripts W and E
designate its west and east neighbours, whereas the superscript refers to the
considered time step. The advancement of the numerical solution over one time
step is illustrated in figure 3.2, assuming for convenience u At/Az=0.5. The
figure’s middle sequence shows the exact phase distribution in a continuum.
The top sequence depicts the phase distribution obtained when discretizing
the continuum, and the exact distribution defined thereon, with finite vol-
umes. Through this step, the sharpness of the interface is lost and liquid is
redistributed over the entire cell. The bottom sequence depicts the phase dis-
tribution as obtained from the numerical solution given by equation 3.12. Asis
evident in the phase distributions at time step ¢ + 1 (on the right hand side of
figure 3.2), the numerical solution propagates liquid too far downstream. The
cause for this artificial transport is the incapacity of conventional discretization
schemes to resolve the phase distribution within a cell. Consequently, special
schemes accounting for the multiphase character of the flow are necessary in

order to numerically solve equation 3.10.

Among the first to propose such a scheme were Hirt & Nichols (1981), who
introduced the Donor-Acceptor method*. The basic idea of the method consists
of reconstructing the interface within an interfacial cell and using this informa-
tion to compute phase-specific fluxes at the cell faces. Hirt & Nichols (1981)

TThis example was taken from Prosperetti & Tryggvason (2007).
*See also the Simple Line Interface Calculation (SLIC) method of Noh & Woodward
(1976).
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Figure 3.2: One-dimensional uniform convection of the liquid volume fraction
¢ between time steps ¢ and ¢ + 1. Middle sequence: exact phase
distribution in a continuum; top sequence: finite volume spatial
discretization of exact phase distribution; bottom sequence: explicit
numerical solution of equation 3.10 using upwind discretization.

reconstructed the interface within computational cells using line segments (or
plane segments in the 3-dimensional case) that could be oriented parallel to
either of the cell faces, depending on the total volume fraction of the consid-
ered cell and of its neighbours. The Donor Acceptor method was subsequently
improved upon by Youngs (1982), who dropped the constraint of line segments
having to be parallel to a a cell face, instead allowing them to be arbitrarily
oriented within a considered cell. This method was employed for the numerical

simulations in this thesis’ and will be briefly described next.

Figure 3.3 shows a row of interfacial cells, containing part of an interface and
exhibiting different volume fraction values, as highlighted by the gray areas.

For the sake of simplicity, the problem shall be considered as 2-dimensional

TWith the exception of the 3-dimensional simulation (see section 5.5) using OpenFOAM,
which relied on a different method also employed by Rusche (2002).
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Figure 3.3: Interface reconstruction and computation of volume fluxes at cell
faces according to Youngs (1982).

in the sense that no variations take place in the third coordinate. Integrating
equation 3.10 over the central cell in figure 3.3 and over one time step introduces
the volume fluxes of liquid crossing the respective cell faces:
e =t W) = (ue), (o), = (ve), _
At Ax Ay

0. (3.13)

Using an explicit formulation of time dependence, then yields the following

expression for updating the central cell’s volume fraction pp:
; ; At ; ; At ; ;
+1 9 i A i @
ot =pb+ 3 (el — (el |+ 3 [0l o)), 319)

where the face fluxes have yet to be formulated. Before doing so, another
specificity of Youngs’ method needs to be mentioned. In practice, the iterative
procedure defined by equation 3.14 is split into two substeps performed within

one time step. In the first substep, the volume fraction is convected only in
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3 Numerical simulation using the Volume of Fluid method

x-direction (or in y-direction), yielding an intermediate volume fraction (g

ot = ob + 2o [we)i — @] (315)

which is then convected in y-direction (or in x-direction) in the second substep

according to:
R COMECONE (3.16)

Thereby, the order in which these unidirectional substeps are performed is

alternated between successive time steps (see Puckett et al. (1997)).

Without loss of generality, the computation of the face fluxes shall be ex-
plained representatively for the volume flux (u¢), in equation 3.15, which
crosses the east face of the central cell in figure 3.3. The procedure is performed
in two steps. First, the interface within the considered cell is approximated by
a line segment (see bottom sequence of figure 3.3). This line has only its slope
as a degree of freedom as its vertical position is fixed by the total volume frac-
tion @p of the cell. Indeed, the area underneath the line must correspond to
the gray area in the cell. The determination of the line’s slope is illustrated in
the top sequence of figure 3.3. First, a first order central difference estimate of

the volume fraction’s spatial derivative at the west and east faces is computed:

Iy
ox

_yr—pw  Op

VE — QP
= - -1
Az Oz (3.17)

Ax

w e

The slope of the interface segment in the considered cell d¢/dz|, is then com-

puted from a weighted sum of these derivatives:

B (27ueAt/Aaz) dp N (1+ueAt/Aaz) i)
P w

3 Oz 3 or

9

o (3.18)

e
Thereby, u. At/Axz estimates the translation of the interface during the time

step in relation to the total cell width and scales the influence of the west and

east neighbours of the cell.

Based on this approximated interface shape within the considered cell, the

face fluxes can be computed. Therefore, the interface is assumed to translate by
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3.1 Employed numerical multiphase methods

a distance of u. At in x-direction, convecting the entire volume corresponding
to the shaded area highlighted in figure 3.3 into the eastern neighbouring cell.
This area corresponds to the volume flux (u ga)i multiplied with the time step
At and can be determined by geometric considerations, thus yielding:

d¢

i i 1 _ dp
At (up), = Atue npp+2(A:v Ue At) p

J . (3.19)

Equation 3.19 constitutes the principal step in the computation of face fluxes in
the context of Youngs’ method. Further measures need to be taken to prevent
cells from shedding more liquid than they contain or receiving more liquid
than they can hold. This is done through the use of bounding procedures
detailed by Youngs (1982). Finally, since the work of Youngs (1982), a series
of improvements have been made to his method, without changing the general
idea. A review of modern developments concerning interface reconstruction and

face flux computation was recently conducted by Scardovelli & Zaleski (1999).

3.1.3 The Continuum Surface Force method

To complete the description of numerical methods for the simulation of multi-
phase flows employed in this thesis, the computation of the effect of surface
tension will be addressed here. Tensile forces enter the momentum balance
formulated in equation 3.1 in the form of a line integral along the intersection
line between the interface an the outer surface of a computational cell, as illus-
trated in figure 3.1 (bottom right view). Brackbill et al. (1992) first proposed
to model this contribution with a volume force in the single-fluid Navier-Stokes
equations, as introduced in equation 3.7. Their method, designated as Con-
tinuum Surface Force or CSF method, was employed in this thesis and will be

outlined next.

The line integral in equation 3.1 can be reformulated as a surface integral

over the interfacial area AA; contained in the computational cell of figure 3.1
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3 Numerical simulation using the Volume of Fluid method

using an alternate form of the curl theorem (see Kaplan (1991)):

AA;

As

- - " " ——— N
/ds X o = / F);dA, F);=(#xV)xof, (3.20)
0 0

where F,; designates the resulting tensile force per unit surface area. Using
differential geometry detailed in Brackbill et al. (1992), F; can be reformulated
to yield:

Fli=—cii(V i), (3.21)

assuming constant surface tension. Next, the surface integral in equation 3.20
can be expressed in terms of a volume integral over the total volume AV of a
computational cell by introducing the delta function 5 , which is zero everywhere
but at the interface:

AA; AV

/F;,;dAz / (F;;é(ﬁ)) AV, A= (F—7.). (3.22)
0 0

Here, the symbol L refers to the interfacial point obtained by normal projection
of the considered point Z onto the interface and 7 designates the projected
normal distance to the interface. According to Brackbill et al. (1992), the delta

function can be expressed in terms of the gradient of the volume fraction:
i (2) = V. (3.23)

With this, the following formulation for the total tensile force in equation 3.1
is obtained:

As AAp AV

- N " 11 Fn = =

dsxan:/FaidA:/FaidV, Fli=0ck(Vy), k=-V-i,
0 0

’ (3.24)

where the interface curvature x has been introduced. The total tensile force
acting on a finite interface segment contained in a computational cell can thus

be exactly expressed in terms of an integral over the cell’s volume. The inte-
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3.1 Employed numerical multiphase methods

grand ]3'(','1' is then a volume specific force and an adequate choice for the term

7!, modelling the effect of surface tension in the single-fluid Navier-Stokes
equations written in 3.7. In practice, in order for the surface tension term to
be explicitly independent of the local density level in a mass specific formu-
lation of the single-fluid Navier-stokes equations, F/ is scaled with a density
ratio to obtain F)/:

FJl = F;’{# o (V) (V)P 3.25
0.5 (p1 + pg) v-a)( @)045(m+pg) (3.25)

S

To enable the determination of F.; in the context of a numerical solution, a
relation for the computation of the unit normal vector 77 remains to be spec-
ified. Brackbill et al. (1992) related 7 to the gradient of the volume fraction,

obtaining:

Ao e (3.26)
Vi

From equation 3.25 it is clear that the surface tension term F.; as defined by
equations 3.25 and 3.26 is selectively applied to interfacial cells (i.e., where
v © # 0). A description of its numerical discretization is forgone here and the
reader is instead referred to the detailed account by Brackbill et al. (1992).

In summary, the contribution of tensile forces to the momentum balance
for a finite volume containing multiple phases can be exactly computed us-
ing equations 3.25 and 3.26. However, the relations in equation 3.24, used to
derive these equations, hold exactly only if the interface is sharp and the vol-
ume fraction ¢ experiences an interfacial jump. In the context of the Finite
Volume based numerical application of the VOF method, ¢ does not change
discontinuously from one phase to another, assuming values between 0 and 1 in
interfacial cells. Consequently, 3.25 provides only a numerical approximation
of the total tensile force per unit volume acting on the interface segment in
a given interfacial cell. Nonetheless, this approximation converges toward the

exact relation with decreasing cell size.
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Figure 3.4: Sketch of the computational domain employed for the simulation of
2-dimensional falling liquid films.

3.2 Specification of performed numerical simulations

This section renders an account of the principal settings, specifying the nu-
merical simulations of falling liquid films performed in this thesis. First, the
spatial approximation of the falling film flow will be addressed by demarcating
the computational domains and defining the associated grid topologies, fol-
lowed by a description of the boundary conditions numerically imposed on the
boundaries of the grid. Subsequently, principal numerical settings pertaining
to the iterative solution of the governing equations will be specified, such as the
employed algorithm and discretization schemes. Finally, all simulations per-
formed in the context of this thesis will be quantified in terms of the simulated
physical conditions i.e. operating conditions and fluid properties, as well as in

terms of the imposed spatial and temporal resolution.

3.2.1 Computational domain and grid topology

In this thesis, 2-dimensional simulations as well as one 3-dimensional simula-
tion were performed. A typical computational domain used for the simulation
of 2-dimensional falling liquid films is sketched in figure 3.4. Liquid enters the
domain from the left through an inlet channel bounded by two parallel walls.

Within the inlet channel, the flow consists of only the liquid phase, and repro-
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Figure 3.5: Evolution of the streamwise velocity profile within the inlet channel
of the computational domain pictured in figure 3.4.

duces the inlet configuration of the employed experimental test sections, which
will be described in chapter 4. In the experiments, the inlet channel length was
sufficient to ensure that the streamwise velocity profile reached the shape for
fully developed channel flow before evolving toward the semi-parabolic shape
associated with falling liquid films, while approaching the start of the two-phase
region at x=0. Accordingly, the portion of the inlet channel, included in the
computational domain, was chosen such that a streamwise velocity profile of
fully developed channel flow could be assumed at the inlet. In other words, as
illustrated in figure 3.5, the channel length Lo was set to be longer than the
upstream region of influence of the single- to two-phase flow transition. Mean-
while, the channel height do for the numerical simulations was set according to

experimental conditions.

After leaving the inlet channel at =0, the liquid enters the 2-phase region of
the computational domain, which is separated into two portions with different
grid resolution. In the top portion, which contains only gas at all times, a
coarser spatial resolution was chosen, as length scales in the gaseous phase
are larger. In the bottom part of the grid (as well as in the inlet channel),
which contains the liquid film, including all interfacial cells, a significantly finer
resolution was chosen in order to ensure accurate computation of the interface
and resolution of all relevant scales of the liquid phase velocity field. The

resulting cell geometries in these respective regions are illustrated in figure 3.6,
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3 Numerical simulation using the Volume of Fluid method
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Figure 3.6: Close-up of the computational grid near the liquid inlet, showing
the different cell geometries employed for the gaseous and liquid
phase regions respectively.

displaying a close-up of the inlet. As is discernible from the figure, rectangular

computational cells were employed, which were organized in a structured grid.

The two-phase region of the computational domain is bounded on the liquid
side by a wall, along which the liquid film develops, and on the gaseous side by
a boundary permitting fluid to pass through. This boundary is removed suffi-
ciently from the interface in order to minimize the wave-induced disturbance of
the gas flow there, allowing for the definition of adequate boundary conditions.
The length L of the two-phase region is chosen such that surface waves are
enabled to fully develop within the domain. Further, an additional buffer zone
of approximately one wavelength is included in order to separate the film’s re-
gion of interest from the outlet boundary, through which the liquid film leaves
the computational domain, and which is also permeable for the gaseous phase.
A discussion of the outlet boundary condition and its upstream effect will be

provided later (see subsections 3.2.4 and 3.3.3).

As opposed to the 2-dimensional simulations, the performed 3-dimensional
simulation does not represent the complete spatial evolution of the liquid film,
as this would have been associated with a prohibitive computational cost in

the context of this thesis. As an alternative, the computational domain was
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Park and Nosoko (2003)

Figure 3.7: Computational domain employed for the 3-dimensional simula-
tion. Left: shadowgraph of a vertically falling liquid film with 3-
dimensional surface waves (taken from Park & Nosoko (2003)), de-
marcating the periodic wave segment included in the computational
domain. Right: computational domain showing the calculated wave
topology and cell geometries (cells are not drawn to scale).

restricted to one segment of a periodic 3-dimensional wave pattern, as illus-
trated in figure 3.7. As a consequence, the 3-dimensional investigation was
restricted to the developed state of the investigated waves. The length L and
width W of the domain were accordingly set to the streamwise and spanwise

wave separation, which were obtained from experiments.

Liquid and gas enter and leave the computational domain, pictured in fig-
ure 3.7, through boundaries permeable for both phases. Thereby, as will be
detailed later, inlet and outlet are coupled through a periodic boundary condi-
tion, imposing streamwise periodicity. In physical terms, this implies that fluid,
leaving the computational domain through the outlet, simultaneously re-enters

it through the inlet as if it were flowing in a closed loop.

In y-direction, the computational domain is bounded by a wall on the lig-

uid side and a permeable boundary on the gaseous side, and, in z-direction, by
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3 Numerical simulation using the Volume of Fluid method

boundaries rendered impermeable through the application of symmetric bound-
ary conditions, imposing spanwise symmetry. Indeed, through the previously
mentioned choice of W these boundaries correspond to planes of symmetry of
the investigated 3-dimensional periodic wave pattern if the latter is centered
in the computational domain (see left-hand side of figure 3.7). Finally, as in
the 2-dimensional case, the 3-dimensional structured grid is partitioned into a
finely resolved region, which includes the entire liquid phase, and a region of
coarser spatial resolution, containing only gas. In all 2-dimensional simulations
as well as in the 3-dimensional simulation, computational cells at the compu-
tational domain’s boundaries were positioned such that their faces coincided

with the respective boundaries.

3.2.2 Discretization of governing equations

The differential equations, governing the falling liquid film flow in the context
of the performed numerical simulations, are given by 3.7 and 3.10. To obtain
the discretized algebraic form, required for their iterative solution, using the
numerical algorithms detailed in subsection 3.2.3, all governing equations are
integrated in time over one time-step At and in space over the same compu-
tational cell such as the one pictured in figure 3.3, surrounding the point P.
Consequently, all variables computed during the numerical solution i.e. veloc-
ity components, static pressure, volume fraction and temperature are solved for
at the cell centers P, so that the grids presented in subsection 3.2.1 are non-
staggered or colocated. For the temporal integration, integrands are assumed
to immediately adopt their final value at the onset of a new time step, leading
to a fully implicit formulation. With these definitions, for the 2-dimensional

case, the discretized transport equation for x-momentum (the equation for y-
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momentum is omitted for the sake of brevity) is':
At [(ﬁu); —(pu)p |+

A (e e~ + Ay () — (o)) =

Rhie—Chow 15% order
interpolation upwind

— Op/Oxlp+Az e Oufdz|, —[w Ou/Ox| ]+
—— ——

PRESTO 15% order central

difference

Ay~ [fin Ou/0yl, — fis Ou/Oyl)" + [(ge)p + Fiilp]"

(3.27)
where the superscript ¢ refers to the time-step, and the spatial interpolation
schemes employed to evaluate face values as a function of values stored at cell
centers are specified beneath representative terms they pertain tof. As the em-
ployed numerical algorithms are based on a colocated storage strategy, special
attention needs to be paid to the task of interpolation in order to avoid the
decoupling of cell velocity and cell pressure pointed out by Patankar (1980)
(see also Date (2005) for an in depth discussion). Accordingly, the Rhie-Chow
interpolation procedure (see Rhie & Chow (1983)) was employed to determine
the face values of velocity components featuring in respective face fluxes. The
face value of the streamwise velocity component on the eastern face u. is con-

sequently given by:

ue = (apup + anur) + [(ar/ arly)  Op/Oxly  +
———

15 order central

difference

(3.28)
(ap/ aplp) Op/0z|p] — (ar/ ap|gy +ap/ aplp)  Op/Oz|,
N——

15 order central

difference

TAfter integration of the different terms in the differential x-momentum equation over
time and space, the final form of equation 3.27 was obtained by subsequently dividing
through At Az Ay.

¥The PRESTO scheme is an undisclosed method implemented in the CFD code FLUENT.
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where the weighting factors ap and ag were introduced:

arlp

LI 3.29
aplp + aplg ( )

ap=1—ag =
and ap|p and ap|y are coefficients appearing in the final form of the discretized
x-momentum equation after application of the interpolation schemes to equa-
tion 3.27:

(aplpur)’ = ( Y  axlpux) — p/dzl, — by (3.30)
K=NESW

This has led to the introduction of the term momentum-weighted interpola-
tion to designate the relation given by equation 3.28. The second subscript
of the coefficient ar |, refers to the computational cell, over which the spatial
integration is performed (in this case P), while the first subscript designates
the considered neighbouring cell™. Tt is important to note that the coefficients
ak|p, on the right-hand side of equation 3.30, depend on the velocity compo-
nents u,, ul, v? and vl on the cell faces. A derivation of equation 3.28 for the
case ap=ag=0.5 can be found in Miller & Schmidt (1988). All other interpo-
lation schemes applied to equation 3.27 are standard and thus not explicitly

written here (see e.g. Patankar (1980) for definitions).

The discretized forms of the continuity equation as well as the transport

equation for the volume fraction ¢ (equation 3.10) are:

[ e — tw [*Ay + [un — us)’ Az = 0,
——

Rhie—Chow
interpolation

At ep —op ] AT [ (up)e —(up)w] + Ay [ (v —(ve)s] =0.
Youngs’ Youngs’
method method

(3.31)
Although the continuity equation is not solved directly by the employed nu-

TConsequently, ap | would appear in the formulation of equation 3.30 for the eastern cell,
which is not included here.
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merical algorithms it is nonetheless needed for derivation purposes as will be
established in subsection 3.2.3. The computation of face fluxes in the discretized
form of equation 3.10 (second equation in 3.31) was addressed in subsection

3.1.2, while describing Youngs’ method of interface reconstruction.

The discretized form of the energy equation is given by:

Azl (pu)e G Te  —(pu)winTw] + Ay [(pv)neaTn — (pv)sTi]’ =

N—— ~—~
Rhie—Chow 15 order
interpolation upwind

Az~ ke OT/0x|, —kw OT/0x| )" + Ay~ '[kn OT/y|, — ks OT/3y|.]".
N——

15 order central

difference

(3.32)
Application of the respective interpolation schemes to equation 3.32 then yields

the final form of the discretized energy equation, in analogy to equation 3.30:

(aplpTe)' =( Y axlpTk) —b (3.33)
P
K=NESW
The final discretized form of the continuity equation is not needed, whereas that
of the volume fraction transport equation is given by the fractional formulations
3.15 and 3.16.

3.2.3 Numerical algorithms

Having addressed the spatial discretization of physical space as well as the
spatio-temporal discretization of the governing equations, the employed algo-
rithms for the iterative numerical solution of the latter will be specified in this
subsection. For both the 2-dimensional and 3-dimensional simulations, the
PISO (Pressure Implicit Split Operator) algorithm introduced by Issa (1985)
was employed for the numerical solution of the coupled system represented by

equations 3.15, 3.16, 3.30, 3.33 as well as the discretized continuity equation.
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Figure 3.8: Flowchart of the numerical algorithm for the computation of phase
distribution, velocity and temperature as implemented in the CFD
code (FLUENT) employed for 2-dimensional simulations.

Figures 3.8 and 3.9 represent flow charts of the iterative solution process as im-
plemented in the CFD code FLUENT employed for 2-dimensional simulations’.
Figure 3.8 depicts the full iterative loop for the time-resolved computation of
volume fraction, velocity and temperature. Thereby, as discussed in subsection
3.1.2, the volume fraction distribution is computed in an explicit manner based
on data from the previous time step. The velocity and temperature fields are
computed in an implicit manner in the so called PISO loop, where momentum,
continuity and energy equations are solved iteratively. The inner workings of
the PISO loop are illustrated by the flow chart in figure 3.9, where the solution
step for the energy equation has been omitted for the sake of brevity. The

TAs stated earlier, the procedure for the OpenFOAM CFD code used for 3-dimensional
simulations is similar.
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Figure 3.9: Flowchart of the PISO loop contained in the complete algorithm of
figure 3.8.
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chart thus illustrates the coupled iterative solution of the Navier-Stokes and

continuity equations using the PISO procedure.

The procedure basically consists of a predictor step in which the discretized
implicit momentum equations are solved iteratively using the pressure distri-
bution from the previous time step and two corrector steps, which determine
better estimates of pressure and velocity by enforcing the condition of a di-
vergence free velocity field called for by the continuity equation. Thereby,
the pressure correction (see fifth and ninth box of the flow chart in figure
3.9) is determined by solving the implicit pressure correction equation obtained
from the discretized form of the continuity equation using momentum-weighted
Rhie-Chow interpolation for the formulation of face fluxes. The velocity correc-
tions are obtained from the momentum equations using the corrected pressure
field. Thereby an explicit formulation is employed in the sense that uncorrected
neighbouring velocity components are used in the first term on the right-hand
side of the discretized momentum equation. In the 2-dimensional simulations
(using FLUENT), the predictor step and the two corrector steps were itera-
tively applied within a time step until velocity and pressure estimates converged
to a predefined degree. For an exemplary 2-dimensional simulation, the conver-
gence history for static pressure as well as streamwise and crosswise velocity
components is illustrated in figure 3.10. Variables displayed in these graphs
were evaluated at one point in the liquid phase of a developed wavy falling
liquid film over the span of eight time steps. The number of PISO loop itera-
tions within a time step was set to a fixed value (in this case 10), which was
determined for each performed simulation based on the convergence history of
the residuals of the discretized momentum and continuity equations. For the 3-
dimensional simulations (using OpenFOAM), the predictor-corrector sequence
in figure 3.9 was performed only once for each time step in order to reduce

computational burden.
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iteration index

(c) Crosswise velocity
2-dimensional simulations. In this case, exactly 10 iterations were

uid phase of a wavy film for the PISO algorithm employed for
performed for each time step.

wise and crosswise velocity components at one point in the lig-

Figure 3.10: Exemplary convergence history of static pressure as well as stream-



3 Numerical simulation using the Volume of Fluid method

3.2.4 Initial and boundary conditions
2-dimensional simulations

For the 2-dimensional simulations, the initial state of the falling liquid film
was set to the corresponding primary flow given by equations in 2.11. The
streamwise velocity profile in the single-phase flow within the inlet channel was
defined to evolve from a fully-parabolic shape, corresponding to fully developed
channel flow (with vanishing streamwise pressure gradient), at the liquid inlet
to the semi-parabolic shape associated with smooth film flow at the inlet to the
two-phase region. The crosswise velocity component was initially set to zero
in the entire domain. In terms of a continuum physical description and with

reference to figure 3.4, the initial conditions then are:

e <0d w@yt=0)=[ur(y) —uc(y)z/Lo+ur (y)
n U(xﬂ%t:O) =0, p(x7y7t=()) = Poo, T(az,y,t:O) =To

ur (y) Yy < ONu

d(z,t=0)=0Nnu, u(z,yt=0)= { 0 .
v(zyt=0)=0, pxyt=0)=pw, T (zyt=0)="To
(3.34)
where the semi-parabolic and parabolic profiles ur(y) and uc(y)' are defined

as follows:

_51%11;91 Y 12/2 _6Ren [y y2
urp (y) = s e 202 ) uc (y) = 5\~ 52) (3.35)

Application of these conditions to all cells (more specifically, cell centers indexed

with the letter P) contained in the spatially discretized computational domain

TThe subscript C refers to the inlet channel and F to the smooth film flow.
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3.2 Specification of performed numerical simulations

represented in figures 3.4 and 3.6 for i=0 yields:

mp<0{ op =1, pr=pe, Tp="To

up = [UF|yP*UC|yP]xP/LO+UF|yp7 v =0
0 0 Aye | ¢p=0
PP = Py Ip =Tp, yp > 0Nu+ —— o o
2 | wop=0 (330
Ay [ op =1
<Ny — ——
rp >0 YP=ON 2 {ugzuplyp7 vp =0
Ayg — ONu
yP<5Nu+Ty w%:O.SfypAiN, Ve =0
Ay 0 v
yP>5Nu_T UP:UF|yP

In order to compute the implicit steps of the PISO algorithm described in
figures 3.8 and 3.9, i.e. to iteratively solve the discretized momentum, pres-
sure correction and energy equations as well as the volume fraction transport
equations, boundary conditions need to be defined on the entire border of the
computational domain for the corresponding transported quantities. As stated
earlier, all boundaries of the domain coincide with cell faces so that the pre-
scribed boundary conditions define face values of dependent variables or their
face fluxes. Boundary conditions for velocity components, static pressure, tem-
perature as well as volume fraction for the 2-dimensional case are summarized
in figure 3.11 and are detailed below. For the sake of brevity, only the dis-
cretized form of the boundary conditions is given.

At the liquid inlet, the streamwise velocity profile is prescribed at each time
step t*, and the crosswise velocity component set to zero. The temporally aver-
aged profile corresponds to that of fully developed channel flow given by uc (y)
in equation 3.35, onto which a harmonic and monochromatic (in time) distur-
bance of amplitude g9 and frequency f is superimposed. With this disturbance,
the generation of monochromatic surface waves, as realized in the experimen-
tal investigations, was reproduced. With reference to figure 3.4, the discretized
liquid inlet boundary conditions employed in the context of two-dimensional

simulations and applied to the west face of the corresponding boundary cells
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3.2 Specification of performed numerical simulations

at each time step t* are:

Liquid inlet ul, = ucl,, [1 + eosin(2r £ 1)
xp = —Lg + Al’/2 ’Uiv =0, pf,, = p%:, (337)
Aye/2<yp <00 —Ays/2 | Ty =To, ¢4 =1

Note that, as the west face velocity is given, the Rhie-Chow interpolation does
not have to be employed there for the discretization of the continuity equa-
tion and consequently, no information about the west face pressure derivative
is needed to solve the pressure correction equation. However, the west face
pressure is needed for the solution of the predictor equation and is obtained by
equating it to the pressure at the adjacent cell center. The streamwise velocity
derivatives at the west face, which appear in the viscous terms of the discretized
momentum equations are evaluated through finite difference approximation us-
ing face and center values of the corresponding variable. The same procedure
is applied for the streamwise temperature derivative. The liquid volume flux
through the west face is computed with the prescribed face values of velocity
and volume fraction uw ¢w, which means that ¢, does not need to be specified
at wall boundaries. The above considerations were also applied for all compara-
ble boundaries of the computational domain, for which they will not be further
commented. The boundary conditions at the upper and lower channel walls as
well as those at the wall, bounding the two-phase region, are straightforward
and given by:

Channel upper wall
—Lo+Az/2<ap <0 pu,=uv.=0, 9T/dyl =0 (3.38)
yp = 0o — Aye/2

Channel lower wall

—Lo+Az/2<zp <0 pul=v.=0, TS =Ty (3.39)
yp = Ayr/2

139



3 Numerical simulation using the Volume of Fluid method

‘Wall
Az/2<zp <L—Az/2 pul=2v.=0, TS ="Tky. (3.40)
yp = Ayr/2

Boundary conditions at the respective sections of the gas inlet involve an as-
sumption regarding the gas flow outside the computational domain. The flow
in that region is assumed to be non-viscous and thus satisfies the Bernoulli
equation. By prescribing a far-field static pressure po (under the assumption
of a quiescent atmosphere) the latter then constitutes a relation between ve-
locity magnitude and static pressure at the boundary. In addition, the flow is
prescribed to be normal to the considered boundary. This yields the following
boundary conditions:

1

whe = (200c/ s — 20/ pc) ©
Normal gas inlet U‘l"{ =0, pw = pp U 20
yp > do + Ayr/2 Ti=To, »w=0 341
yp < H — Aye/2 S (34D
o= A2 wo=ib =0 )

Pw = Poo, T =To puyw <0

¢y =0

1
uh =0, vi = (2peo/ps—2h/0s) " | s g

Parallel gas inlet Ph=ph, Ti=Ty, ¢.=0
Az/2 <zp <L — Az/2
o= H = Ay W0, v =vh, ph=pe

i i vl <0
T, =To, ¢n=0

(3.42)
In the above definitions, a distinction was made depending on the direction of
the gas flow through the respective inlet boundaries. For the case of inflow, the
face pressure is extrapolated from within the domain, setting it to the pressure
value at the adjacent cell center while for the case of outflow the normal velocity
component is extrapolated in this manner and the face pressure set to the far-

field pressure poo.
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3.2 Specification of performed numerical simulations

Finally, the boundary conditions at the fluid outlet are as follows:

. ) ) ; ul >0
Tc =Tp, @e=p T
ue =up, vi=vp, To=Tp
Pt = oo — (ul +vi?) 5L/2
i 1 npf? >0
Pe = i
0 ¢p <0

Up =Up, Ve=Vp, Pb=DPoo }
Fluid outlet

xp =L — Az/2

Ayi/2 <yp < H — Aye/2 ug <0

(3.43)
Here, as for the gas inlet boundaries, a distinction is made depending on the
direction of the flow through the boundary. Specifically, the volume fraction
in case of backflow is prescribed depending on the corresponding value at the
adjacent cell center. This option is not included in the standard formulation of
the FLUENT code and was added in the form of a so called user defined func-
tion. It was found that, although its implementation is fairly straightforward,
the phase-specific prescription of the backflow volume fraction was essential.
Indeed, as will be shown in later chapters, the performed simulations display
a substantial region of backflow in the capillary wave region (which is exactly
the phenomenon under consideration in this thesis), which in some cases ex-
tends over the entire film thickness. In such cases the total volume flux over
the outlet boundary becomes negative (when a capillary wave reaches the fluid
outlet) and, in the absence of a phase-specific accounting of backflow (in par-
ticular in terms of the volume fraction), a single-phase flow would re-enter the
computational domain over the entire height of the outlet boundary, causing

an unphysical phase distribution.

3-dimensional simulation

Initial conditions bear a more significant influence on the 3-dimensional simu-
lation, since, most importantly, they define the volume of liquid contained in
the computational domain. Due to the periodic boundary condition in stream-
wise direction and the symmetric conditions in spanwise direction this volume

remains constant over the course of the non-steady numerical solution. Conse-
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3 Numerical simulation using the Volume of Fluid method

quently, the initial liquid volume Vo defines the Reynolds number value of the
considered simulation case. This value can be obtained by considering the film
thickness of a smooth liquid film of the same volume entirely contained in the
computational domain. Then, using the relation for the film thickness of the

primary flow and with reference to figure 3.7, the Reynolds number is given by:

51?\)] gz ‘/1 0 7f
Re = %ny SNy = WL’H’ Vio = / /5(x,z,t = 0) dzdz. (3.44)
-W —L

For the initial film thickness distribution 6° (2,z), a biharmonic (in x- and
z-direction) spatial variation was imposed, with both the streamwise and span-
wise wavelengths equaling the corresponding domain dimensions, i.e. Ay = L
and A, = W:

6% (2,2) = dwu (1 4 €5 cos (2w x/A,) + €§ cos (2m z/A)) . (3.45)

The relative amplitudes of the streamwise and spanwise disturbances are des-
ignated with e and e§ respectively. For the performed 3-dimensional simu-
lation both amplitudes were set equal, i.e. ef=e5=co. Based on this phase
distribution, the remaining initial conditions in terms of a continuum physical

description are:

0 y > 6° (x,2)
R <
n \g0 " 2g0z) YS90 @2) (3.46)

v(zyzt =0) =w(zyzt=0)=0, p(zyzt=0)=pe.
Here, a locally semi-parabolic streamwise velocity profile was prescribed in
the liquid phase, using the relation for developed film flow and the local film
thickness 6° (2,z). Thus, the discretized initial conditions are given by:

yp > 67 (3.47)

+Ayf u%zvg:wg:()
w2 | ph=pee, @b =0
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Figure 3.12: Boundary conditions for the numerical solution of the momen-
tum (predictor), pressure correction, energy and volume fraction
equations in the context of the 3-dimensional simulation on the
computational domain pictured in figure 3.7.

0 9z 502' Y 1 y2
A up = VIPYZP[ - 2 i :|
yp S 5O|mp zZp - ny ' 6O|IP*ZP ’ 602|IP’ZP (348)
, 0 9
vp=wp =0, Pp=DPos, ¢p=1
o _gz502|z 2 i
> Y Ay up = T 60|yP " ‘5°2|yP
yp zp, 2p zp, zp P EP
: T | (3.49)
yp < 8°| LBy ) v =wp =0, pp=pe
b O 0
zp, zp 2 pp = 0.5 — (yP -9 |IP:ZP) /Ay

Boundary conditions for the 3-dimensional simulation are summarized in fig-

ure 3.12 and specified below. At the fluid inlet and outlet boundaries, which are
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3 Numerical simulation using the Volume of Fluid method

linked through a condition of streamwise periodicity, face values of respective

variables are prescribed to match, yielding the following discretized boundary

conditions:
w .
Fluid inlet/outlet ep=L—-Az/2 |rp=Az/2
i i
Ayf/2 S yp S H — Ayc/2 Y zp=L—Az/2 = w zp=Azx/2 (350)
zp < (W —Az)/2 w? = w
2p > (7W+ AZ)/2 ‘ rzp=L—Ax/2 ‘ rp=Ax/2

e Pw
zp=L—Azx/2 zp=Azx/2

At the spanwise boundaries of the domain, which are planes of symmetry, face
values are equated to corresponding values at adjacent cell centers, leading all

normal derivatives to vanish, and the normal velocity component is set to zero:

i i i i
Uy = Up, Vg = Vp
1_0 i 1
wy =Y, Py =Pp
i i i i
Up = uUp, Up =Vp

wy, =0, py,=pp

Symmetry planes
Az/2 <zp < L-—Az/2
Aye/2 <yp < H — Aye/2

}Zp—(WAZ)/2

zp=(—W+Az)/2

(3.51)
Finally, the discretized boundary conditions at the wall and the gas inlet are
similar to their counterparts in the 2-dimensional case. Consequently, boundary

conditions at the wall are given by:

Wall
Az/2<zp < L-—Az/2 u=0l=wi=0 (3.52)
yp = Ay /2 Ps = PP '
(—W+Az)/2<zp < (W —Az)/2
and boundary conditions at the gas inlet by:

Gas inlet Ul = wl =0

Az/2 <zp < L—Az/2 . ) 1
- = (2poo /pe — 2p" 3.53

s, = Gl i)’ 03

(-W+A2)/2< 2p < (W—Az)/2 U Pn=pp, on=0
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3.2 Specification of performed numerical simulations

Case Dim. Re Ka We Fr ¢ (deg) f(1/s) eo (%)
1 2D 15.6 133.6 2.0 1.9 35 15.0 0.024
2 2D 21.4 139.8 1.2 2.2 35 24.0 40
3 2D 214 139.8 1.2 2.2 35 17.7 40
4 2D 21.4 139.8 1.2 2.2 35 11.3 40
5 2D 8.6 509.5 203 o 90 16.0 40
6 2D 10.7  509.5 141 o 90 16.0 40
7 2D 129 509.5 103 o 90 16.0 40
8 2D 15.0  509.5 8.0 o0 90 16.0 40
9 2D 10.7  509.5 141 o 90 20.0 40
10 2D 10.7  509.5 14.1 oo 90 18.0 40
11 3D 59.3 3940.2 6.3 o0 90 - 25

Table 3.1: Parameters quantifying the flow regimes for the performed 2- and
3-dimensional numerical simulations of falling liquid films.

3.2.5 Quantification of simulated cases

This subsection succinctly documents all relevant quantifiable settings for the
falling film simulations performed in this thesis. More specifically, all param-
eters that have been introduced in previous subsections, such as parameters
pertaining to the grid topology and parameters specifying initial and boundary
conditions as well as liquid properties and dimensionless groups are quantified.

This information is presented in tables 3.1 to 3.5.

Values for the characteristic dimensionless groups introduced in section 2.1
as well as other parameters characterizing the simulated film flow regimes are
quantified in table 3.1. According to this, the performed simulations can be at-
tributed to five categories. Case 1 reproduces experimental conditions realized
in an inclined test setup, which will be presented in subsection 4.1.2. For this
case, the inlet disturbance amplitude €9 was chosen such that the wave evolu-
tion from inlet to fully developed state matched experimental observations (see
figure 3.19(b)). On this basis, the spatio-temporal development of the capillary
flow separation phenomenon (which is central to this thesis) from its initiation

to its developed state was elucidated.
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Case 1 (10°°m?/s) o (N/m) p (kg/m?)
1 5.70 0.0220 909.3
2-4 5.21 0.0204 908.5

5-10 2.85 0.0484 1098.3
11 0.89 0.0720 997.1

Table 3.2: Liquid properties for the performed 2- and 3-dimensional numerical
simulations of falling liquid films.

Case 6o (um) Lo (mm) L (mm) H (mm) Hf (mm)
1 635 2 220 2.40 1.20
2 635 2 80 2.40 1.40
3 635 2 80 2.40 1.40
4 676 2 220 1.90 1.60
5 277 10 80 1.30 0.80
6 298 10 80 1.30 0.80
7 317 10 80 1.30 0.80
8 334 10 80 1.30 0.80
9 298 10 80 1.30 0.80
10 298 10 80 1.30 0.80
11 W=20 mm 25 0.91 0.59

Table 3.3: Dimensions of the computational domain for the performed 2- and
3-dimensional numerical simulations of falling liquid films.

The next set of investigations (cases 2-4) aimed to investigate the influence
of wave frequency f on the capillary flow separation. These simulations also
reproduce experimental conditions realized in the inclined test setup, yet eo
was set to a significantly higher value in order to achieve wave development
at an earlier stage and thus reduce the length of the computational domain
and with it the computational burden. Consequently, only the fully developed
state of the flow separation phenomenon was considered. Cases 5-10 reproduce
conditions, which were realized in a vertical optical test setup (see subsection
4.1.1), specifically designed for the measurement of the liquid phase velocity
field. Under these conditions, the effect of the Reynolds number (cases 5-8) and
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Case Az (pm) Ayr (um) Aye (pm) Az (pm) At (ps)
1-10 50 20 40 - 5
11 60 16 32 60 5

Table 3.4: Spatio-temporal discretization for the performed 2- and 3-
dimensional numerical simulations of falling liquid films.

Case ki (W/(mK)) a (J/(kgK)) Pr T (K) To (K)
1 0.12 1540.0 66.5 350 300
8 0.24 2349.9 30.6 350 300

Table 3.5: Thermal liquid properties and boundary conditions for the 2-
dimensional heat transfer simulations.

the excitation frequency (cases 6, 9 and 10) on the fully developed capillary
flow separation was clarified.

The last simulation (case 11) is of 3-dimensional character and reproduces
flow conditions investigated by Park & Nosoko (2003)" experimentally (see
figure 3.7) and by Scheid et al. (2006) using a multiple-equation model. On
this basis, the occurrence of the capillary flow separation under 3-dimensional
wave dynamics was elucidated. In this case, €0 = £ = € and thus quantifies
the relative amplitudes of the initial biharmonic disturbance of the liquid film,
as introduced in subsection 3.2.4. The value of €9 was chosen to be relatively
large in order to reduce the computation time needed to obtain fully developed

waves.

The liquid properties employed for the simulation cases listed in table 3.1 are
summarized in table 3.2. For all 2-dimensional cases, these were obtained from
liquid property measurements for the working liquids employed in the experi-
ments, which will be discussed in chapter 4. For the 3-dimensional case, water
properties were obtained from the literature* and evaluated at a temperature of

T=25°C. For all simulations, the gaseous phase consisted of air, the properties

TSee figure 7(d) there.
*The density was obtained from Nakanishi et al. (1966), dynamic viscosity from
Mazurkiewicz & Tomasik (1990) and surface tension from Vazquez et al. (1995).

147



3 Numerical simulation using the Volume of Fluid method

of which were evaluated at a temperature of 25°C and at the far field static
pressure po=101325 N/m?, i.e. p; = 1.2kg/m?® and vy = 1.5 - 107 m?/s.

Dimensions of the computational domain for the respective simulations are
given in table 3.3. The latter were chosen based on experimental data in order
to ensure that full development of surface waves took place within the length of
the computational domain and the height of the finely resolved section of the
grid for all cases. For the 3-dimensional simulation, the length and width of the
domain were set to the streamwise and spanwise wavelengths A;,=25 mm and
A.=20 mm, which were obtained from the previously mentioned publication of
Park & Nosoko (2003).

Table 3.4 lists the spatial and temporal discretization increments for the 11
simulation cases. For all 2-dimensional simulations, the same values for Az,
Ay and Ay. were employed, as the length and time scales of the capillary flow
separation did not vary significantly over the investigated parameter space. The
adequacy of the employed spatio-temporal discretization will be demonstrated

in subsection 3.3 by way of a grid dependence analysis.

In order to investigate the influence of the capillary flow separation on scalar
transfer, the simulation of heat transfer from the wall to the liquid film was
additionally simulated for cases 1 and 8. No temperature dependence of liquid
properties was considered so that the solution of the Navier-Stokes equations
remained uncoupled from the solution of the energy equation. Additional pa-
rameters specifying heat transfer conditions, such as thermal liquid properties
and boundary conditions are given in table 3.5. For the gaseous phase, the ther-
mal fluid properties k;—0.024 W/mK and ¢, —=1006 J/kgK were employed.

3.3 Consistency tests

In order to establish the soundness of data obtained from the numerical sim-
ulations specified in subsection 3.2.5 a series of consistency tests centered on
various known weak points of the employed numerical methodology will be

presented in this section. The tests were conducted for two of the simulation
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Case 1 Case 8
coarse reference fine | coarse reference fine
Az (pm) 100 50 25 100 50 25
Ays (pm) 40 20 10 40 20 10
Aye (um) 80 40 20 80 40 20
At (us) 10 5 2.5 10 5 2.5
L (mm) 60 60 60 160 160 160

Table 3.6: Spatio-temporal discretization for the grid dependence analysis of
cases 1 and 8. The relative inlet perturbation eo was set to 40% for
all variants.

cases listed in table 3.1, namely cases 1 and 8, which are representative of
the two main groups of 2-dimensional simulations, representing inclined and
vertical flow conditions respectively. First, a grid dependence analysis will be
performed, showing the adequacy of the chosen spatio-temporal discretization.
Next, the significance of spurious currents, appearing at the interface due to
numerical errors in the representation of tensile forces, will be investigated on
First, the

simulation of a static bubble, which allows for the direct quantification of the

the basis of two test cases generally employed in the literature.

spurious velocity magnitude and second, the simulation of a horizontal cap-
illary wave for which an analytical solution exists, and which reproduces the
conditions encountered in the capillary wave region of falling liquid films quite
closely. Then, the influence of the fluid outlet boundary condition on upstream
flow dynamics will be investigated in order to assess if its, more or less arbi-
trary, character significantly distorts results. Finally, simulation data for all
cases will be compared to own experimental data (in the 3-dimensional case,
the data of Park & Nosoko (2003) will be employed).

3.3.1 Grid dependence analysis

Table 3.6 summarizes the spatio-temporal discretization increments employed
for the grid dependence analysis of simulation cases 1 and 8. For both cases,

three different discretization variants were investigated. The finally employed
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discretization (or reference discretization), a coarser variant, with increments
twice as large as for the reference case, and a finer variant, with increments
half as large as for the reference case. Results are illustrated in figures 3.13
(case 1) and 3.14 (case 8).

As mentioned in subsection 3.2.5, numerical results from simulation case
1 will be used in chapter 5 to investigate the spatio-temporal evolution of
the capillary flow separation phenomenon. Consequently, the grid dependence
analysis for this case was performed in the developing region, while using a
short grid and a large perturbation amplitude £0=40% to reduce computational
burden. Accordingly, figure 3.13(a) depicts film thickness distributions for the
3 resolution variants evaluated at the same time ¢t—0.193750 s at a position
within the developing region of surface waves. With the exception of a small
translational shift, the wave topology for the reference and fine variants is in
good agreement both in the wave hump and the capillary wave region. This
is also the case for the liquid phase streamline pattern at the first capillary
minimum, which shows the Capillary Separation Eddy or CSE at the center of
investigations in this thesis (see chapter 5). Meanwhile, the size of the CSE is
significantly underestimated by the coarse resolution variant.

Figure 3.14 depicts results of the grid dependence analysis for case 8. Before
discussing these, a few preliminary remarks are in order. First, as documented
in table 3.6, simulations for the different resolution variants were performed
on a relatively long grid (i.e. L=160 mm). This was necessary due to the fact
that, for the fine resolution variant, surface waves did not attain their developed
state within the domain length specified for case 8 in table 3.3 (i.e. L=80 mm).
Further, due to the use of a longer grid, respective simulations had to be per-
formed over a longer time span in order to ensure independence from the initial
condition. This in turn led to a larger shift (between the respective resolution
variants) in the streamwise position of the wave designated for comparison.
Consequently, in order to facilitate the plotting of film thickness distributions
in one graph, respective simulations were conducted until the considered wave
reached a fixed streamwise position. Numerical data depicted in figure 3.14

are thus associated with different time points for the coarse (t=0.674500 s),
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Figure 3.13: Grid dependence analysis for case 1 (see table 3.6).
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reference (t=0.676000 s) and fine (¢=0.657925 s) resolution variant respectively.
In terms of the film thickness distribution, subfigure 3.14(a) exhibits good

agreement between the different resolution variants. Meanwhile, streamline
patterns in subfigures 3.13(b) to 3.13(d) show that the coarse variant, as op-
posed to the other variants, does not resolve the shape of the CSE sufficiently,
while a small difference in CSE size is discernible between the reference and
fine resolution variant. Finally, as will become evident later, the size of the
CSE predicted by simulation case 8 using the settings in table 3.3 (see sub-
figure 5.5(a) in subsection 5.1.2) lies between that of subfigures 3.14(c) and
3.13(d). This is to be attributed to the fact that surface waves computed on
the longer computational domain developed slight streamwise oscillations of
wave topology, resulting from the secondary instability discussed in subsection
2.2.2, which did not occur in the simulation on the shorter grid. Nonetheless,
figures 3.14(c), 3.13(d) and 5.5(a) do not exhibit significant differences.

In summary, it can thus be concluded that the employed discretization incre-
ments for the 2-dimensional simulation cases specified in table 3.4 are adequate

to resolve the flow separation phenomenon accurately.

3.3.2 Interfacial spurious currents

A well documented (see e.g. Lafaurie et al. (1994)) problem of the combined
VOF-CSF method, stemming from the numerical discretization of equation 3.25
(which formulates the volume specific total tensile force F.}), is the appear-
ance of small scale erroneous or parasitic velocities, also designated as spurious
currents, near the interface. As pointed out by Jamet et al. (2002) the main
complication in equation 3.25 is the fact that the volume fraction ¢ needs to
be differentiated twice, which in a numerical implementation (using central
difference discretization) introduces a large truncation error. Many attempts
have been directed at reducing the magnitude of such spurious currents us-
ing different methods (see e.g. Jamet et al. (2002) and Renardy & Renardy
(2002)) without providing a final cure. From a physical standpoint, the spuri-
ous currents arise from the unsmooth representation of the liquid-gas interface
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3 Numerical simulation using the Volume of Fluid method

due to the spatial discretization imposed by the numerical approach. This un-
smoothness (coupled with the previously mentioned truncation errors) induces
an oscillating normal tensile force which in turn leads to an oscillating pressure

field. This pressure oscillation then drives the spurious currents.

In order to assess the effect of spurious currents on the simulations per-
formed in this thesis, two well known test cases were computed using the liquid
properties and discretization increments employed for simulation cases 1 and
8 respectively (see tables 3.2 and 3.4). The first test case represents a liquid
droplet in a quiescent gaseous atmosphere in the absence of gravity and external
flow. The exact solution for the velocity field in this case is trivial i.e. u—=v=0.
Thus, computed velocity components offer a direct estimator of the spurious
currents. The second case represents the decay of a harmonic capillary wave
in a horizontal liquid layer as previously illustrated in figure 2.2. An analytical
solution for the temporal evolution of the film thickness was derived for this
situation by Prosperetti (1981). This test case represents the conditions in the

capillary wave region of falling liquid films quite closely.

Static drop The static drop simulations were performed on a quadratic do-

main with edge length 1.3 mm

. On the four edges of the domain, the same
boundary condition as for the gas inlet in the falling film simulations (cases 1
and 8) was imposed. Although the static drop problem is steady by definition
the same non-steady solution procedure as for the falling film simulations was
employed. Results showed that, after a period with oscillations induced by
spurious currents, the computed solutions attained a steady state. As initial
condition, a zero velocity field and a phase-wise constant pressure field, satisfy-
ing Laplace’s law for the interfacial pressure jump, was prescribed. The initial
diameter of the drop was set to the value of the corresponding primary film
flow’s film thickness dnu. Velocity vectors in the liquid drop for the respective
test cases, pertaining to cases 1 and 8, are pictured in figure 3.15. The refer-

ence vector in the upper left corner of the subfigures represents the respective

T Accordingly, quadratic computational cells of edge length Ay; were employed for static
drop simulations.
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Figure 3.15: Static drop test case simulations using liquid properties and dis-
cretization increments for cases 1 and 8 (see tables 3.2 and 3.4).
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Figure 3.16: Instantaneous interfacial streamwise velocity distribution for cases
1 and 8 (see table 3.1), showing small oscillations due to spurious
currents.

maximal velocity magnitude encountered inside the drop. For case 1 this value
(|9>- =0.0075 m/s) is much smaller than for case 8 (|7]?>: =0.025 m/s), which
is due to both the higher surface tension and smaller drop diameter in the lat-
ter case. Indeed, according to equation 3.25, surface tension scales the effect of
truncation error, while the drop diameter determines the relative spatial reso-
lution for a given grid. In both cases, the magnitude of spurious velocities is
significantly smaller than the mean streamwise velocity for the corresponding
primary film flow i.e. uny=0.14 m/s for case 1 and un,—0.13 m/s for case 8.
For case 1 the ratio is approximately one order of magnitude. Since the dy-
namical analysis of the capillary flow separation will be introduced on the basis

of this case it is noteworthy that spurious currents play no appreciable role.
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In order to assess the significance of the spurious currents for the correspond-
ing falling film simulations in greater detail, interfacial streamwise velocity dis-
tributions for cases 1 and 8 are pictured in figure 3.16. In these distributions,
the effect of spurious currents is evidenced by small scale oscillations super-
imposed on the wave induced modulation of interfacial velocity. Notably, the
oscillations are mostly localized at the top of the wave back (near the wave
crest) and absent from the region of the first capillary minimum, which is of
most interest in this thesis. Further, their amplitude is negligible compared to

the magnitude of local streamwise velocity.

Horizontal capillary wave The horizontal capillary wave test case (see figure
2.2) represents conditions in the capillary wave region of falling liquid films
more closely than the static drop test case and enables an estimate of the
effect of spurious currents on wave dynamics. Two such simulations were per-
formed, using liquid properties and discretization increments for cases 1 and 8
as specified in tables 3.2 and 3.4. Computations were performed on a square
2-dimensional domain of edge length 2.6 mm, which approximately corresponds
to the wavelength of the first capillary wave for cases 1 and 8 (see figures 3.20(a)
and 3.21(d)). Conditions of symmetry were applied to all boundaries of the
domain, while the initial interface distribution was prescribed with a cosine
function centered (in both directions) in the domain, using the domain width
as wavelength. The initial velocity components were set to zero in the entire
domain while the initial pressure was constant in the gaseous phase, with the
local interfacial pressure jump satisfying Laplace’s law and no pressure vari-
ation in vertical direction. Using these settings, the temporal evolution of a

single capillary wave was computed.

Figures 3.17(a) and 3.17(b) show liquid phase velocity vector fields at a given
point in time for the two test cases pertaining to cases 1 and 8 respectively.
These clearly show the capillary-induced flow from the wave crest to the wave
trough previously indicated in figure 2.2. Figures 3.18(a) and 3.18(b) depict
corresponding film thickness time traces evaluated at the center of the com-

putational domain. For comparison, film thickness time traces obtained from
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Figure 3.17: Horizontal capillary wave test case simulations corresponding to

cases 1 and 8 (see tables 3.2 and 3.4).
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Figure 3.18: Comparison of numerical and analytical film thickness time traces

for the horizontal capillary wave test cases, pertaining to cases 1
and 8 (see tables 3.2 and 3.4).
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3 Numerical simulation using the Volume of Fluid method

the analytical solution of Prosperetti (1981)" are also plotted. Results show
good agreement between the numerical and analytical solutions, leading to the

conclusion that the spurious currents do not effect capillary wave dynamics.

In summary, the following conclusions with respect to spurious currents can
be drawn from the two test cases. First, the magnitude of spurious velocities is
significantly smaller than the characteristic streamwise velocity of the respec-
tive film flows. Second, their effect on interfacial velocity is absent in the region
of the first capillary wave. And finally, their effect on capillary wave dynamics
is negligible. In addition, the capillary flow separation, as will be established
in subsection 5.1.1, originates at the bounding wall, where spurious currents

have no effect.

3.3.3 Outlet boundary condition

As the outlet boundary of the computational domain for the performed 2-
dimensional simulations truncates the falling liquid film at an arbitrary down-
stream position, no explicit information about the flow variables is obtainable
there, necessitating the definition of a more or less arbitrary boundary condi-
tion (see section 3.2.4). Due to the arbitrary character of this condition, it is
conceivable that the latter may influence the upstream evolution of the falling
liquid film in an unrealistic manner. In order to disprove this hypothesis, film
thickness distributions for all 2-dimensional cases are plotted in figures 3.19 to
3.22 over the entire length of the computational domain. These distributions
show that no significant change in wave topology takes place as fully devel-
oped waves approach and exit the outlet boundary. This proves the absence
of a strong and localized upstream effect by the outlet condition. However, it
does not exclude a smooth effect distributed over the entire upstream region,
and influencing the amplitude and shape of developed waves. The latter hy-
pothesis can be assessed by comparing simulated film thickness data for fully

developed waves with corresponding experimental data, which will be done in

TProsperettfs analytical solution is formulated in the complex variable domain and was
transformed numerically to the time domain with the method of de Hoog et al. (1982)
using the program written by Hollenbeck (1998).
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Figure 3.19: Streamwise wave evolution for case 1: Re=15.6, f=15.0 Hz.

the next and last subsection. Anticipating the result of this comparison, it can
be stated that in the context of this thesis no special treatment of the outlet
boundary condition, as performed by Malamataris & Papanastasiou (1991),
Papanastasiou et al. (1992) and Stuhltriager et al. (1993), was necessary.

3.3.4 Comparison with experimental data

The most straightforward way to assess the accuracy of the performed numer-
ical simulations is through direct comparison with experimental data. Conse-
quently, figures 3.23 to 3.26 compare simulated film thickness time traces (eval-

uated in the fully developed region of the flow) for all 2-dimensional simulations
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Figure 3.20: Computed instantaneous film thickness distributions for cases 1-4.
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Figure 3.21: Computed instantaneous film thickness distributions for cases 5-8.
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(b) Case 10: Re=10.7, f=18.0 Hz

Figure 3.22: Computed instantaneous film thickness distributions for cases 9
and 10.

(cases 1-10) with the author’s own corresponding experimental data, which will
be presented and discussed in greater detail in chapter 5. For all cases, the
agreement with respect to maximal film thickness and capillary wave topology
is good. Further, for case 1, figure 3.19(b) shows that the streamwise evolution
of the wave topology from the inlet to the fully developed state is predicted

accurately by the numerical simulation.

In addition to the comparison of wave topology, figures 3.27 and 3.28 com-
pare numerical and experimental’ time traces of the liquid phase streamwise
velocity component evaluated at a fixed point in the fully developed region of
the flow. Since experimental velocity data were obtainable only in the specifi-

cally designed vertical optical test setup (see subsection 4.1.1), comparison was

fObtained by the author using LDV (see chapter 4).
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Figure 3.23: Comparison of experimental (circles) and numerical (lines) film
thickness time traces in the fully developed region of the flow (nu-
merical data evaluated at =200 mm): case 1.

made only for cases 5-10. Results show that agreement between simulation
and experiment is good for all cases over the entire period length of a surface
wave. Importantly, the modulation of streamwise velocity in the capillary wave
region is captured accurately by the simulations as evidenced by the accurate

prediction of the number and amplitude of capillary extrema.

Finally, figure 3.29 compares the developed wave topology obtained from the
3-dimensional simulation (case 11) with a shadowgraph recording produced by
Park & Nosoko (2003) for the same operating conditions. Agreement between
the respective data, as far as this qualitative comparison can indicate, is good.

In summary, the elaborations of this chapter have introduced the numerical
methodology employed in the context of this thesis and have established its ac-
curacy in terms of the numerical simulation of falling liquid films with specific
attention to the capillary wave region, preceding large wave humps. Generic
consistency tests as well as detailed direct comparison with experimental data
lead to the conclusion that a physically sound representation of the real film
dynamics is provided by the numerical simulation, thus warranting a numer-

ically based investigation into the dynamics of capillary flow separation.
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wise velocity time traces in the fully developed region of the flow
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Figure 3.29: Comparison of numerical and experimental wave topology for the
3-dimensional simulation: case 11 (see table 3.1).
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4 Experimental

Having presented the numerical methodology in chapter 3, this chapter pro-
vides a description of experiments performed in the context of this thesis, both
in terms of the test setups (section 4.1) employed to realize investigated exper-
imental conditions and in terms of applied measurement techniques (section
4.2). Two test setups, yielding different falling film flow conditions, were em-
ployed:

1. A vertical cylindrical test setup, henceforth designated as optical test
setup, which was specifically designed for liquid phase velocity measure-
ments, using optical techniques, namely Laser Doppler Velocimetry (LDV)
and Particle Image Velocimetry (PIV), as well as simultaneous film thick-
ness measurements, using a Confocal Chromatic Imaging (CCI) tech-

nique.

2. An inclined plane test setup, henceforth designated as inclined test setup,
allowing for film thickness measurements with the CCI technique as well
as velocity measurements with LDV, although the latter lack crosswise
spatial resolution and are included only in order to demonstrate the res-

olution improvement achieved in the optical test setup.

The goal of the performed experiments was twofold. On the one hand, exper-
imental data served to assess the soundness of numerical data (see subsection
3.3.4). On the other hand, in the form of velocity measurements, they served
to clearly prove the existence of capillary flow separation in falling liquid films,
showing the occurrence of backflow (by way of LDV) in the capillary wave re-
gion and elucidating the topology of the associated Capillary Separation Eddy
or CSE (by way of PIV).
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Figure 4.1: Isometric view of the optical test setup including measurement in-
struments. 1: LDV-probe; 2: CMOS camera and microscopic lens
assembly (PIV); 3: light sheet optics (PIV); 4: CCI-probe; 5: glass
body; 6: middle reservoir including film inlet; 7: lower reservoir.

4.1 Test setups

4.1.1 Optical test setup

In order to access the film cross section with optical velocity and film thickness
measurement techniques, a specifically designed optical test setup (see figures
4.1 and 4.2) was employed. The principal element of the test setup consists of
an elongated cuboid quartz glass body that contains a cylindrical bore of 48.9

mm diameter (the glass body was machined by Aachener Quarz-Glas Tech-
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Figure 4.2: Photograph of the optical test setup.

nologie Heinrich, using the material HSQ300 produced by Heraeus Quarzglas
GmbH & Co. KG) creating an inner surface along which the liquid film de-
velops (see figure 4.3). This configuration provides optical access to the film
from all four faces of the glass body. Figure 4.2 depicts a photograph of the
glass body, showing the arrangement of velocity and film thickness measuring
devices. Wave fronts developing on the liquid film as it flows down the inside

of the glass body are also discernible.

To enable the distortion-free imaging of the film cross section, the refractive
indices of working liquid and quartz glass were matched. This was achieved by
the careful choice of an appropriate working liquid. Refractive Indexr Matching
(RIM) is commonly employed for optical measurements in fluid dynamics and
a comprehensive review of optically matched systems, consisting of a glass ma-
terial and a working liquid, can be found in Budwig (1994) and Albrecht et al.
(2003). In general, two RIM approaches are possible. When the working liquid
is a pure substance the adaptation of refractive indices can be achieved by reg-
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Solute  Mass fraction T (°C) p (kg/m®) o (N/m) 1 (10~°m?/s)

DMSO 83.11% 25.2 1098.3 0.0484 2.85
Glycerol 90.98% 32.6 1230.7 0.0635 93.77

Table 4.1: Liquid properties of the two refractively matched aqueous solutions
employed as working liquids in the optical test setup. All measure-
ments where performed at RIM (Refractive Index Matching) tem-
perature with liquid samples containing the tracer particles used for
velocity measurements.

ulating the temperature. This is possible because the refractive index of most
glass materials increases with temperature as opposed to most liquids which
exhibit a refractive index decreasing with temperature. On the other hand,
the use of mixtures consisting of two or more liquids enables RIM through
the regulation of the mixture composition. In the context of this thesis these
two approaches were combined. The employed working liquid consists of an
aqueous solution of dimethylsulfoxide (DMSO) whereby the composition of the
solution is chosen such that RIM approximately takes place at room tempera-
ture. The precise adaptation of the refractive index is then achieved through
the regulation of the working temperature. Adomeit & Renz (2000) previously
used pure DMSO for measurements in falling liquid films in a similar opti-
cally matched setup. However, they employed a cylindrical glass tube (see also
Karimi & Kawaji (1998)) as opposed to the glass body shown in figures 4.1
and 4.3, creating the need for further optical measures to enable distortion free

imaging!.

In addition to the DMSO-water solution which was used to investigate the
CSE phenomenon, an aqueous glycerol solution was employed. Using this work-
ing liquid (due to its large kinematic viscosity) conditions of smooth developed
film flow could be achieved in the optical test setup at Re ~ 1. By measur-
ing the crosswise velocity profile under these conditions, the LDV measure-

ment technique was validated on the basis of the analytical solution for smooth

TNonetheless, the work of Adomeit & Renz (2000) was the inspiration for the RIM concept
developed in this thesis.
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Figure 4.3: Enlarged view of the falling liquid film flowing down the inside
of the glass body, showing the thin light sheet used for PIV and
the LDV-ellipsoid (objects are individually scaled to illustrate geo-
metrical conditions and size relations between different objects are
incorrect).

developed film flow (see equation 2.13).

Table 4.1 displays the properties of the two working liquids as well as the
respective solution compositions and the RIM temperature, which was deter-
mined with an in situ refraction experiment using the laser beam employed
for LDV measurements. In addition, the refractive index of the quartz glass
as well as that of the two working liquids was measured ex situ as a func-
tion of temperature with an Abbe refractometer (ATAGO CO., LTD., model
DR-M2) at wavelengths A = 514.5 nm and A = 488.0 nm (laser wavelengths
employed for LDV and PIV in this thesis are A = 514.5 nm and A = 511.6
nm respectively). Resulting data are plotted in figure 4.4, where the points
of intersection of different curves (for working liquid and glass respectively)

define RIM temperatures obtained from these ex situ measurements. Further,
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Figure 4.4: Temperature dependence of the refractive index for the quartz glass
body and the two aqueous solutions specified in table 4.1 at wave-
lengths A = 488 nm and A = 514.5 nm.

RIM temperatures determined from the in situ experiments (as given in table
4.1) are also highlighted. A slight deviation between ex situ and in situ RIM
temperatures is evident, which can be attributed to errors in the respective
temperature and refractive index measurements. Meanwhile, the magnitude of
this temperature deviation corresponds to only a very small deviation between

refractive indices of approximately 3-10"* and is thus not significant.

The optical test setup displayed in figure 4.1 is integrated into a standard
closed liquid circuit. The working liquid is pumped from the lower reservoir
(item 7 in figure 4.1) to an upper buffer reservoir (not pictured in figure 4.1)
situated above the optical test setup by a gear pump. This reservoir is equipped
with an overflow allowing for the damping of flow rate oscillations and decouples
the pressurized part of the circuit from the falling film section as the liquid leav-
ing the reservoir is accelerated only by gravity. In order to regulate the working
liquid temperature, a heat exchanger is integrated into the circuit between the
lower and upper reservoirs. The liquid in the secondary circuit of the heat

exchanger was thermally regulated with a laboratory thermostat, limiting tem-
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Figure 4.5: Close-up view of liquid inlet conditions in the optical test setup.

perature variations to £0.01K. The volume flow rate of the working liquid was
measured with a positive displacement flow meter between the heat exchanger
and the upper reservoir. For all experiments, the ambient temperature of the
laboratory was conditioned to 7' = 25 °C. The flow of working liquid leaving
the upper reservoir is divided and radially fed to the middle reservoir shown in
figure 4.1 through two separate entry ports. Upon entering the middle reser-
voir, the liquid impinges on a cylindrical overflow further dissipatively damping
flow oscillations. The inner surface of the overflow is rounded in order to avoid
flow separation as the working liquid enters the glass body. The actual inlet
for the falling liquid film consists of an annulus created between the glass body
and a cylindrical insert (see figure 4.5). The thickness §p of the annular inlet
channel could be varied incrementally through the choice of the insert diameter.

Further, the radial position of the insert as well as the orientation of its axis
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Solute Re Ka We f(1/s) 6o (pm) Case
DMSO 86 509.5 20.3 16.0 250 5
DMSO 10.7 509.5 14.1 16.0 340 6
DMSO 129 509.5 10.3 16.0 340 7
DMSO 15.0 509.5 8.0 16.0 340 8
DMSO 10.7 509.5 14.1 24.0 340 -
DMSO 10.7 509.5 14.1 20.0 340 9
DMSO 10.7 509.5 14.1 18.0 340 10
Glycerol 1.1 5.6 6.9 - 1365 -

Table 4.2: Flow regimes investigated in the optical test setup. Numbers in the
last column pertain to corresponding simulation cases (see table 3.1).

could be precisely set with micrometric set-screws (see figure 4.5). Using these
set-screws, the cylindrical insert was oriented concentrically to the glass body
bore before each measurement series in dry state. For this, the film thickness
measurement technique described in the following subsection was employed to
evaluate the annulus thickness variation in the axial direction. In a second
step, the radial insert orientation was optimized by visually evaluating the az-
imuthal uniformity of wave fronts once the film flow had developed. Finally,
before each measurement series, it was verified that the amplitude of measured
film thickness time traces for the respective lowest frequency waves did not
deviate by more than 3% from values predicted by the empirical correlation of
Nosoko et al. (1996). During experiments, the temperature of the liquid in the
middle reservoir was measured with a resistive thermometer (Pt 100) with an
error of £0.1K. The air volume above the liquid level developing in the middle
reservoir was connected to an external loudspeaker-driven resonator, enabling

the monochromatic excitation of surface waves in the film flow.

Table 4.2 summarizes the main' operating conditions under which measure-
ments were performed in the optical test setup in the context of this thesis.
Most of these conditions were also investigated numerically and, accordingly,

the number in the last column of table 4.2 refers to the corresponding simula-

TSome measurements were performed under additional operating conditions but do not
play a central role and are therefore not explicitly quantified here.
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Figure 4.6: Photograph of 2-dimensional wave fronts in the optical test setup:
Re=12.9, Ka=509.5, f=24 Hz.

tion case in table 3.1.

Figures 4.6 and 4.7 show photographs of the wavy liquid film flow in the
optical setup for two representative cases listed in table 4.2. The first case is
characterized by surface waves of short wavelength (caused by a relatively large
excitation frequency of f=24 Hz). The corresponding photograph in figure 4.6
shows that surface waves travel at a constant distance from one another without
interacting over a large portion of the glass body. The second case is charac-
terized by surface waves of larger wavelength (caused by a smaller excitation
frequency of f=18 Hz), developing precursory capillary waves, as is slightly
discernible in the close-up photograph presented in figure 4.7. This picture
also shows that wave fronts are 2-dimensional over the entire width of one of
the glass body’s faces. It must be stated that slight azimuthal modulations of
wave fronts over the rest of the cylindrical bore’s circumference were observed

during experiments. However, for all investigated cases, wave fronts traveled as
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Figure 4.7: Photograph of 2-dimensional wave fronts in the optical test setup:
Re=12.9, Ka—509.5, f=18 Hz.

simply connected rings well separated from one another and their amplitude at
the measurement position was checked with the empirical correlation of Nosoko
et al. (1996).

In order to gain a quantitative overview of wave kinematics realized in the
optical test setup, figures 4.10 to 4.12 show film thickness time traces of 2-
dimensional externally excited surface waves measured with the CCI technique
(which will be introduced in section 4.2) over a range of Reynolds number and
wave frequency values. Maximal and minimal wave frequency values delimit
the range of flow regimes allowing the external imposition of 2-dimensional
monochromatic surface waves (all cases of wavy film flow listed in table 4.2 lie
within this range). Transgressing these extremal values led to the occurrence
of an irregular wave pattern, resembling the one obtained without external

forcing.

All measurements in the optical test setup were performed at a streamwise
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Figure 4.8: Film thickness time traces measured in the optical test setup at
streamwise positions =120 mm and =121 mm (measured from
the bottom of the cylindrical insert): Re=6.8, Ka=509.5, f=16 Hz.

position of x = 120 mm (measured from the bottom of the cylindrical insert).
Preliminary experiments showed that, for all investigated flow conditions, sur-
face waves were developed at that position. Experimental evidence to that
extent is displayed in figure 4.8, where film thickness time traces at two differ-
ent streamwise positions (z=120 mm and =121 mm) are plotted’ for the wavy
regime with lowest wave growth rate. The latter is obtained at the smallest
Reynolds number (i.e. Re=6.8) and wave frequency (i.e. f=16 Hz) value, as can
be deduced from figure 4.9, which plots wave growth rate ac; (see equation
2.33) against wave frequency for different Reynolds number values. Graphs
were computed from the approximate solution of the Orr-Sommerfeld equa-
tion according to Anshus & Goren (1966) (see subsection 2.2.2 and figure 2.3
therein).

Film thickness time traces depicted in figures 4.10 to 4.12 cover the range
of investigated flow conditions (see table 4.2). The figures show that both the
Reynolds number and the excitation frequency significantly influence interface
topology. At Re = 15.0 and f = 16 Hz (see figure 4.10(a)) for instance, the
liquid-gas interface is characterized by large wave humps preceded by three
capillary waves. As the frequency is increased to 22 Hz (see figure 4.10(b)) the
amplitude of the large waves decreases while all but one of the capillary waves

are suppressed. These effects are of course well established in the literature

TThe two time traces were superimposed in this representation to facilitate comparison.
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Figure 4.9: Growth rates a.¢; (see equation 2.33) obtained from linear stability
analysis, according to Anshus & Goren (1966) (see subsection 2.2.2),
for wavy regimes realized in the optical test setup: Ka=509.5.

(see Liu et al. (1993) and Nosoko et al. (1996)) and are due to the interaction
of large waves as their separation decreases. The same frequency dependence
as for Re = 15.0 can be observed for lower values of the Reynolds number
(see figures 4.10(c) to 4.11(d) and 4.12), whereby, at high frequencies, the
wave separation is so small that capillary waves are suppressed altogether (see
figures 4.11(a), 4.11(d), 4.12(b) and 4.12(c)). This of course significantly affects
the CSE phenomenon as will be established in section 5.4. The Reynolds
number influence acts contrary to that of the frequency as can be deduced from
figures 4.10(a), 4.10(c), 4.11(b) and 4.12(a). This is due to the fact that wave
separation decreases with frequency yet increases with the Reynolds number
(see e.g. Nosoko et al. (1996)). Another observation resulting from figures 4.10,
4.11 and 4.12 is that the minimal film thickness (observed in the capillary wave
region) is scarcely influenced by the varied quantities.
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Figure 4.10: Film thickness time traces measured in the optical test setup in
the region of developed waves (z=120 mm).
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Figure 4.11: Film thickness time traces measured in the optical test setup in
the region of developed waves (z=120 mm).
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Figure 4.12: Film thickness time traces measured in the optical test setup in
the developed region of the flow (z=120 mm).

4.1.2 Inclined test setup

Figures 4.13 and 4.14 display a sketch and a corresponding photograph of the
inclined test setup. It consists of an acrylic glass plate, inclined at an angle
¢ to the gravitational acceleration vector, on which the liquid develops into a

falling film at the exit of a rectangular inlet channel of width W and channel
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Acrylic glass DMS-T05

ng=1.492 npys=1.399

NIMNALVENEN

Close-up view

Figure 4.13: Sketch of the inclined test setup, including a close-up view of the
measurement position. 1: Reservoir; 2: overflow; 3: inlet channel,
4: acrylic glass plate; 5: LDV-probe; 6: CCl-probe; 7: LDV-
ellipsoid; 8: LDV front lens; 9: CCI front lens.

height do. The liquid is fed to a reservoir upstream of the inlet channel by a
gear pump. A fluctuation Q' of predefined frequency f and small amplitude
is imposed on the mean feeding flow rate 5 by way of a pressure fluctuation
generated with a loud speaker upstream of the reservoir (not pictured). To
avoid direct perturbations at the inlet channel by the impinging liquid jet, en-
tering the reservoir, an obstructing overflow is integrated. As working liquid, a
Dymethylsilozane (DMS) or silicone oil with the designation DMS-T05 (Gelest,
Inc.) was employed. Two sets of experiments, using two different batches of
the liquid (designated as batch 1 and batch 2) were performed. The working
liquid was seeded with titanium dioxide particles acting as tracers for LDV
measurements. The properties of the particle laden liquid (for both batches)

were measured at the working temperature T = 25°C and are listed in table
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Figure 4.14: Photograph of wave fronts in the inclined test setup: Re=15.6,
Ka—=133.6, f=15.0 Hz.

4.3.

Table 4.4 quantifies experimental conditions for film flow regimes realized in
the inclined test setup. Only those regimes, which are of primary concern in the
context of this thesis are specified here (conditions for auxiliary experiments
will be specified where necessary). The first column of table 4.4 specifies the
batch of DMS-T05 employed for the respective measurements, while the number
listed in the last column refers to the corresponding simulation case specified
in table 3.1. For all experiments performed in the inclined test setup, the
inlet channel height was set to the same value i.e. §o=635 pm, as the precise
adjustment of the knife bounding the inlet channel on the upper side was
extremely difficult. To a practically achievable extent, this value corresponds
to the primary film thickness dny= 646 of case 1 and was chosen as a result
of the different priorities of cases 1-4. As mentioned in subsection 3.2.5, case

1 forms the basis for the investigation of the streamwise development of the
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Batch p (kg/m®) o (N/m) u (10°°m?/s) Kk (W/mK) ¢ (J/kgK)

1 909.3 0.022 5.70 0.12 1540

2 908.5 0.0204 5.21 - -

Table 4.3: Liquid properties for the two batches of DMS-T05 (Gelest, Inc.) used
in the inclined test setup. All properties (except ki and ¢, which
were obtained from the manufacturer) were measured at 7=25.0 °C.

batch  Re Ka We Fr ¢ (deg) f(1/s) b (pm) Case
1 156 1336 2.0 1.9 35 15.0 635 1
2 214 1398 12 22 35 24.0 635 2
2 214 1398 12 22 35 17.7 635 3
2 214 1398 12 22 35 11.3 635 4

Table 4.4: Flow regimes investigated in the inclined test setup. Numbers in
the last column pertain to corresponding simulation cases (see table
3.1).

capillary flow separation, whereas for cases 2-4 only the developed state of

the phenomenon is of interest. Consequently, as the inlet channel height has
no influence on developed wave topology, do was chosen in accordance with
case 1. Meanwhile, Alekseenko et al. (1994) showed for smooth film flow that,
for a given inlet channel height, the film thickness tends to dny in streamwise
direction, which also applies to the wavy flow as far as the mean film thickness
is concerned for laminar regimes dominated by viscous and capillary forces
(see e.g. Lel et al. (2005)). Consequently, by setting do = dnu, an unnecessary
streamwise change in the mean film thickness is avoided, whereby the wave
development process can be isolated to some extent. However, it must be
considered that, due to the discontinuous change in boundary conditions at
the inlet to the two-phase region (not considered by Alekseenko et al. (1994)),
a certain streamwise development of the mean flow takes place nonetheless.

The film flow regimes realized in the inclined test setup displayed monochro-
matic 2-dimensional solitary waves preceded by small capillary waves, which

developed from the forced inlet disturbance of frequency f imposed by a loud
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Figure 4.15: Film thickness time traces measured in the inclined test setup in
the region of developed waves (x=215 mm) using batch 2 of DMS-
T05: Ka=139.8.
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speaker (Alekseenko et al. (1994) introduced the term stationary two dimen-
stonal waves to designate the regime in question). These 2-dimensional waves
attained a constant amplitude in the top part of the test setup (see figure
3.19(b)) before secondary instability led to their break-up into 3 dimensional
structures. Figure 4.14 displays a photograph of 2-dimensional surface waves
in the top part of the inclined test setup for flow conditions corresponding to
the first case in table 4.4 (i.e. simulation case 1). From this picture, it can be
discerned that the side-walls of the test section caused a localized distortion of
wave fronts, which, however, remained confined to a small insignificant outer
region over the entire development process of waves. Similar observations were
also reported by Nosoko et al. (1996).

Figure 4.15 illustrates film thickness time traces measured in the inclined test
setup for a range of representative (in terms of the investigations in this thesis)
operating conditions, using batch 2 of DMS-T05. Subfigures 4.15(b) to 4.15(d)
depict time traces for the last three cases in table 4.4 (i.e. simulation cases 2 to
4), while the wave frequency for subfigure 4.15(a) marks the lower bound for
the imposition of externally forced monochromatic waves (incidently, subfig-
ure 4.15(d) represents the corresponding upper frequency bound). Figure 4.15
thus shows the effect of excitation frequency on wave kinematics, confirming
observations in the vertically falling film (see figures 4.10 and 4.11). Indeed, a
decrease in frequency is shown to increase wave amplitude and to cause long
(in time) stretches of unperturbed residual layer. At the same time, capillary
waves increase in number and decrease in wavelength (compare figures 4.15(c)
and 4.15(d)). For the two lowest frequencies (figures 4.15(a) and 4.15(b)) mea-
surement data only indicate the presence of capillary waves, which is due to an
insufficient temporal resolution of the measurement technique. Measurements
were performed at a streamwise position of £=215 mm (measured from the
bottom of the knife, bounding the inlet channel), which lies in the developed
region of the flow for all cases. Experimental proof of this is illustrated in fig-
ures 4.16 and 4.17, which show the streamwise evolution of film thickness time

traces for cases corresponding to the two extremal frequencies.

In addition, these plots show some interesting features. For the lowest fre-
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Figure 4.16: Streamwise evolution of film thickness time traces measured in the
inclined test setup: Re=21.4, Ka=139.8, f=5.0 Hz.
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Figure 4.17: Streamwise evolution of film thickness time traces measured in the
inclined test setup: Re=21.4, Ka=139.8, f=24.0 Hz.
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quency, f=5 Hz, a small wave hump is shown to appear on the residual layer
between two large waves at =95 mm. Further downstream (z—135 mm), this
hump has been caught-up by the succeeding large wave and both are at the
point of merging, causing the maximal film thickness to increase. At the most
downstream positions =175 mm and x=215 mm, the additional wave hump
has disappeared and large waves have attained a constant maximal film thick-
ness. For the highest frequency, f=24 Hz, time series plots in figure 4.17 show
the streamwise evolution of a capillary wave, from a relatively large subsidiary
wave occurring between two large waves (see figure 4.17(a)). Further, a slight
change in the topology of the wave back of large waves is discernible between
positions =135 mm and =215 mm in the form of small amplitude parasitic
waves. At =135 mm wave backs of large waves display one such parasitic
wave, which has disappeared at x=175 mm, before reappearing further down-
stream at =215 mm. This streamwise oscillation of wave topology is a result

of the secondary instability evoked in section 2.2.1.

4.2 Measurement techniques

Three measurement techniques where employed in this thesis, namely Laser
Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV) for velocity
measurements and a distance measuring technique based on Confocal Chro-
matic Imaging (CCI) for film thickness measurements. The principles of these
measurement techniques are well established in the literature (see e.g. Albrecht
et al. (2003), Raffel et al. (2007) and Cohen-Sabban et al. (2001) respectively)
and attention in the following subsections shall be focused merely on their spe-
cific application to the optical test setup pictured in figures 4.1 and 4.2 and the
inclined test setup pictured in figures 4.13 and 4.14.

4.2.1 Confocal Chromatic film thickness measurement

In terms of film thickness measurements in falling liquid films, an excellent

review of different methods employed over the years was compiled recently by

195



4 Experimental

Clark (2002). In this thesis, a distance measuring technique based on Confocal
Chromatic Imaging and developed by Cohen-Sabban et al. (2001) (originally
for surface sensing) was applied for temporally resolved film thickness mea-
surements, basically by measuring both the distance to the liquid-gas interface
and the bounding wall of the film. Using the same measurement device but
a different approach to obtaining film thickness data, Lel et al. (2004) pre-
viously performed measurements in falling liquid films and compared results
to simultaneous film thickness measurements obtained with the Laser Induced
Fluorescence technique. The authors showed good agreement between data
obtained from the two techniques and discussed their respective practical ad-

vantages.

Figure 4.18 depicts two sketches, illustrating the measurement principle of
the CCI technique. According to subfigure 4.18(a), light from a polychromatic
point source passes through a semi-reflecting mirror before being focused by
a biconvex front lens. Due to the lens’ chromatic aberration, light beams of
different wavelength are focused onto different points on the optical axis, creat-
ing a continuum of monochromatic images of the point source. If, as pictured
in subfigure 4.18(b), a reflecting interface is positioned in this continuum of
depth An, light of wavelengths within a selective interval (the size of which
is determined by the resolution of the technique) is reflected toward the front
lens, which would image the interfacial reflection point onto the point source.
However, due to the presence of a semi-reflecting mirror, reflected light is di-
verted into the signal detection unit of the system. There, the spectral intensity
distribution of incoming light is measured with a spectrometer in discretized
(in time and wavelength) form. Subsequently, the wavelength \,,, of maximal
intensity, which is directly linked to the distance Ly, is determined from the
distribution. The measurement result L, is finally obtained from \,, with a
calibration curve (see figure 4.19) measured by the manufacturer. In terms of
hardware, the measurement system employed for this thesis (STIL SA, model
CHR 450) consists of two components. A controller unit, which comprises the
light source, semi-reflecting mirror, spectrometer and data processing hard-

ware, and an optical probe (see figures 4.1 and 4.7), which holds the front lens.
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Figure 4.18: Measurement principle of the Confocal Chromatic Imaging (CCI)
technique employed for film thickness measurements (sketch
adapted from Cohen-Sabban et al. (2001)).

Both parts of the system are connected with an optical fiber. Specifications
of the measurement system as it was employed for this thesis are quantified in
table 4.5. The repetition frequency (which is directly coupled to the exposure
time of the spectrometer) for measurements in falling liquid films was limited
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Figure 4.19: Calibration relation for the CCI distance measurement (see figure
4.18): wavelength versus measurement distance.

Working dis- Measurement Repetition Distance mea- Transverse
tance Lmin interval A,, frequency  surement error resolution
1.6 mm 2740 pm 800 Hz 1 pm 10 pm

Table 4.5: Specifications of the CCI measurement system (STIL SA, model
CHR 450) employed for film thickness measurements.

to 800 Hz by the signal strength obtained from the liquid-gas interface and the
transversal resolution of the distance measurement is determined by the size
of the point source and the imaging characteristics of the front lens. As can
be deduced from film thickness time traces in figures 4.10 to 4.12 and 4.15,
both the temporal and streamwise spatial resolution of the CCI technique are

sufficient in the context of this thesis.

The CCI measurement device allows for simultaneous processing of signals
from two separate interfaces positioned within the measurement interval. Con-
sequently, by providing the refractive index of the material between the in-
terfaces, its thickness can be measured. However, due to the weakness of the
signal emanating from the bounding wall of the liquid film both in the opti-
cal (where the signal vanishes due to RIM) and inclined test setup, a direct

film thickness measurement could not be realized. In this thesis, only the sig-
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Figure 4.20: Application of the CCI film thickness measuring technique to the
optical test setup. Solid lines (actual beam paths) and dashed
lines (beam paths in the absence of refraction) show light beams
reflected by the glass wall (wavelength 1) and the free surface of
the film (wavelength 2). Measured quantities: m1, mo.

nal from the liquid-gas interface was measured instantaneously, whereas the
reference signal from the bounding wall was measured and stored before each
measurement series in dry state. Preliminary measurements in both test se-
tups showed that the reference signal did not change (to an extent resolvable
by the CCI technique) over the time span of a measurement series. Depending
on optical access to the liquid-gas interface (which was different for the two
test setups), different post processing approaches were necessary to obtain film

thickness data from the two signals. These will be presented next.

In the optical test setup, the liquid-gas interface was accessed through the
glass body wall and liquid film as pictured in figure 4.20. Applying geomet-
rical optics, the film thickness  can be expressed in terms of the distances
mi and mo associated with the signals generated by the liquid-gas interface

(instantaneously) and the wall (a priori) respectively:
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Figure 4.21: Spectral dependence of the refractive index for quartz glass body
and DMSO-water solution in the visible range at 7=25.2 °C.

5= {mz a4 A (i cosag 1 cosﬁg)} n? cos G (4.1)

1 2
Ng COS« ng cosw COs ,8

For the considered conditions, all angles are negligibly small so that the film

thickness is given in good approximation by:

1 1
d ~ {m27m1+Ag (Eiﬁ)} ng, (4.2)
g g

where the numerical indices refer to the wavelengths associated with the respec-
tive signals. The glass thickness A, was also measured before each experiment
series in dry state whereas the spectral distribution of the refractive indices of
quartz glass and working liquid were measured at RIM temperature using an
Abbe refractometer (see figure 4.21). Evaluation of the total differential of §
according to equation 4.2 (with measurement errors of 1 pm for m; and mo
and 0.0002 for the refractive indices) yields an absolute film thickness measure-
ment error of 4 pm. In this configuration, film thickness measurements were
performed with an acquisition frequency of 800 Hz. During LDV experiments

(see subsection 4.2.2) the film thickness was measured simultaneously (and at
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the same circumferential position as the LDV) to enable correlation of film
thickness and velocity data. However, a small streamwise offset of about 2 mm
was inevitable to avoid disturbance of the film thickness measurements by the
LDV laser beams.

As can be seen in figures 4.10 and 4.11 the film thickness measurements
do not resolve wave fronts equally well for all cases (see for instance figures
4.10(a) to 4.10(d)). This is due to a combination of effects linked to the large
wave front inclination angle for the cases in question. On the one hand, the
intensity of light reflected back into the CCI emitter-receiver decreases with
increasing steepness of the wave front due to elementary geometrical optics.
On the other hand, as the wave fronts grow steeper their transit time in x-
direction decreases, thus reducing the number of measurement points captured
by the measurement device (operating at a constant acquisition frequency). In
addition, steeper wave fronts coincide with larger values of the wave celerity
also causing the transition time to decrease. It is also discernible from the
film thickness time traces that capillary wave fronts of comparable steepness
are resolved better than large wave fronts. This results from the fact that free
surface signal intensity is larger for capillary wave fronts since the distance to

the CCI emitter-receiver is smaller compared to large wave fronts.

In the inclined test setup, the liquid-gas interface was accessed from the gas-
side of the film flow (see figure 4.13). The liquid film thickness was obtained
by subtracting the instantaneously measured distance to the interface from
the reference distance to the inclined wall, which was measured a priori in
dry state. For this case, the film thickness measurement error is 2 ym. For
simultaneous film thickness (using the CCI technique) and velocity (using the
LDV technique) measurements, the CCI-probe was positioned with its optical
axis parallel to that of the LDV probe (see figure 4.13) at the same streamwise
position. However, the probes were distanced in spanwise direction by about 5

mm to avoid damage to the CCI device by the LDV laser beams.
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Figure 4.22: Sketch of the integrated fiber-based emitting and receiving op-
tics (Dantec Dynamics A /S, model FiberFlow) employed for LDV
measurements, showing optical paths to and from the measure-
ment position in the liquid film.

4.2.2 Laser Doppler Velocimetry

As mentioned in subsection 2.3.1, first velocity measurements in falling liquid
films were performed by Wilke (1962), using an intrusive technique. Since then,
an array of optical techniques was employed, using diluted tracer substances
or tracer particles. For instance, Wilkes & Nedderman (1962), Ho & Hummel
(1970) and Karimi & Kawaji (1998) performed velocity measurements with
the Laser Induced Fluorescence (LIF) technique. More recently, velocimetry
techniques widely used in single-phase flow, such as Laser Doppler Velocimetry
(LDV) and Particle Image Velocimetry (PIV) have been applied to measure-

ments in falling liquid films.

LDV measurements in falling liquid films have been performed by Mudawar
& El-Masri (1986), Paras & Karabelas (1992), Mudawar & Houpt (1993a),
Mudawar & Houpt (1993b), Wierschem et al. (2002) and Leefken et al. (2004).
In these investigations the film flow was either accessed through the interface
(creating the need to reconstruct velocity data), a plane bounding wall (causing

resolution problems) or, in the case of the measurements of Professor Mudawar
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Laser wave- Beam sepa- Front lens fo- Intersection Beam di-

length, A\Lpv  ration cal length angle, ameter
OLpv
514.5 nm 38 mm 80 mm 13.36° 2.2 mm

Table 4.6: Optical quantities specifying the fiber-optic LDV-probe pictured in
figure 4.22.

and coworkers, through the side-walls of a specifically designed sampling chan-

nel (which, conceivably, alters the characteristic of the film flow).

In this thesis, LDV was employed for instantaneous point measurements
of the liquid phase streamwise velocity in the optical test setup for film flow
regimes listed in table 4.2. Additionally, one LDV measurement was performed
in the inclined test setup and corresponding data (see figures 4.31 and 4.32) are
presented only in order to demonstrate the resolution improvement achieved
in the optical test setup. The principles of LDV are well established in experi-
mental fluid mechanics and are therefore not recapitulated here (the reader is
referred to the books of Durst et al. (1976) and Albrecht et al. (2003)). Instead,
the technique’s specific application to test setups employed in this thesis will
be detailed.

Figure 4.22 sketches the general situation (encountered in both test setups)
in terms of optical access to the liquid film for the employed LDV optics. The
latter are fully integrated into a fiber-based LDV-probe (Dantec Dynamics A /S,
model FiberFlow), which acts both as emitter and receiver. On the emitting
side, two laser beams of wavelength (in air) ALpv=514.5 nm, Gaussian beam
diameter 2.2 mm and beam separation 38 mm are focused by a front lens with
a focal length of 80 mm (see table 4.6). These beams are obtained from a
single Argon-Ion laser (Spectra-Physics) beam, which is split up and coupled
into two separate optical fibers connected to the LDV-probe (see figure 4.22).
Because the film flow is accessed through a glass wall, the beams are refracted
at the gas-glass and glass-liquid interfaces (the second refraction does not occur
in the optical test setup due to RIM) respectively, before intersecting at the
measurement position. The depicted configuration enables measurement of the
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Figure 4.23: Close-up schematic view of the intersection volume of LDV laser
beams, illustrating the measurement ellipsoid.

velocity component w; normal to the optical axis, lying in the same plane
as the LDV beams. A close-up sketch of the measurement region is provided
in figure 4.23. It shows the intersection volume of the two Gaussian LDV
beams, which has the shape of an ellipsoid’. The ellipsoid’s major axis is
considerably longer than the two minor axes, themselves of equal length. The
actual dimensions of the ellipsoid depend on the beams’ intensity distributions
and their intersection angle in the liquid, which itself depends on the refractive

indices of glass material and working liquid (see table 4.7).

It follows from figure 4.23 that it is the measurement ellipsoid’s orientation
(and principally that of its major axis) relative to the velocity field’s gradient
that determines the spatial resolution of the LDV measurement. In this re-
spect, conditions in the two test setups were fundamentally different, as will be
elaborated next. In falling liquid films with 2-dimensional surface waves, only
velocity variations in the streamwise and crosswise directions take place. Con-
sequently, in order to maximize spatial resolution, the measurement ellipsoid

should be oriented with its major axis pointing in spanwise direction. This is

fNote that the spatial extent of the intersection volume is defined by the local intensity
(i.e. the sum of the two laser intensities) in relation to the maximal intensity and not
the geometrical intersection of the two pictured Gaussian beams.
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Figure 4.24: Photograph of intersecting LDV laser beams in the optical test
setup.

not possible in the inclined test setup, where optical access is obtained through
the plane acrylic glass wall, bounding the film. In this case, the ellipsoid’s major
axis is necessarily oriented in crosswise direction (see figure 4.13), which is the
most inconvenient scenario. In the optical test setup however, due to the glass
body’s geometry, the liquid film can be optically accessed from the spanwise
direction (see photograph in figure 4.24), which leads to a spanwise orientation
of the ellipsoid’s major axis (see figure 4.3). The streamwise resolution of the

measurement is optimal in both orientations.

Tracer particles dispersed in the liquid film scatter light of both laser beams
as they pass through the ellipsoid. This light is collected and re-collimated
by the front lens of the LDV-probe before being focused by a receiving lens
onto an optical output fiber (see figure 4.22). In this back-scattering mode
the LDV technique yields a large signal intensity, which resulted in data rates
of up to 3000 Hz for the experiments performed in this thesis compared to
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Figure 4.25: Signal processing operations performed by the Burst Spectrum
Analyzer.

wave frequencies of the order of 10 Hz. The optical signal is transduced to an
electrical signal with a photomultiplier (not pictured). With this, the intensity
oscillation frequency fa of light scattered by a particle, moving through the
interference pattern within the ellipsoid, is measured. In good approximation,

fa is related to the velocity component u | as follows:
fa = (fi = f2) +2sin (OLpv) ALDV UL, (4.3)

where 2©rpv is the intersection angle of the unrefracted LDV beams (see
figure 4.22). Further, f1 and f> designate the light frequency of the upper and
lower LDV beam respectively (see figure 4.23). These are not equal, as the
lower beam’s frequency is shifted by 40 MHz below that of the upper beam
(fe = f1 — 40MHz), using a Bragg Cell (not pictured in figure 4.22). This
frequency shift is negligibly small compared to the light frequencies fi and f> so
that it does not measurably alter the wavelength of the shifted beam. However,
it significantly alters the measurement relation 4.3 in the sense that negative
values of u, are now detectable’. For velocity measurements in the capillary
wave region of falling liquid films, which is characterized by flow reversal, this

property is essential. Further, it can be discerned from equation 4.3 that fa is

TThe measured quantity fa is always larger than zero.
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Figure 4.26: Sketch of the LDV measurement ellipsoid (in the optical test
setup) with Cartesian and radial coordinates. The origin of the
radial coordinate is situated on the axis of the glass body bore
and the dimensions of the ellipsoid are A, = A, = 24 pym and
A, = 151 um respectively.

independent of the optical properties of the materials through which the LDV
beams pass.

In order to detect the frequency fa, a series of processing operations are
performed on the signal obtained from the photomultiplier. These operations
are executed online (i.e. with a repetition rate of up to 3000 Hz in the case
of measurements performed in this thesis) by hardware components integrated
in a so called Burst Spectrum Analyzer (BSA). In the context of this thesis, a
BSA purchased from Dantec Dynamics A/S (model P80) was employed. Figure
4.25 illustrates the two main processing steps. The leftmost figure shows a
typical signal Doppler burst obtained from a single particle moving through
the measurement ellipsoid. It exhibits a low frequency modulation caused by
the Gaussian intensity distribution of the two LDV beams, which is omitted

by a high-pass filter in a preprocessing step. In the second step, a Fast Fourier
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Test setup  nc ng Or (°) Az (pm) Ay, (pm) A, (um)
Optical 1.462 1.462 9.09 24.12 23.82 150.80
Inclined 1.492 1.399 9.51 24.00 144.20 23.82

Table 4.7: Dimensions of the LDV-ellipsoid (see figure 4.23) in the liquid film
for the optical (figures 4.3 and 4.24) and inclined (figure 4.13) test
setup (G and F refer to glass material and film liquid respectively).

Transformation is performed on the filtered signal, yielding the frequency fa.
To complete the specification of the LDV technique as it was implemented for
experiments in this thesis, two data processing validation criteria need to be
quantified. These criteria fix a threshold for the validation or falsification of
Doppler bursts recorded by the BSA. The first of these prescribes a lower limit
for the signal to noise ratio of the burst and was set to 10°°. The second
prescribes a lower limit for the ratio between the powers of the two strongest

frequencies of the burst’s frequency power spectrum and was set to 16.

Following this qualitative description of the employed LDV methodology, a
detailed quantitative account of LDV measurement conditions realized in the
optical test setup is provided next. The subsection is concluded with a brief
description of LDV measurement conditions realized in the inclined test setup
with the goal of documenting and explaining the substantial spatial resolution

improvement obtained in the optical test setup.

In the optical test setup (see figure 4.3), the size of the measurement ellipsoid
in x- and y-direction was A; = Ay = 24 um as opposed to a size of A, =
151 pm in z-direction (see table 4.7). By way of comparison, the minimal
film thickness (which is associated with the capillary wave region) for regimes
investigated in the optical test setup is of the order of 200 um (see figures 4.10
to 4.12). The extent of the ellipsoid in z-direction does not limit the spatial
resolution of the measurement, as changes of the velocity in z-direction are
negligible in the considered case of 2-dimensional waves. Variation over the
z-axis of the ellipsoid takes place solely due to the fact, that the film flow is
cylindrical and not Cartesian (see figure 4.26). It shall be shown here, on the

basis of a smooth developed cylindrical film flow, that this effect is negligible.
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For this case, the radial distribution of the streamwise velocity component is
given by (see Mudawar & Houpt (1993a)):
1g |1 2 2 2 R
U(T)ZEZ E(R fr)fR(;ln(? , (4.4)
where R = 24.46 mm is the radius of the glass body bore and Rs the radius of
the liquid-gas interface, which depends on the flow regime. Following equation

4.4, the ratio between velocity variations over the measurement volume in y-

and z-direction is:

Au, ul, — u|T:Tz 05 (1"3 - r2) — R} In(r./7)
05 (13 —72) — R} In(ry/7)

Auy ul, — u|r:ry

(4.5)
r. = (rF+02542)"", 1, =r40504,,

where geometric quantities are illustrated in figure 4.26. Assuming a film thick-
ness of § = R — Rs = 300 um (corresponding approximately to the mean film
thickness of the falling liquid films investigated in the optical test setup; see
figures 4.10 to 4.12) evaluation of the above relation at » = R (where the gra-
dient of the velocity profile is maximal) yields Au./Au, = 0.009. The velocity
variation in z-direction is thus roughly two orders of magnitude smaller than

the corresponding variation in y-direction.

Solid tracer particles of Titanium dioxide with a mean diameter of dp = 2
pm and a density of 4500 kg/m® were employed. As established in Dietze et al.
(2008) fluid elements in the CSE region follow loop shaped path lines of small
characteristic length. In order to ensure that the LDV measurements resolve
the CSE phenomenon accurately it is thus necessary to assess the ability of
the tracer particles to follow the flow in the region of interest. This was done
on the basis of the Basset-Boussinesq-Oseen (BBO) equation, which governs
the movement of a particle in a non steady flow. Hjemfelt & Mockros (1966)
derived the frequency response of the particle velocity to an oscillation in fluid
velocity from the BBO equation. This result enables the computation of the

amplitude ratio n and the angular phase shift A¢ between the particle and
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Figure 4.27: Particle frequency response to an oscillating flow. Dashed lines:
solutions of the BBO-equation according to Hjemfelt & Mockros
(1966) as a function of solid to liquid density ratio s and Stokes
number St. Circles: Titanium dioxide particles in DMSO-water
solution (St formulated with characteristic time of CSE i.e. 1073s).

fluid velocity oscillation for a given excitation frequency. Both quantities are
indicators for the capacity of the particle to follow the surrounding flow and
are plotted in figure 4.27 as a function of the solid to liquid density ratio s
and the Stokes number St = At/ (27r d?p). In addition, circles displayed in
figures 4.27(a) and 4.27(b) highlight points corresponding to the measurement
conditions encountered in the optical test setup i.e. Titanium dioxide particles
dispersed in the DMSO-water solution (see table 4.1). Thereby, the Stokes
number was formulated with the characteristic time of the CSE phenomenon
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Figure 4.28: Radial streamwise velocity profile in the smooth water-glycerol
film: Re—1.1 (see table 4.1). Circles: LDV data (bars demarcate
standard deviation); solid line: analytical solution for smooth de-
veloped cylindrical film flow (see e.g. Mudawar & Houpt (1993a)).

(At = 0.001 s; see figure 4.29). From the figures, the conclusion can be drawn
that under the conditions considered here the employed tracer particles follow
the liquid flow well.

Finally, the LDV measurement in the optical test setup was validated on
the basis of measurements performed in a smooth developed film flow using
the water-glycerol solution detailed in table 4.1. The crosswise profile of the
streamwise velocity under these conditions is given by the analytical solution
in equation 4.4 (Rs was thereby obtained by integrating equation 4.4 and itera-
tively solving it for the volume flow rate). Figure 4.28 illustrates a comparison

for Re ~ 1 between this analytical solution and measurement data obtained
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by LDV, showing good agreement between the two data sets. Further, it can
be observed that the standard deviation of the measurement data for a given
measurement position is negligible in relation to the measured velocity which
is due to the extremely high spatial resolution of the setup. The different mea-
surement positions were set using a three-axis micrometric traversing system,
as shown in figure 4.1, in incremental steps of 20 ym with a positioning error

of only £0.1 yum

Figures 4.29 and 4.30 depict exemplary LDV data obtained in the optical
test setup at different crosswise measuring positions for one of the flow regimes
in table 4.2 (Re=15.0, Ka=>509.5, f=16.0 Hz). The first three measurement
positions lie within the residual layer of the liquid film (see subfigures 4.29(a)
to 4.29(c)), while subfigures 4.30(a) and 4.30(b) depict velocity time traces
outside of the residual layer. The latter are characterized by intermittent bursts
of data points, while large waves pass through the LDV measurement volume,
separated by stretches without data, when the measurement volume lies in the
gaseous phase. In general, the experimental data display a small scatter, which
results from the extremely high spatial resolution (i.e. Az = Ay = 24 uym) of
the LDV technique as it was implemented in this thesis and are shown to be
reproducible, as evidenced by their periodicity. Further, LDV measurements
are shown to temporally resolve all characteristic features of velocity time traces
at the different crosswise positions in the liquid film. A detailed discussion of
the measurement data in figure 4.29 from a physical point of view will be

performed in subsection 5.1.2.

In the inclined test setup (see figure 4.13), the LDV beam intersection angle
in the liquid is Oypy = 19.02°. The dimension of the measurement ellipsoid
in x- and z-direction is 24 ym, while its dimension in y-direction is 144 ym
(see table 4.7). The minimal film thickness encountered for the only case of
inclined liquid film flow, for which LDV measurements were performed, is ap-
proximately 300 um (see figure 4.31), leading to a minimal film thickness to
ellipsoid height ratio of 2. The same tracer particles as in the optical test setup
were employed, exhibiting the same capacity to follow the flow. Indeed, evalu-

ations based on the BBO-equation showed that at flow oscillation frequencies
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Figure 4.29: Liquid phase streamwise velocity time traces in the residual layer
measured with LDV in the optical test setup: Re=15.0, Ka=509.5,
f=16.0 Hz.

of up to 10.000 Hz, the deviation of particle kinematics from flow kinematics is
negligible. Figures 4.31 and 4.32 depict streamwise velocity time traces mea-
sured with LDV in the inclined test setup for one of the regimes listed in table
4.4 (Re=15.6, Ka—133.6, f—15.0 Hz) at three different crosswise positions'.
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Figure 4.30: Liquid phase streamwise velocity time traces in the large wave
humps measured with LDV in the optical test setup: Re=15.0,
Ka=509.5, f=16.0 Hz.

In addition, simultaneous film thickness time traces measured with the CCI
technique are also displayed. Qualitatively, the velocity time traces are similar
to those obtained in the optical test setup (see figures 4.29 and 4.30). However,
they exhibit a drastically larger scatter, which results from the substantially
lower spatial resolution of the LDV technique as it was implemented in the in-
clined test setup, due to an inadequate orientation of the measurement ellipsoid
(compare figure 4.13 with figure 4.3).

fThe figures also show velocity time traces obtained from the corresponding numerical
simulation (case 1).
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Figure 4.31: Liquid phase streamwise velocity time traces in the residual layer
and intermediate region (measured with LDV) and corresponding
film thickness time traces (measured with CCI) obtained in the
inclined test setup: Re—15.6, Ka—133.6, f—15.0 Hz, xt—=200 mm.
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Figure 4.32: Liquid phase streamwise velocity time trace in the large wave
humps (measured with LDV) and corresponding film thickness
time trace (measured with CCI) obtained in the inclined test
setup: Re=15.6, Ka=133.6, f=15.0 Hz, =200 mm.

4.2.3 Particle Image Velocimetry

To conclude this chapter on experimental methodology, the third of the em-
ployed measurement techniques i.e. Particle Image Velocimetry (PIV) will be
addressed in this subsection. As was the case for LDV, a discussion of the
principles of the technique is forgone, since it is well established in experi-
mental fluid mechanics. Instead, the reader is referred to the monograph by
Raffel et al. (2007). Here, only the technique’s specific application to velocity
measurements in falling liquid films, using the optical test setup introduced in

subsection 4.1.1, is discussed.

A few previous works, treating the application of PIV to velocity measure-
ments in falling liquid films can be found in the literature. Cook & Clark (1971)
and Nakoryakov et al. (1977) used a precursor to the PIV technique more akin
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Figure 4.33: Photograph of the PIV laser light sheet illuminating the wavy
liquid film in the optical test setup.

to Particle Tracking Velocimetry (PTV), while PIV measurements in the mod-
ern sense of the technique were performed by Adomeit & Renz (2000), Moran
et al. (2002), Wierschem et al. (2003), Wierschem & Aksel (2004) and Alek-
seenko et al. (2007). However, in the latter three works, considerably different
flow conditions (compared to those investigated in this thesis) were treated.
Indeed, Wierschem et al. (2003) and Wierschem & Aksel (2004) investigated
film flows developing on a corrugated inclined surface, while Alekseenko et al.

(2007) investigated rivulet flow developing on an inclined tube.

In this thesis, the PIV technique was employed for the measurement of ve-
locity vectors in the falling film’s x-y-plane, using the optical test setup (see
figure 4.3). The resulting data provide a field view of velocity in the liquid
phase and in particular the capillary wave region, where flow separation oc-
curs, and complement the pointwise velocity information obtained from LDV.
The conjunction of these two velocimetry techniques thus provides the means

to fully capture the flow separation phenomenon’s kinematics.
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Figure 4.34: Two successive digital PIV images recorded with the CMOS cam-
era using an acquisition frequency of 1800 Hz in the region of the
first capillary minimum.

The PIV technique was used in its cross-correlation mode, i.e. velocity in-
formation was obtained from pairs of successively recorded images of tracer
particles’ dispersed in the liquid film. For image acquisition, particles in the
x-y-plane of the liquid film were illuminated with a laser light sheet of approx-
imately 1 mm thickness as illustrated in figure 4.3. As light source, a pulsed
copper vapour laser (Oxford Lasers Ltd., model CU15-A) with a wavelength of
A=511.6 nm was employed. The laser beam was coupled into an optical fiber
connected to the light sheet optics (Oxford Lasers Ltd., model FibreSheet),
which are pictured as item 3 in figure 4.1, and which could be oriented relative
to the glass body using opto-mechanical linear and tilting stages. Figure 4.33
shows a photograph of the laser light sheet illuminating the wavy liquid film in
the glass body.

Tlluminated particles were imaged and recorded with a high-speed digital

TThe same titanium dioxide particles also used for LDV measurements were employed.
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Complementary Metal Ozide Semiconductor (CMOS) colour camera (Vision
Research, Inc., model Phantom v4.3) equipped with a microscopic lens assem-
bly, its optical axis oriented in z-direction i.e. normal to the laser light sheet,
as illustrated in figure 4.1. The camera chip consisted of 600x800 quadratic
picture elements (pixels) of edge length 22 um each digitizing light intensity
levels with 8 bits. The lens assembly (Infinity Photo-Optical Company, model
K2) allowed for a tenfold magnification of the liquid film, resolving the minimal
film thickness of 6 ~ 200 pm with roughly 100 camera pixels.

Figure 4.34 shows an example of a pair of successive digital images recorded
with this assembly in the region of the first capillary minimum. The two
subfigures represent the digitized light intensity I, which was obtained from the
corresponding spectral intensities recorded by the colour camera’s pixels, i.e.
I = (In+1Ig+1Is)/3, where R, G, and B pertain to red, green and bluef. Direct
reflection of laser light by the liquid-gas interface did not pose a problem as the
latter is only slightly curved in azimuthal direction and thus reflects incident
light away from the lens assembly. However, reflections at the interface of light
scattered by particles adhering to the wall were visible in camera images after
sustained operation of the setup when a particle layer had formed at the wall.
In subfigure 4.34(b), an example of such reflections is highlighted. Because the
film interface is concave in azimuthal direction, wall particle reflections did not
limit the capacity to resolve the liquid phase velocity field in the x-y-plane.
Nonetheless, the inner surface of the glass body was cleaned regularly between

measurement series to minimize this effect.

Figure 4.35 illustrates the logistic illumination and imaging sequence em-
ployed to record PIV image pairs (quantitative settings and properties for the
CMOS camera and copper vapour laser are listed in table 4.8). During image
acquisition, particles were illuminated with laser pulses of repetition rate 9000
Hz, pulse length 10 ns and pulse energy 2 mJ for all experiments. Particle
images were continuously recorded with the CMOS camera over several wave

period lengths at a frame repetition rate of which the laser pulse frequency is

It should be noted here that the use of a color camera was not necessary for the PIV
measurements in this thesis and resulted simply out of availability.
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Figure 4.35: Typical illumination and imaging sequence employed for PIV

recordings.
CMOS camera Copper vapour laser
exposure frame rate wavelength pulse fre- pulse pulse en-
time quency length  ergy
111 ps 1.5-4.5 kHz 511.6 nm 9000 Hz 10 ns 2 ml]

Table 4.8: Settings and properties of the CMOS camera and copper vapour
laser employed for PIV recordings.

a multiple. The exposure time of the camera chip was set to 111 us, which
is slightly inferior to the period length of laser pulse repetition 111.1 us. Us-
ing these settings, it was ensured that each camera recording was illuminated
by exactly one laser pulse, and that the time between two successive particle
images was given by the pulse frequency (accurate to within 107° Hz) and the
number of pulses between two recordings (which was constant in time). For
all investigated flow regimes, image sequences were recorded at several frame
repetition rates spanning from 1500 Hz to 4500 Hz (the range of active picture
elements on the camera chip was adapted accordingly), in order to account for
varying velocity magnitudes in different regions of the falling liquid film. Since
two images are needed for the evaluation of velocity vectors at a given time
(using the cross-correlation method), the liquid film velocity field was resolved

with half the camera frame repetition rate i.e. between 750 Hz and 2250 Hz,
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4.2 Measurement techniques

which is much greater than the maximal wave frequency of 24 Hz. The sample
digital PIV image pair pictured in figure 4.34 was recorded at a frame rate of
1800 Hz.

Liquid film velocity vectors were obtained by applying a series of post pro-
cessing steps to the raw digitized particle images (see figure 4.34), subsequently
designated as frames, recorded with the CMOS camera in the above described
manner. In the first step, particle displacement vectors were computed from
a given pair of frames by applying a PIV cross-correlation algorithm. The al-
gorithm basically minimizes the Cross Correlation Function (CCF) R(I1,I2) of
the discrete intensity distributions I (is,iy) and I2(iz,iy) (iz and i, index the
position of the considered pixel), corresponding to the first and second frame

respectively, evaluated over a quadratic interrogation area of edge length N:

PN N min g

R(i5™ iy Aig Ady) = > Y L(iyg) - Do+ Aiyj + Ady)  (4.6)

;—;min  ;—;min
J=iy =41

with respect to the displacement vector components Ai, and Ai,. The ob-
tained displacement vector [Ad,,Ai,]T is then representative for all pixels
within the interrogation area delimited by qmin < g < ogmin 4N i;ni“ <

iy <y + N.

The commercially available software Davis 7.1 (LaVision GmbH) was em-
ployed for PIV processing of the raw frames obtained from the CMOS camera.
Settings pertaining to the PIV cross-correlation algorithm as it was applied in
the context of this thesis will be briefly described next. Displacement vectors
were computed in consecutive cross-correlation steps performed on an iter-
atively refined grid, starting with an interrogation area size of 64x64 pixels
and ending with one of 6x6 pixels. In each cross-correlation step (except the
first one), displacement information from the previous step was employed to
shift the intensity distribution I of the second frame in the direction of the
flow. This allows for the detection of particle displacements larger than the
interrogation area length and thus a maximization of spatial resolution. For

measurements in the capillary wave region of falling liquid films this procedure

221



4 Experimental

200 -
N
NN
245 [ERR s
EN
777 T
EH e
R] ARARARA Int ti
& HUNNuaamE a?e:rzg%é l;i];ﬁels)
s )
380 {[T1-LL:
T \
T \
AN \
B/ 1
P (ARG A5 pixel |
157 182 207 232 257 282
¥ (pixel)
(a) Displacement vectors (b) Cross correlation function for a pixel (i,=340,
obtained from PIV algorithm i,=186) in the highlighted interrogation area

Figure 4.36: Displacement vectors obtained from the application of the PIV
algorithm to the image pair in figure 4.34, using the first order
Cross Correlation Function (CCF).

is particularly helpful, as spatial velocity gradients there are large. Within each
refinement step, the cross-correlation algorithm was performed three times in
succession (only twice for the finest resolution), applying the intensity distri-
bution shift mentioned above, in order to center the cross-correlation function
and thus increase the signal to noise ratio (see Raffel et al. (2007)). In this
process, computed displacement vectors were validated using median filtering
(see Westerweel (1994)), whereby vectors of magnitudes differing from the me-
dian of neighbouring interrogation area values by more than twice their root
mean square were removed. Excluded vectors were replaced by interpolating

between displacement vectors of surrounding interrogation areas.

Subfigure 4.36(a) shows displacement vectors computed with the above de-
scribed PIV algorithm from the raw camera frames pictured in figure 4.34,
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clearly showing the occurrence of flow reversal at the first capillary minimum.
Grid lines demarcate interrogation areas employed for the final cross-correlation
step (i.e. of size 6x6 pixels) and thus the spatial resolution of the displacement
vector field. The interface, is approximated by a fifth order polynomial, which
was fitted to the twelve sampling points highlighted in figure 4.34. These
points were defined subjectively for each processed displacement vector field.
Subfigure 4.36(b) displays the CCF evaluated over a region of 64x64 pixels sur-
rounding a pixel within the interrogation area highlighted in subfigure 4.36(a).
The CCF exhibits the characteristic principal peak from which displacement
information is computed. In this case, the ratio of the principle CCF peak to
the second largest peak is roughly 5. For the PIV data presented in this thesis,

this ratio was in excess of 1.2 for all displayed displacement vectors.

In order to obtain velocity information from the displacement vectors com-
puted with the procedure described above, the imaging factor ¢, relating dis-
placements in the object and image planes’, and the time between two camera

frames, which is the reciprocal value of the camera frame rate f., is necessary:

[up]” =@ feo- [Aig,Ady]T. (4.7)

In the traditional application of PIV, ¢ is determined by imaging a predefined
metric target positioned in the object plane. This procedure could not be em-
ployed here due to the geometric constraints of the optical test setup. Instead,
PIV measurements were calibrated with corresponding LDV data once for ev-
ery measurement series. Figure 4.37 illustrates the employed procedure for the
calibration of ¢. Therein, the leftmost subfigure displays displacement vectors
in the region of the first capillary minimum obtained from the PIV algorithm.
Conversely, the bottom right subfigure displays a corresponding (i.e. measured
under the same flow conditions) streamwise velocity time trace measured with
LDV at a given crosswise position yi,pv. The global minimum displayed by this
time trace is associated with the first capillary minimum, as will be established

in chapter 5. Consequently, this characteristic point can also be identified in

TMore precisely, the length of the projection of a pixel into the object plane.
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Figure 4.37: Calibration of the imaging factor ¢ for PIV measurements. Left:
particle displacement vectors obtained from PIV algorithm; top
right: streamwise velocity (u™"Y=¢ f. Ai,) profile computed from
streamwise particle displacements Ai, at iy=yLpv/p; bottom
right: streamwise velocity time trace measured with LDV at

Y=YLpV-

the displacement vector map, given the correct imaging factor ¢. This opens
the possibility to inversely determine ¢, which was done as follows. Starting
with an initial guess for ¢, the crosswise position in the displacement vector

map, corresponding to the LDV measurement position was determined from
PTV
by

with equation 4.7, using the current guess for ¢) evaluated at that position is

= yov/¢. The profile of the streamwise velocity component (computed

displayed in the top right subfigure. By comparing the minimum of this profile
with the global minimum of the LDV time trace! (both should be identical),
a better guess for ¢ was determined. By applying this procedure iteratively,
the correct imaging factor was obtained. The deviation of PIV data from LDV

data for the first capillary extremal values (first capillary minimum and first

TTo be precise, the average over LDV minima in four successive waves was employed.
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capillary maximumf) of the streamwise velocity component was smaller than
5% of the total change in the corresponding LDV time trace (this remaining
error is of the same magnitude as the variation of LDV data between waves)

for all such measurements presented in this thesis.

TThis characteristic point is also identifiable in both data sets.

225






5 Capillary flow separation

After having introduced the employed numerical and experimental methods
for the investigation of momentum and scalar transport in 2-dimensional (and
3-dimensional) laminar falling liquid films, this chapter presents the main re-
sults of this thesis. Although various numerical and experimental results have
already been introduced in previous chapters, this was done for the purpose
of illustrating established knowledge (see chapter 2) or validating numerical
(chapter 3) and experimental (chapter 4) methods. By contrast, results pre-
sented in this chapter represent a new contribution to the field of falling liquid

film research.

In essence, it was discovered (see Dietze et al. (2008, 2009)) that the flow in
the capillary wave region of laminar falling liquid films separates at the wall
under certain flow conditions, thus explaining previous observations of back-
flow by Kapitza (1948) and others (see subsection 2.3.1). The elucidation of
this capillary flow separation from its phenomenology through its governing dy-
namics to its effect on liquid phase scalar transport under 2-dimensional (and
3-dimensional) flow conditions is at the center of this thesis. The phenomenon’s
discovery provides a hitherto missing piece in the phenomenology of the liquid
phase velocity field and thereby valuable input for the development of simpli-
fied wave dynamics models based on Shkadov’s integral approach. Indeed, as
established in subsection 2.2.3, such models rely on assumptions concerning the
streamwise velocity profile. Further, the effect of capillary flow separation on
liquid phase scalar transport represents a partial explanation for the intensifi-
cation of scalar transfer to the capillary wave region of falling liquid films (see

subsection 2.3.2) for both 2-dimensional (and 3-dimensional) wave dynamics.

The chapter is structured as follows. In sections 5.1 to 5.3, a detailed account
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5 Capillary flow separation

of the fundamental mechanisms of 2-dimensional capillary flow separation will
be rendered on the basis of two representative flow regimes. Therein, the kine-
matics of the phenomenon will be established first in section 5.1 with the help
of numerical data as well as experimental velocity data obtained from PIV and
LDV measurements. Second, the governing dynamics driving these kinematics
will be elucidated in section 5.2 on the basis of numerical data. Third, the
intensifying effect of capillary flow separation on liquid phase scalar transport
and the resulting wall-side scalar transfer will be established in section 5.3
based on numerical simulations of heat transfer. In section 5.4, the influence of
two principal control parameters, namely the Reynolds number and the wave
frequency, on the fluid mechanical aspects of capillary flow separation (i.e. kine-
matics and governing dynamics) will be demonstrated with numerical data as
well as PIV and LDV measurement results. To conclude the chapter, charac-
teristics of capillary flow separation under 3-dimensional flow conditions will

be treated in section 5.5 based on a single 3-dimensional numerical simulation.

5.1 Kinematics

In order to introduce capillary flow separation, a purely kinematic description
of the phenomenon, both in terms of the velocity field and the out of plane
vorticity field, is provided in this section. The goal being to establish what the
phenomenon “looks like” before addressing questions about its cause and effect.
This is done on the basis of two representative flow regimes. An inclined liquid
film (case 1 in table 3.1) and a vertically falling liquid film (case 8 in table 3.1).

5.1.1 Spatio-temporal visualisation

A simple visualization of capillary flow separation as it occurs in falling liquid
films is provided in figures 5.1 and 5.2. These display the spatio-temporal

evolution of simulated liquid phase streamlines in the region of the first capillary
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5.1 Kinematics

minimum for the two investigated cases. A pictogram of the correspond-
ing streamwise film thickness distribution, highlighting the region depicted in
the streamline plot with an arrow, is also included in each subfigure. This
highlighted region moves downstream with wave celerity, tracking the capillary

wave region of a single wave during its entire development.

Both streamline plot sequences exhibit the same behaviour in the initial
stages of wave development. As the first capillary minimum takes shape,
streamlines underneath it distort into a pattern typically associated with de-
celerated and re-accelerated flow. Indeed, tracking a streamline in streamwise
direction, the latter moves away from the wall while approaching the capillary
minimum and re-converges toward it after passing the minimum. Streamlines
attain their maximal distance from the wall slightly downstream of the wave
trough. Since, for a given time, the volume flow per unit width between 2
streamlines is constant (the film liquid being incompressible), the mean flow
is consequently decelerated and re-accelerated in streamwise direction. This
streamline distortion grows more pronounced as the capillary waves develop,
until the flow separates by detaching and subsequently re-attaching to the
bounding wall (see subfigures 5.1(c), 5.1(d) and 5.2(c)) similar to classical flow
separation. In the process, a Capillary Separation Eddy (CSE) is formed, which
subsequently grows until it attains a constant size once the capillary wave topol-
ogy is fully developed.

In this respect, a significant difference between the inclined and vertical film
is evident. In the first case, the CSE stays fully contained in the liquid phase
(see figure 5.1(h)), assuming a crosswise size of approximately half the minimal
film thickness. In the second case, the CSE outgrows the liquid film, assuming
an open shape with streamlines ending at the liquid-gas interface (see sub-
figure 5.2(h)). The possibility of such a scenario was in principle established
by Rood (1994), who investigated vortex interactions with a free surface and
stated that, when a vortex breaks up and “attaches” to a free surface, interfacial
vorticity transport takes place. Accordingly, a discussion of the out of plane
vorticity field in the CSE region for this case is provided in subsection 5.1.3.

Interestingly, the streamline pattern in subfigure 5.2(h) confirms the flow struc-
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5 Capillary flow separation

ture conjectured by Kapitza (1948) (see figure 2.15) and Massot et al. (1966).
Moreover, Malamataris & Balakotaiah (2008) have recently obtained similar
results by way of numerical simulation, introducing the term cellular pattern

to describe the flow structure at the first capillary minimum.

Further, subfigures 5.2(e) to 5.2(g) show that, before attaining its final open
shape (subfigure 5.2(h)), the CSE reverts back to a closed shape (subfigures
5.2(e) and 5.2(f)), suggesting a two-way coupling between the flow separation
phenomenon and capillary wave dynamics. Consequently, it can be envisaged
that capillary flow separation may play a role in the (secondary) instability of

wavy liquid films.

5.1.2 Velocity field

In order to provide a quantitative account of the capillary flow separation’s
kinematics, the corresponding velocity field is investigated in greater detail
in this subsection. To that end, figures 5.3(a), 5.3(c) and 5.4(a) represent a
larger view of streamline patterns near the inclined liquid film’s first capil-
lary minimum at three distinctive time points of the evolution shown in figure
5.1. The first one, shortly before the initiation of flow separation, the second
one shortly after and the third one after full development of the phenomenon.
These time points delimit three principal developmental episodes of the capil-
lary flow separation, which are linked to the evolution of capillary waves i.e.
flow deceleration, CSE nucleation and CSE growth. Figures 5.3(b), 5.3(d) and
5.4(b) depict corresponding profiles of the streamwise velocity component at

different streamwise positions in the vicinity of the first capillary minimum.

In figure 5.3(a) the flow is shown to decelerate and re-accelerate at the first
capillary minimum without the occurrence of separation. This is evident, from
a qualitative perspective, in the shape of near-wall streamlines, as discussed
in subsection 5.1.1. Quantitative evidence is provided by the corresponding
streamwise velocity profiles. Indeed, figure 5.3(b) shows a significant decelera-
tion (from 2=163.02 mm to £=163.46 mm) and re-acceleration (from x=163.46

mm to £=164.00 mm) of the flow. As evidenced by comparison of the profiles
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Figure 5.3: Simulated near-wall streamlines and streamwise velocity profiles at
the first capillary minimum for different points in time during wave
development (case 1 in table 3.1): Re=15.6, Ka=133.6, f=15.0 Hz.
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Figure 5.4: Simulated near-wall streamlines and streamwise velocity profiles at
the first capillary minimum in the developed region (case 1 in table
3.1): Re=15.6, Ka=133.6, f=15.0 Hz.

at £=163.02 mm and £=163.46 mm, the deceleration is associated with a sign
change of the second order crosswise derivative near the wall from negative to
positive. This is due to the stronger deceleration of fluid elements closer to
the wall with lower kinetic energy, leading to a turning point in the profile at
x=163.46 mm. This change in shape of the velocity profile is characteristic for
the separation of wall bounded flows. Further, between positions z=163.20 mm
and x—163.46 mm, the first order crosswise derivative at the wall approaches
but does not attain the value zero, signifying that flow separation is immi-
nent. As the flow re-accelerates in streamwise direction downstream of the
wave trough (from z=163.46 mm to z=164.00 mm) the second order crosswise
derivative of the velocity profile re-converges toward a negative value near the

wall.
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Figure 5.3(c) shows the CSE shortly after its nucleation at the bounding
wall. Correspondingly, the velocity profile at x=166.34 mm (see figure 5.3(d))
manifests a slightly negative value of the streamwise velocity component near
the wall. During the growth phase of the CSE, the latter attains its developed
size of approximately 50% of minimal film thickness as illustrated in figure
5.4(a). Figure 5.4(b) shows the same qualitative behaviour of the near wall
velocity profile upstream of the CSE (between x=202.09 mm and 1=202.22
mm) as shown in figure 5.3(b). However, here, the streamwise change in the
shape of the near wall profile is such that the threshhold of a vanishing first
order crosswise derivative at the wall is reached at ©=202.22 mm. At this posi-
tion, flow separation takes place. Downstream of the separation point, between
2=202.36 mm and £=202.44 mm, the velocity profiles are characterised by a
second root next to the one at the wall. Between the two roots, the stream-
wise velocity component is negative, confirming the flow reversal discernible in
figure 5.4(a). Moving further downstream, the velocity profile re-approaches
its pre-separation shape as the flow re-accelerates. The general sequence of
streamwise deceleration and re-acceleration at the first capillary minimum is
also discernible in subfigure 4.31(a), which depicts a streamwise velocity time
trace measured with LDV at y=200 pum (i.e. above the CSE center) in the
developed region of the inclined film. However, as previously mentioned, the
relatively low resolution of LDV data obtained in the inclined test setup only
allows for qualitative assessments. When discussing the velocity field for the
vertically falling liquid film, the superior resolution of LDV data obtained in
the optical test setup will be exploited to extract quantitative information.

Next to revealing regions of back flow, velocity profiles in subfigures 5.3(b),
5.3(d) and 5.4(b) indicate the velocity distribution’s complexity in the capillary
wave region. Recently, as established in subsection 2.2.3, accurate models of
wave dynamics based on long wave theory have been published by Scheid et al.
(2006), Mudunuri & Balakotaiah (2006), Nguyen & Balakotaiah (2000) and
Ruyer-Quil & Manneville (2000). An essential assumption in their approach
concerns the degree of freedom of polynomials representing the crosswise dis-
tribution of streamwise velocity. Results in subfigures 5.3(b), 5.3(d) and 5.4(b)
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Figure 5.5: Simulated near-wall streamlines and streamwise velocity profiles at
the first capillary minimum in the developed region (case 8 in table
3.1): Re=15.0, Ka=509.5, f=16.0 Hz.

could serve as a physical justification of such modelling assumptions. Indeed, in
order to account for flow separation, polynomials representing the streamwise
velocity component should obviously be at least of third order. This is not the
case for lowest order models, which are based on a local approximation of the
velocity profile with a second order polynomial.

For the vertically falling liquid film (see capillary streamline evolution in
figure 5.2), figure 5.5 depicts streamwise velocity profiles (subfigure 5.5(b))
evaluated at different streamwise positions within the fully developed CSE
(visualised by the streamline pattern in subfigure 5.5(a)) as obtained from nu-
merical simulation. These profiles exhibit the same principle characteristics

as corresponding profiles for the inclined film flow (compare subfigure 5.5(b)
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5.1 Kinematics

with subfigure 5.4(b)) with two exceptions. Firstly, the velocity profile pass-
ing through the center of the CSE (x=55.98 mm) exhibits a maximal negative
value approximately ten times larger than the corresponding profile for the in-
clined liquid film. At this position, a considerable volume flux per unit width
of approximately 3 - 107% m?/s, yielding a local Reynolds number value of ap-
proximately 1, flows counter to the gravitational acceleration. Secondly, the
profile evaluated at the upstream separation point (x=55.83 mm) exhibits neg-
ative velocity values at a certain distance from the wall, which results from a

streamwise bulge in the shape of the open CSE.

In addition to the numerical data displayed in figure 5.5, corresponding ex-
perimental data measured with PIV and LDV in the optical setup were also
obtained for the vertically falling liquid film (i.e. the fourth case in table 4.2).
Figure 5.6 depicts liquid phase velocity vectors measured in the developed cap-
illary wave region using PIV. Different images capture the velocity field at
different times in the evolution of a surface wave. Thereby, the vector plots
are arranged in the order in which an observer would see the corresponding
wave regions pass by, starting with the second capillary minimum (subfigure
5.6(a)), followed by the first capillary maximum (subfigure 5.6(b)) and mini-
mum (subfigure 5.6(c)) and ending with the large wave front (figure 5.6(d)).
In each subfigure, a pictogram highlighting the considered region of the film is
included. Also, underneath each pictogram, a reference vector of adequately

chosen length is displayed.

Figure 5.6(a) depicts velocity vectors in the region of the second capillary
minimum, showing a strong deceleration and subsequent re-acceleration of the
flow in streamwise direction. This is evidenced by the small velocities at the
capillary minimum as well as the fact that upstream of the minimum, vectors
point away from the wall (9v/0y > 0 < Ou/Ox < 0) whereas they point
toward the wall further downstream (9v/dy < 0 <> du/dz > 0). The flow near
the first capillary maximum (see figure 5.6(b)) is accelerated and subsequently
decelerated as it approaches the second capillary minimum. Meanwhile, flow

velocities attain considerably larger values compared to figure 5.6(a).

In the region of the first capillary minimum, pictured in figure 5.2(h), velocity
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5.1 Kinematics

vectors clearly indicate the CSE in its open shape. This vector plot constitutes
the first clear experimental evidence of the existence of flow separation in the
capillary wave region of falling liquid films. A portion of the CSE is also seen
at the top of figure 5.6(b). Finally, figure 5.6(d) shows the velocity field in the
large wave, exhibiting significantly larger velocities than in all other regions.
The vector plot also shows that the crosswise velocity component is negligible
in the wave crest and only increases as the flow decelerates while approaching
the CSE.

Vector plots in figure 5.6 suggest a strong influence of the capillary wave
topology on the liquid phase velocity field. This can be more rigorously in-
vestigated on the basis of simultaneous streamwise velocity and film thickness
time traces, which were measured in the optical test setup, using LDV and the
CCI technique respectively. Figures 5.7, 5.8 and 5.9 depict such time traces
over several wave periods evaluated at five distinctive crosswise positions in the
vertically falling liquid film (for the fourth case in table 4.2). In these figures,
corresponding (i.e. for case 8 in table 3.1) film thickness and streamwise velocity
time traces obtained from numerical simulation are also plotted with the help
of solid lines. The reason for their inclusion stems from the inevitable small
streamwise shift between the LDV and CCI measurement positions evoked in
subsection 4.2.1. This spatial shift causes a time shift between the film thick-
ness and velocity time traces of approximately 2 ms. By plotting experimental
time traces such that their characteristic points match those of corresponding
numerical time traces (the latter were evaluated at exactly the same position
for film thickness and streamwise velocity), this small shift was corrected. This
correction is only applied here, as the correlation of film thickness and stream-
wise velocity is of interest. In subsequent sections, simultaneously measured
LDV and CCI data are presented in their raw form (see subsection 5.4 in partic-
ular). The same sequence of LDV time traces without the addition of numerical
data is displayed in figures 4.29 and 4.30 of subsection 4.2.2.

From the perspective of capillary flow separation, velocity and film thickness
time traces in the residual layer of the film, which are depicted in subfigures

5.7(a) to 5.8(b), are of most interest. These display two main characteristics.
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First and foremost, they exhibit negative values of the streamwise velocity
component in each wave at the position of the first capillary minimum. This
constitutes further clear experimental evidence of the existence of backflow in
falling liquid films. Thereby, the global minimum of the velocity time trace
is shown to decrease with increasing wall distance from y=40 pm to y=100
pm and to increase with wall distance between y=100 pm and y=160 pum, in
accordance with the streamwise velocity profile at x=55.98 mm in subfigure
5.5(b) (see also PIV vector plot in subfigure 5.6(c)).

Second, figures 5.7 and 5.8 show velocity and film thickness time traces to
be strongly correlated. This is most evident in the capillary wave region down-
stream of the main wave. There, velocity time traces oscillate in a similar
manner as the film thickness, each capillary extremal value being associated
with a corresponding extremal value in the velocity time trace. Meanwhile, the
amplitude of velocity oscillations increases with increasing wall distance sug-
gesting an increase in wave influence on the flow field. This will be explained
when addressing the effect of capillary flow separation on liquid phase scalar

transport in section 5.3.

Finally, figure 5.9 depicts velocity time traces at positions outside of the
residual layer. Accordingly, LDV time traces are characterized by intermittent
bursts of data points obtained as large waves pass through the LDV mea-
surement volume, separated by stretches without data when the measurement
volume lies in the gaseous phase. Correspondingly, numerical velocity data
were restricted to the liquid phase to allow for a clear comparison. The main
observation to be deduced from these plots is that film thickness and stream-
wise velocity are also strongly correlated within large waves. Indeed, velocity

time traces display a similar shape to that of the crests of these waves.

5.1.3 Vorticity field

A striking feature of the CSE as it occurs in the vertically falling liquid film
(see figure 5.2) is its open shape, with streamlines ending at the liquid-gas

interface. As mentioned previously, the possibility of such a scenario was in
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tour plot (including contour values) of the out of plane vorticity
component w, = Ov/0x — Ou/dy derived from the smoothed field.

principle established by Rood (1994), who investigated vortex interactions with
a free surface. Rood (1994) stated that when a vortex breaks up and attaches
to a free surface, interfacial vorticity transport takes place. In principle the
CSE region displayed in subfigures 5.6(c) and 5.5(a) fits this description, and
consequently, a detailed discussion of vorticity transport within this region is
included here.

For this, the out of plane vorticity component w,=0v/dz-0u/dy correspond-
ing to the velocity field pictured in subfigure 5.6(c) was evaluated. Contours of
w, are displayed in figure 5.10(b). For the calculation of w., the velocity field
of figure 5.6(c) was smoothed with a moving average filter (which takes into

account only the immediate crosswise and streamwise neighbours of a consid-
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5.1 Kinematics

ered data point), yielding the velocity plot displayed in figure 5.10(a)’. The
necessity of smoothing PIV velocity data in order to obtain vorticity fields was
discussed by Luff et al. (1999) and stems from the amplifiaction of measure-
ment errors as a result of numerical differentiation. The derivatives dv/dz and
Ou/dy were approximated by their first order central difference discretization
(forward or backward difference discretization was employed at the boundaries,
depending on available neighbouring data points). Because it is derived from
smoothed velocity data, the contour plot in figure 5.10(b) should be considered
only as a qualitative indicator of vorticity distribution in the CSE region.

It shows that the CSE is divided into two distinct vorticity regions (in what
follows the term vorticity shall be used to designate w.) which can be clearly
attributed to the mechanisms of vorticity generation at the wall (see e.g. Morton
(1984)) and the liquid-gas interface (see Wu (1995)) respectively. At the wall,
vorticity is generated by the resulting action of adverse streamwise pressure
derivative and gravitational acceleration and is instantly diffused into the liquid
film. Following Morton (1984) (see also Green (1996)) the local diffusional
vorticity flugt normal to the wall is then given by:

1 0p

P1 ax

-9, (5.1)

y=0

y=0

where the terms on the right hand side are responsible for the generation of
vorticity. In the CSE region, the resulting upstream pressure force on a fluid
element surpasses the downstream gravitational force?, which means that posi-
tive vorticity is generated at the wall (i.e. the right hand side of equation 5.1 is
positive). According to Lundgren & Koumoutsakos (1999), vorticity at the free
surface, assuming negligible tangential shear stress, is given by the following

TThe smoothed velocity vector field in subfigure 5.10(a) does not differ substantially from
the raw data in subfigure 5.6(c).

*This has a unit of flow rate per time and area (see e.g. Morton (1984)) and should be
understood as a diffusional flux contributing to a change in vorticity.

8This will be established in section 5.2.
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relation:
825/8x2
(14 (95/0)%)

3/2°

_ 5.2
i = (06/0z, —1,0)7 (96/02° +1) "%, (5.2)

N[=

F= (-1, —95/0z,0)" (95/02” +1)" 2,

where 77 and 7 form an orthonormal surface coordinate system in the z-y-plane
with 77 pointing into the liquid phase (as opposed to the system defined in 2.2,
and x designates the interface curvature. From the above equation it is clear
that interfacial vorticity in the CSE region should be negative, which concurs
with figure 5.10(b). In order to identify the generating source of this negative
vorticity, the normal vorticity flux at the interface is introduced (see Lundgren
& Koumoutsakos (1999) for a derivation):

Vit = i 7A) bwd7] - (ﬁ'%')Jr%ﬁ'prg*'F. (5.3)
Following Wu (1995), the net vorticity generation rate per unit interfacial area
can be determined from an interfacial vorticity balance as the sum of liquid-side
and gaseous-side diffusive vorticity fluxes, given by equation 5.3 (assuming that
the normal vector always points into the considered phase). In this balance all
right hand side terms of equation 5.3 except the tangential pressure derivative
cancel out, due to the continuity of velocity across the interface. The vorticity
generation rate is then given by the interfacial jump of the term (1/p)V - 7p
and thus has a baroclinic origin. Assuming, for simplicity, a constant pres-
sure in the gaseous phase, and considering the negative tangential liquid-side
pressure gradient (which follows from the positive streamwise pressure gradient
and the definition of the tangential coordinate according to equation 5.2), the

interfacial vorticity generation rate in the CSE region must be negative i.e.

TWhich has a unit of flow rate per time and area and should be understood as the source
feeding the vorticity fluxes.
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5.2 Governing dynamics

negative vorticity is produced at the interface and diffuses into both phases.
In summary, the CSE region is thus characterized by the cross diffusion and
partial annihilation of two vorticity fluxes of opposing sign generated at the
respective crosswise boundaries. Wu (1995) proposed an alternative to the
concept of annihilation of vorticities of opposing sign (introduced by Morton
(1984)), preferring to describe the process as the dissipation of enstrophy (i.e.
one half the volume integral of the square of vorticity) between the wall and

the free surface.

5.2 Governing dynamics

From elaborations concerning the kinematics of capillary flow separation in sec-
tion 5.1, it is clear that this phenomenon is quite similar to “classical” boundary
layer separation of wall-bounded single-phase flows (see e.g. Prandtl (1961) and
Sychev (1998)) at least in the early stages of its development (see subfigures
5.1(a) to 5.1(g) and 5.2(a) to 5.2(c)). This also holds for the developed state
of the phenomenon if the CSE stays contained within the liquid film’s residual
layer, as is the case for the inclined film in subfigure 5.1(h). If however, the CSE
outgrows the local film thickness, as is the case for the vertically falling liquid
film in subfigure 5.2(h), this similarity is no longer valid and considerably dif-
ferent kinematics take hold. Indeed, as discussed in subsection 5.1.1 regarding
the break-up of the CSE and in subsection 5.1.3 regarding capillary vorticity
transport, kinematics are considerably altered by the interaction between CSE

and interface.

An even more important difference with respect to “classical” boundary layer
separation concerns the governing dynamics of capillary flow separation. While
the driving cause of boundary layer separation is an adverse pressure gradient
imposed by the external flow, falling liquid films under investigation in this
thesis flow in a largely quiescent gaseous atmosphere (any flow developing in
the gaseous phase is driven by the liquid film and confined to the interfa-
cial region), which is virtually unbounded on the far-field side. Consequently,

the driving cause for capillary flow separation cannot stem from the external
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5 Capillary flow separation

gaseous phase and therein lies the difference with “classical” boundary layer
separation. Accordingly, it is the goal of this section to establish the distinct
governing dynamics of capillary flow separation in laminar falling liquid films.
This will be done on the basis of numerical data for the two cases also treated
in section 5.1, i.e. an inclined (see case 1 in table 3.1 and figure 5.1) and a verti-
cally falling (see case 8 in table 3.1 and figure 5.2) liquid film, since these permit
an evaluation of liquid phase forces, wich were not experimentally accessible.

The occurrence of flow separation in falling liquid films, especially in the case
of a vertical arrangement, is at first unexpected, since this means that liquid
flows in the direction opposite to gravity, which accelerates the film downward
in the first place. Thus, the principal question to be answered concerns the
force causing such flow reversal. Obviously, this force must act in upstream
direction. Considering that the wall parallel component of the gravitational
force acts in downstream direction and that viscosity forces are inner forces,
only the resulting pressure force on a fluid element can be retained as such' (see
the illustration on the right hand side of figure 5.11). Moreover, since capillary
flow separation initiates at the bounding wall, it is the wall distribution of
static pressure, that is of principal interest. Accordingly, one can conjecture
that capillary flow separation must be caused by a positive streamwise wall
pressure derivative occurring in the capillary wave region. The elucidation of
the mechanism generating this positive pressure derivative represents one of
the main contributions of this thesis. In order to explain it, the nature of the
relation between liquid phase static pressure and interface topology is recalled
here. This relation is given by the normal coupling condition (see equations 2.4
and 2.17) between liquid and gaseous phase, which was previously introduced

in section 2.1.

For considerations in the capillary wave region, the normal coupling condi-
tion can be considerably simplified. Indeed, in this region, it can be assumed
that contributions of pressure and surface tension forces are dominant. This

follows from the large Kapitza number values exhibited by the employed work-

TSoluto-capillary and thermo-capillary forces were previously excluded from investigations
in the context of this thesis.
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ing liquids, meaning that capillary forces dominate viscous forces. Further, as
established in subsection 5.1.2 in regard to subfigure 5.5(b), the local Reynolds
number value at the first capillary minimum is of order unity’. Bearing in
mind that We = 32 Ka Re™%/3, the above established conditions (Ka > 1,
Re =~ 1) signify that the local Weber number in the capillary wave region
is large (We =~ 700 for conditions represented in subfigure 5.5(b)). As can
be deduced from the dimensionless form of the normal coupling condition in
equation 2.17 (if local length and velocity scales are introduced), this formally
establishes that viscous terms can be neglected. The interfacial pressure jump
being the only other remaining term (neglecting the effect of viscous forces in

the gaseous phase), it must have the same magnitude as the capillary term.

Introducing the above assumptions and assuming negligible pressure varia-
tions in the gaseous phase, the normal coupling condition in equation 2.4 yields
the following simple relation between the streamwise derivative of interfacial

liquid pressure and the film thickness:

Opi Ok 826/8302
- %o T e 5.4
ox ox (1+(%)2)3/2 (5.4)

or in dimensionless form:

Opf  eWe O™ o €0*6* J0x*?
T 313 Gy’ = L oN3/2° 5.5
ox 3 ox (1 L (gi*)Q) (5.5)

According to this relation, the interfacial liquid pressure distribution in falling
liquid films is imposed by surface tension forces, attaining influence due to a
wave-induced distortion of the interface, the degree of which is expressed by

the streamwise derivative of interface curvature k.

The physical mechanism underlying equation 5.4 results from the interfa-
cial pressure jump caused by tensile forces, which was previously discussed

in section 2.2.1, regarding capillary waves on a horizontal liquid layer, and is

f“Inertial” and viscous forces are thus of the same magnitude and both dominated by
surface tension forces.
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Figure 5.11: Sketch illustrating the relation between interface topology and lig-
uid phase static pressure given by equation 5.6.

given by equation 2.24. A corresponding illustration pertaining to falling liquid
films is provided on the right hand side of figure 5.11. According to this, the
interfacial pressure jump (from liquid to gas) must act in opposition to tensile
forces to maintain the interface’s distortion. Consequently, it is negative in a
wave hump and positive in a wave trough (as illustrated in figure 2.2). Neglect-
ing pressure variations in the gaseous phase, this means that liquid pressure
increases from wave trough to wave hump. As a result, assuming a streamwise
succession of wave trough and wave hump, this yields a positive (or adverse)
streamwise pressure derivative. Or, in other words, a resulting pressure force
directed upstream. At the same time, the streamwise change in interface curva-
ture from positive in the wave trough to negative in the wave hump is negative,
which is in accordance with equation 5.4. However, in the case of a smooth
film 0k/0z = 0, leading to a constant interfacial liquid pressure. Finally, as
can be deduced from equation 5.5, the coupling between interface distortion

(0™ /0z™) and pressure derivative (Op;/Ox™) is scaled by the Weber number,
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5.2 Governing dynamics

which consequently is one of the governing dimensionless groups of capillary

flow separation.

In falling liquid films, the interfacial pressure distribution is largely imposed
on the bounding wall, due to the mainly hydrostatic nature of crosswise pres-
sure variations, as established by Malamataris et al. (2002). Indeed, result-
ing from relatively small crosswise velocity values in most parts of the liquid
film’s capillary wave region (see vector plots in figure 5.6), the pressure term
and the gravitational term are dominant in the crosswise momentum equa-
tion. Admittedly, these dynamical conditions are altered somewhat by the
CSE, as evidenced by the vector plot in subfigure 5.6(c) and the corresponding
streamline plot in subfigure 5.5(a) (see also PIV data in subfigure 5.36(d) of
section 5.4). These show that, in the vicinity of the separation streamlines
bounding the CSE in streamwise direction, velocity vectors point in crosswise
direction, leading to a larger contribution of crosswise “inertial” and viscous
forces, and challenging the assumption of a purely hydrostatic crosswise pres-
sure variation. Indeed, Malamataris et al. (2002) observed deviations from the
hydrostatically predicted wall pressure minimum at the first capillary mini-
mum, where, as established in subsection 5.1.1, the CSE develops, showing the
actual wall pressure to be larger. However, this deviation was rather small for
most flow conditions and confined almost discontinuously to the position of
the pressure minimum. Meanwhile, the rest of the capillary pressure distribu-
tion closely followed the hydrostatic prediction. Consequently, the streamwise
modulation of interfacial pressure is close to preserved at the wall. Moreover,
the direction of causality between pressure distribution and capillary flow sep-
aration is clear, the pressure distribution being the cause and flow separation
the effect. Therefore, when considering the inception of the CSE, assuming
the wall pressure distribution to be imposed by the corresponding interfacial

pressure distribution (allowing for hydrostatic variation) is admissible.

In summary, for the purpose of explaining the governing dynamics of cap-
illary flow separation, it can be stated that the liquid pressure distribution
(and more specifically the wall pressure distribution) in the capillary wave re-

gion of falling liquid films is largely imposed by the interfacial topology there.
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5 Capillary flow separation

Thereby, the streamwise derivative of wall pressure is approximately given by

the corresponding streamwise derivative of interfacial pressure:

| Lom __ on

oz |,_, T o oz (5:6)

Consequently, the sign and absolute value of the streamwise wall pressure
derivative (for a given liquid) are defined by the streamwise derivative of the

interface curvature.

Therewith, a potential cause for the adverse streamwise wall pressure deriva-
tive, conjectured to be at the root of capillary flow separation in falling liquid
films, has been identified. It is a negative streamwise derivative of interface
curvature. In order to assess the occurrence of such conditions (conducive to
flow separation) in falling liquid films, figures 5.12 and 5.13 illustrate stream-
wise distributions of wall pressure and film thickness (subfigures 5.12(b) and
5.13(b)) as well liquid phase contour plots of the streamwise velocity compo-
nent (subfigures 5.12(a) and 5.13(a)) over one wavelength for the inclined and
vertically falling liquid film respectively. To be precise, the difference between
wall pressure py,—o and a gaseous phase reference pressure p,=101325 Pa is
plotted in subfigures 5.12(b) and 5.13(b) for convenience!. A qualitative repre-
sentation of typical (for the liquid films considered in this thesis) wall pressure
and film thickness distributions is also plotted on the left hand side of figure
5.11.

From this figure as well as subfigures 5.12(b) and 5.13(b) it is evident that
the general interface topology of solitary waves with preceding capillary waves
exhibits several regions with a positive (or adverse) streamwise wall pressure
derivative, which are thus conducive to flow separation. First of all, this is the
case for the wave back, where the interface curvature changes slightly from pos-
itive to negative while approaching the wave crest. Correspondingly, a slight
increase in wall pressure is evident there. A much stronger streamwise increase

of wall pressure arises between the first capillary minimum and first capillary

tSimilar plots were previously introduced in section 2.3 in the form of figures 2.17(b) and
2.17(c).
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Figure 5.12: Wave topology, streamwise velocity contours and corresponding
wall pressure difference (Ap = p|,_, — p:) distribution for case 1.

maximum. This drastic increase results from the small length of the first cap-
illary wave and the large curvature magnitude of its wave trough and wave
hump, both characteristics contributing to a large negative streamwise deriva-
tive of interface curvature. The region between the second capillary minimum
and maximum also displays a strong adverse wall pressure derivative, which
is larger than that in the wave back yet considerably smaller than that in the
first capillary wave. Based on the nature of capillary waves and the relation
in equation 5.6 it can be extrapolated that a positive wall pressure derivative
occurs in every capillary wave. It can therewith be concluded that the capillary
wave region, and especially the first capillary wave, is the most conducive to
flow separation in falling liquid films, which is in accordance with the kinematic
observations in figures 5.1, 5.2 and 5.6, which show the CSE to develop exactly
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Figure 5.13: Wave topology, streamwise velocity contours and corresponding
wall pressure difference (Ap = p|,_, — p:) distribution for case 8.

there.

A comparison of subfigures 5.12(b) and 5.13(b) yields another interesting
observation. Indeed, the increase in wall pressure from first capillary minimum
to first capillary maximum is significantly larger (approximately by a factor of
3) for case 8 compared to case 1, which can be explained on the basis of equation
5.6. According to this, the fact that the surface tension for case 8 is larger than
for case 1 by a factor of 2.2 (see table 3.2) accounts for the major share in
the increase. The rest stems from a smaller capillary wavelength for case 8,
the curvature at the first capillary extrema being approximately equal for both
cases. In the rest of the capillary wave region the wall pressure distribution for

case 8 also displays stronger modulations than for case 1, which corresponds
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5.2 Governing dynamics

to stronger modulations of the streamwise velocity component as illustrated in
subfigures 5.12(a) and 5.13(a).

In order to asses the above elaborations in greater detail, dynamical con-
ditions in the capillary wave region for the two representative falling liquid
films, i.e. cases 1 and 8 in table 3.1, will be investigated quantitatively in the
remaining part of this section. Figures 5.14(a), 5.15(a) and 5.16(a) depict
streamwise distributions of film thickness and static wall pressure difference
Ap = p|y:0 — pr for the inclined liquid film (case 1 in table 3.1) at points
in time corresponding to the streamline plots in subfigures 5.3(a), 5.3(c) and
5.4(a). This permits an assessment of the adverse wall pressure derivative in
the first capillary wave as the latter develops over time. Indeed, an increase in
the pressure derivative’s magnitude is clearly discernible in the succession of
subfigures 5.14(a), 5.15(a) and 5.16(a) as the capillary waves grow. This evo-
lution concurs with the episodes of flow deceleration, CSE nucleation and CSE
growth illustrated in subfigures 5.3(a), 5.3(c) and 5.4(a). However, in order to
assess the possibility of flow separation, it does not suffice to investigate the
pressure distribution along the wall. Rather, the resulting streamwise pressure
force acting on a fluid element (given by — dp/0z|,_,) must be compared to
the streamwise component of the gravitational force (given by pi gz), as illus-
trated on the right hand side of figure 5.11. Only if the former surmounts
the latter, the resulting streamwise external force acts in upstream direction,
enabling flow deceleration and eventually flow reversal and separation. Or, in

terms of a quantitative criterion:

op* S 2 ga /gy

Oz, _ eFr?’ (5.7)

op
95 y: > p1gz Or

0 0

Expressing the pressure derivative in terms of the interface curvature according
to equation 5.6 then yields the following condition:

© - 2
8n<72g or ai< 1/3_29x/gy

oz o oz e2Fr2We' (5.8)

Consequently, the dimensionless groups scaling capillary flow separation are the
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Figure 5.14: Numerical data corresponding to streamlines in figure 5.3(a). (a):
static wall pressure difference and film thickness for one wave;
(b): dimensionless wall shear stress and force ratio ¥ at the first
capillary minimum (note the change in ordinate scale).

Weber number We, the Froude number Fr and the ratio g. /gy, which defines the
film’s inclination’. The above criterion is merely necessary and not sufficient,
as the effect of viscous forces is not accounted for. However, its general form
is correct, since viscous forces would only influence its quantitative threshold.

In order to assess the fulfillment of this criterion by the pressure distribu-
tions in subfigures 5.14(a), 5.15(a) and 5.16(a), the ratio ¥ of resulting stream-
wise pressure force per unit volume (evaluated at the wall) — dp/0z|,_, to

streamwise gravitational force per unit volume p; g, as well as the dimensionless

T Alternatively, gz /gy can be expressed in terms of Re and Fr.
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Figure 5.15: Numerical data corresponding to streamlines in figure 5.3(c). (a):
static wall pressure difference and film thickness for one wave;
(b): dimensionless wall shear stress and force ratio ¥ at the first
capillary minimum (note the change in ordinate scale).

streamwise wall shear stress 7y, :

" 2 ou”
U=-— o1 9,

Twa = 55 -
ox|,_, Re oy*|,._,

(5.9)

are plotted in figures 5.14(b), 5.15(b) and 5.16(b) for the points in time corre-
sponding to figures 5.14(a), 5.15(a), and 5.16(a). Thereby, if ¥<-1 condition
5.7 is fulfilled. Subfigures 5.14(b), 5.15(b) and 5.16(b) show that ¥ falls be-
low —1 only in the capillary wave region, which consequently is the only one
where flow separation can take place. Indeed, ¥<-1 occurs in the first capillary

wave for all three points in time. Thereby, the minimal value of ¥ decreases
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Figure 5.16: Numerical data corresponding to streamlines in figure 5.4(a). (a):
static wall pressure difference and film thickness for one wave;
(b): dimensionless wall shear stress and force ratio ¥ at the first
capillary minimum (note the change in ordinate scale).

drastically as the capillary waves grow more pronounced (compare subfigures
5.14(b), 5.15(b) and 5.16(b)). This confirms that it is the adverse pressure
pressure distribution exhibited by subfigures 5.14(a), 5.15(a) and 5.16(a), that
causes the episodes of flow deceleration, CSE nucleation and CSE growth shown
in subfigures 5.3(a), 5.3(c) and 5.4(a).

However, flow separation, evidenced by a sign change in the dimensionless
wall shear stress 7., does not occur as soon as ¥<-1. Indeed, subfigure 5.14(b)
does not exhibit flow separation at all although ¥ attains a minimal value
of approximately -5. Further, at the upstream separation point (defined by
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5.2 Governing dynamics

Twz=0) in subfigure 5.15(b), ¥ is significantly inferior to -1. This delay is
caused by the effect of viscous forces, which are not accounted for in inequality
5.7. Granted, as long as the second order derivative of the streamwise velocity
component at the wall (82u/8y2’y:0) is negative (as is the case at t=163.02
mm in subfigure 5.3(b)), the resulting viscous force on a fluid element acts
upstream and thus supports flow reversal. However, the path to flow separation

leads through a sign change of 82u/8y2|y: as evidenced by the streamwise

evolution of velocity profiles in subfigures 5.%(d) and 5.4(b). Consequently, as
soon as 0%u/0y> ]y:0>0, the resulting viscous force acts counter to the adverse
pressure derivative and represents an additional! finite threshold the latter
needs to surmount in order for flow separation to occur. For the point in time
represented by subfigures 5.14(b) and 5.3(b) this does not occur as the resulting
upward external force is compensated by the resulting downward viscous force
arising from the positive curvature of near-wall velocity profiles (see profiles at

£=163.46 mm and 2—163.68 mm in subfigure 5.3(b)).

Similarly, the positive second derivative §%u/dy> ‘y:O near the upstream sep-
aration point in subfigure 5.3(c) (see corresponding velocity profile at z=166.19
mm in subfigure 5.3(d)) is relatively large, necessitating a lower value for ¥, as
evidenced by subfigure 5.15(b).

However, once the CSE is developed (see subfigures 5.4(a), 5.4(b) and 5.16(b)),
the criterion W=-1 is closely met at the upstream separation point. This re-
sults from the shape of the developed CSE in subfigure 5.4(a), which displays
a steepened separation streamline at its upstream front. Indeed, the corre-
sponding velocity profile at the upstream separation point (x=202.22 mm in
subfigure 5.4(b)) exhibits an almost vanishing curvature at the wall, reducing
the effect of viscous forces there. To be precise, ¥ is slightly larger than -1
at the upstream separation point, which can be attributed to inertia. Indeed
tracking a near-wall fluid element in subfigure 5.4(a) as it approaches the sepa-
ration point from below, the latter does not suddenly reverse its flow direction
as soon as it enters the region where ¥>-1 (i.e. where a resulting downstream

force acts upon it), but requires a certain time for deceleration.

TIn addition to that represented by gravity.
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5 Capillary flow separation

Finally, it must be considered that a fluid element flowing downstream is
exposed to the adverse pressure gradient caused by the capillary waves only for
a limited time span, since the wave celerity is larger than the fluid velocity in
the residual layer’. Thus, the resulting adverse force acting on a fluid element
must be sufficiently large to decelerate the latter to the point of flow reversal
and beyond within this short time span in order for flow separation to occur. A
detailed investigation of this aspect would be highly interesting as it is specific
to flow separation in falling liquid films. However, this must be deferred to

future work, as it exceeds the scope of this thesis.

To conclude this section, a dynamical analysis of flow separation in the verti-
cally falling liquid film (case 8 in table 3.1) is performed next. Therein, rather
than rigorously repeating the quantitative analysis performed for the inclined
film, two further aspects will be discussed. First, it will be established to what
extent the streamwise distribution of ¥ can explain the PIV vector plots in the
capillary wave region depicted in figure 5.6. Second, the break-up and subse-
quent “contraction” of the CSE as it interacts with the interface (see subfigures
5.2(d) to 5.2(f)) will be analysed from a dynamical perspective.

Subfigures 5.17(a), 5.18(a), 5.19(a) and 5.20(a) depict liquid phase velocity
vectors evaluated from numerical data for the four characteristic regions also
represented in figure 5.6, i.e. the second capillary minimum, the first capillary
maximum and minimum and the wave front. First of all, comparing experi-
mental and numerical vector plots, good agreement between the two data sets
can be established?. In subfigures 5.17(a), 5.18(a), 5.19(a) and 5.20(a), con-
tours of the liquid pressure difference Ap = p — p, are additionally displayed
in order to assess the capillary effect driving flow in the capillary wave region.
These contours show, in accordance with equation 2.24, positive pressure dif-
ferences in the wave humps and negative values in the wave troughs as well as

the resulting pressure gradients between these regions.

In order to evaluate the resulting driving external force on a fluid element,

TA detailed discussion of this aspect will be presented in section 5.3.
*Numerical data were scaled the same way as corresponding PIV data to facilitate com-
parison.
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Figure 5.17: Simulated liquid phase velocity vectors and pressure contours as
well as streamwise distribution of the force ratio ¥ for case 8: first
capillary minimum.

streamwise distributions of the force ratio ¥ and the film thickness, correspond-
ing to subfigures 5.17(a), 5.18(a), 5.19(a) and 5.20(a) are plotted in subfigures
5.17(b), 5.18(b), 5.19(b) and 5.20(b) respectively.

The U-distribution in the region of the first capillary minimum (where the
CSE occurs) exhibits two interesting features (see subfigure 5.17(b)). First,
U attains a minimum of approximately -16, which is 2.5 times lower than the
corresponding value for the inclined film (see subfigure 5.16(b)). This follows
from the significantly larger (by a factor of 3.5) adverse pressure derivative
as discussed in regard to figures 5.12(b) and 5.13(b), the effect of which is
partially mitigated by the larger (by a factor of 1.7) streamwise component of
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Figure 5.18: Simulated liquid phase velocity vectors and pressure contours as
well as streamwise distribution of the force ratio ¥ for case 8: wave
front.

gravitational acceleration. These conditions explain the significantly “stronger”
backflow exhibited by the vertically falling liquid film, as evidenced by the
velocity profiles in subfigure 5.5(b) (compare to profiles in subfigure 5.4(b)).
Moreover, they explain the larger crosswise size of the CSE. Indeed, as W'
attains smaller values for the vertical film, “faster” fluid elements traveling
further from the wall can be decelerated to the point of reversal and beyond
during the transition time of the capillary wave region.

Second, the upstream separation point identifiable in subfigure 5.17(a) lies
significantly farther upstream than the point at which ¥=-1 (see subfigure

TAlthough ¥ is defined at the wall it is representative for the film’s cross section due tot
he hydrostatic nature of crosswise pressure variations.
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Figure 5.19: Simulated liquid phase velocity vectors and pressure contours as
well as streamwise distribution of the force ratio ¥ for case 8:
second capillary minimum.

5.17(b)). This follows from the inertial effect discussed with respect to the
inclined film. In the vertically falling film this effect is stronger, since fluid
elements traveling upward in the CSE exhibit a significantly larger (by a factor
of 14) velocity (compare subfigures 5.5(b) and 5.4(b)).

In the region of the wave front (see figure 5.18), ¥ exceeds -1 over the entire
displayed length, attaining its maximum slightly upstream of the wave trough.
At this position, rather surprisingly, the flow is decelerated instead of being
accelerated, as opposed to the rest of the region farther upstream. This is due
to the effect of the CSE, which to a certain degree extends upstream. By way of
explanation, at the separation streamline of the CSE (see subfigure 5.5(a)), two
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Figure 5.20: Simulated liquid phase velocity vectors and pressure contours as
well as streamwise distribution of the force ratio ¥ for case 8: first
capillary maximum.

flows impinge on one another. One approaches from the wave front above and
the other from the CSE below. Thus, the streamwise position of the separation
streamline depends on the momentum’ of these respective flows. In the case
considered here, the momentum of the CSE dominates, resulting from the fact
that the magnitude of the ¥-distribution’s minimum Wi, ~ —16, which lies in
the CSE region (see subfigure 5.17(b)), is larger than that of the distribution’s
maximum Wp,.x &~ 14, which lies in the region of the wave front (see 5.18(Db)).
In other words, the cause driving the upward flow from below is stronger than
that driving the downward flow from above.

TMore precisely, the associated inertia.
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Figure 5.21: Streamlines in the capillary wave region and streamwise distribu-
tion of the force ratio ¥ for simulation case 8: ¢=2.97000 s.

In the regions of the second capillary minimum and first capillary maxi-
mum, as displayed in subfigures 5.19(b) and 5.20(b), the magnitude of the
W-distribution’s local extrema is considerably smaller than for the two other
regions (subfigures 5.17(b) and 5.18(b)). This leads to an increase in the ef-
fect of inertia, as evidenced by the shift between the flow’s state of acceleration
(discernible in subfigures 5.19(a) and 5.20(a)) and the corresponding value of ¥
(discernible in subfigures 5.19(b) and 5.20(b)). In other words, the flow in these
regions cannot adapt sufficiently fast to new dynamical conditions imposed by

the propagating wavy interface.

Finally, subfigures 5.21(a), 5.22(a), 5.23(a) and 5.24(a) depict streamlines in
the entire capillary wave region for points in time corresponding to subfigures
5.2(d) to 5.2(g). These show the initial break-up, re-“contraction” and final
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Figure 5.22: Streamlines in the capillary wave region and streamwise distribu-
tion of the force ratio ¥ for simulation case 8: ¢=2.98250 s.

break-up of the CSE, which were discussed in section 5.1.1. In order to assess
the cause for this change in CSE topology, corresponding streamwise distri-
butions of film thickness and force ratio ¥ are plotted in subfigures 5.21(b),
5.22(b), 5.23(b) and 5.24(b). Thereby, only the region surrounding the first
capillary minimum is displayed. It is clear from these subfigures that the ini-
tial break-up is caused by the growth of the CSE, which is driven by a decrease
in the minimum of the force ratio ¥ (from -4 to -7) as evidenced by subfig-
ures 5.21(b) and 5.22(b). However, for all subsequent time steps, the value
of Wnin stays unchanged. Consequently, the closing of the CSE, the result of
which is displayed in subfigure 5.23(a), cannot stem from a contraction on its
part. Indeed, comparing the film thickness distributions in subfigures 5.22(a)
and 5.23(a), it is evident that the change in CSE topology is caused by a
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Figure 5.23: Streamlines in the capillary wave region and streamwise distribu-
tion of the force ratio ¥ for simulation case 8: {=2.99500 s.

film thickness increase at the first capillary minimum. This increase coincides
with the growth of the second capillary wave (compare subfigures 5.22(a) and
5.23(a)) and is reversed once the capillary topology is established and the CSE
has reached its final open shape (see subfigure 5.24(a)).

5.3 Effect on wall-side heat transfer

In the context of the literature review presented in section 2.3.2, it was estab-
lished that wall-side heat and mass transfer to a liquid film are intensified by
surface waves. Specifically, the reader is referred to the reviews by Seban &
Faghri (1978) and Alekseenko et al. (1994) as well as landmark investigations
by Wilke (1962), Oliver & Atherinos (1968), Frisk & Davis (1972), Brauner &
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Figure 5.24: Streamlines in the capillary wave region and streamwise distribu-
tion of the force ratio ¥ for simulation case 8: ¢=3.02000 s.

Moalem Maron (1982) and Miyara (1999). Moreover, detailed experiments and
numerical simulations have demonstrated that a drastic increase of the wall-
side transfer coefficient occurs at the first capillary minimum for flow regimes
exhibiting a pronounced capillary wave region (see the works of Adomeit et al.
(2000), Miyara (2001), Kunugi & Kino (2005) and Schagen et al. (2006)). Fi-
nally, a number of investigations regarding interfacial transfer to falling liquid
films have shown that the intensifying effect of waves is much stronger for this
scenario as compared to wall-side transfer (see the reviews by Seban & Faghri
(1978) and Alekseenko et al. (1994) as well as the works of Yoshimura et al.
(1996) and Rastaturin et al. (2006)).

It is with these last two points in mind that the effect of capillary flow sep-
aration on wall-side heat transfer is investigated in this section. In accordance
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Figure 5.25: Simulated temperature contours in a single wave in the hydrody-
namically and thermally developed region of the liquid film for
cases 1 and 8.

with previous sections, this will be done on the basis of two representative flow
regimes, namely cases 1 and 8 in table 3.1. For these two cases, heat trans-
fer simulations were performed for a single set of thermal boundary conditions.
These are quantified in table 3.5 along with thermal properties of the respective
working liquids. Importantly, the case of constant wall temperature was inves-
tigated here. Numerical results of the two simulations are presented in figures
5.25 and 5.26 in the form of liquid phase temperature contours (5.25(a) and
5.25(b)) and profiles (5.26(a) and 5.26(b)) within a single surface wave evalu-
ated in the hydrodynamically and thermally developed region of the film. In
figure 5.25 it can be discerned that near-wall temperature contours are signifi-
cantly distorted at the first capillary minimum for both investigated cases. This

distortion occurs from above in the sense that near-wall temperature contours
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Figure 5.26: Simulated temperature profiles in a single wave in the hydrody-
namically and thermally developed region of the liquid film for
cases 1 and 8.

are compressed by a region of lower temperature gradient near the interface.
Thereby, the extent of the compression decreases with decreasing wall distance
and is barely discernible very close to the wall. This is also evident in the cor-
responding temperature profiles at =198.0 mm and x=>56.0 mm (displayed in
subfigures 5.26(a) and 5.26(b)) respectively, which exhibit a crosswise deriva-
tive diminishing with wall distance. Meanwhile, the crosswise derivative at
the wall is greatest at the position of the first capillary minimum. Thus, it
can be concluded that the numerical data represented in figures 5.25 and 5.26
are in accordance with the two characteristics of liquid phase scalar transfer

accentuated at the start of this section.

Based on the streamline plots illustrated in subfigures 5.4(a) and 5.5(a) cor-

responding to subfigures 5.25(a) and 5.25(b), which show a drastic effect of
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5.3 Effect on wall-side heat transfer

the CSE on the velocity field in the region of the first capillary minimum, it
is to be expected that the above described temperature field distortion in this
region is caused by the capillary flow separation. Under this assumption, the
underlying transport mechanism responsible for the transfer intensification is
that of convection. Consequently, in the remainder of this section, the effect of
the CSE on liquid phase convective transport as well as the resulting wall-side

transfer characteristics will be investigated in greater detail.

As discussed in subsection 2.3.2, the conjecture that small eddies preceding
large waves could be responsible for the intensification of scalar transfer to wavy
liquid films has been proposed by a number of researchers (see e.g. Portalski
(1964a) and Kunugi & Kino (2005)). Without attempting a detailed explana-
tion of the underlying mechanism, it was assumed that such eddies would mix
the liquid in the capillary wave region and thus increase the driving potential
for scalar transfer. This conforms with an Eulerian view of the liquid phase
velocity field, which has been duly employed in this thesis to introduce the
kinematics of capillary flow separation and the associated CSE. In this view,
the capillary flow separation is characterized by an eddy (the CSE) made up of
annular streamlines and, consequently, one would assume that the associated
mixing length is of the order of the eddy’s size.

However, such an Eulerian view of the phenomenon does not account for
an important aspect of wavy liquid films. Indeed, because the wave celerity is
larger than the mean flow velocity in the residual layer, surface waves repeatedly
pass over fluid elements traveling there. Consequently, the latter are subjected
to the CSE’s kinematics only for a more or less short transition period during
which the capillary wave region passes over their current position. Conversely,
this means that fluid elements are not trapped in the CSE but are rather
swept-up and shed by it as it passes through. Thus, in order to elucidate the
CSE’s influence on liquid phase convective transport, it seems more promising

to adopt a Lagrangian view of capillary flow separation.

Accordingly, figures 5.27 and 5.28 display the temporal evolution of fluid
element pathlines in the residual layer of the liquid film for case 1. Thereby,

subfigures 5.27(a) to 5.28(a) show the pathlines at five different points in time
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Figure 5.27: Simulated fluid element pathlines in the residual layer for case 1

(calculated from the starting time t=2.075625 s) at different time
points during the transition of the first capillary minimum.
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Figure 5.28: General and close-up view of pathlines (calculated from the start-
ing time t=2.075625 s) for case 1 at t=2.103075 s , exhibiting
“hook” and “loop”-shaped distortions caused by the CSE.

during the transition of the first capillary minimum through a constant stream-
wise interval stretching from £—=196.68 mm to —199.68 mm (which lies in the
hydrodynamically and thermally developed region of the film). In each subfig-
ure, the corresponding instantaneous film thickness distribution in this region
is also displayed. These distributions show the first capillary minimum enter-
ing the displayed region at t=2.090925 s (subfigure 5.27(a)) traveling across it
between t=2.090925 s and t=2.097450 s (subfigures 5.27(a) to 5.27(d)) and hav-
ing left it at t=2.103075 s (subfigure 5.28(a)). Pathlines where calculated from
starting points equidistantly distributed in crosswise direction at z=196.68 mm
on the basis of instantaneous numerical velocity data stored at 54 time steps
between t=2.075625 s and t=2.103075 s.

The pathline sequence shows fluid elements describing “loop”- or “hook”-
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5 Capillary flow separation

shaped trajectories as the first capillary minimum passes over their position,
depending on their wall distance at the time the CSE attains their position'.
Fluid elements traveling above the CSE center (which according to subfigure
5.4(a) is approximately positioned at y=0.1 mm) follow “hook”™shaped path-
lines since they do not encounter flow reversal as opposed to near-wall elements,
which follow “loop"-shaped pathlines. Since the “loop”-shaped distortions are
extremely small, a close-up view of the near-wall region is represented in sub-
figure 5.28(b). This shows pathlines calculated from starting points distributed
over a considerably shorter crosswise distance at £=196.70 mm over the same

time interval as pathlines in subfigure 5.28(a).

Due to the decrease in flow velocity toward the wall, trajectories of fluid
elements traveling near the wall are influenced at an earlier stage by the pass-
ing waves compared to those of fluid elements traveling further from the wall.
Hence, the streamwise position of the characteristic “loops" or “hooks" moves
downstream as the wall distance of the pathline starting point increases. More-
over, pathlines increase in length as the wall distance increases, since “faster”
fluid elements travel farther during the displayed time interval (i.e. t=2.075625
s to t=2.103075 s).

The “loop”- and “hook”-shaped pathline distortions cause fluid elements to
approach the wall and subsequently move away from it, which results from the
streamline pattern of the CSE (see subfigure 5.4(a)). Indeed, fluid elements
engulfed by the CSE are first exposed to streamlines oriented in the direction of
the wall (causing them to approach it) and subsequently to streamlines leading
away from the wall (causing them to move away from it) after having passed
a point of vanishing crosswise velocity component. Thereby, the crosswise
dimension of “loop”™- or “hook”-shaped pathline distortions represents the local
mazing length [.

Subfigures 5.27(a) to 5.28(b) show that the mixing length increases with
the wall distance of the pathline starting position. This also results from the

above established increase in streamwise velocity with wall distance. Indeed,

TA streamline plot showing the CSE in its developed state was previously introduced in
the form of subfigure 5.4(a).
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5.3 Effect on wall-side heat transfer

with decreasing relative streamwise velocity between a considered fluid element
and the passing capillary wave', the exposure time of the fluid element to the
kinematics of the CSE, and in particular those regions exhibiting large crosswise
velocity, increases. This effect on the local mixing length | can be expressed

with the following relation:

Ac
(c—u)’

I = 17Atz%f; (5.10)

N | =

where ¢ designates the characteristic crosswise velocity induced by the CSE,
c signifies the wave celerity, u the local streamwise velocity component prior
to the wave transit, which approximately satisfies a quadratic profile in the
residual layer (as established in subsection 2.3.1) and A. the capillary wave
length, which approximately defines the streamwise extent of the CSE. This
simple relation, in addition to the pathline sequence in subfigures 5.27(a) to
5.28(b), allows to explain the two observations regarding scalar transfer to
liquid films accentuated at the onset of this section. First, the CSE clearly
induces crosswise convective transport toward and subsequently away from the
wall, whereby the resulting mixing length scales with the characteristic cross-
wise velocity ¥ and wavelength Ac of the CSE. Second, the near-wall mixing
length is far smaller than the one close to the interface, as [ scales inversely with
¢ — u. Consequently, the effect of the CSE on scalar transport is much larger
near the interface. Importantly, the mixing length is in general significantly
smaller than the size of the CSE.

In order to assess the consequences of the CSE induced transport intensi-
fication for wall-side heat transfer, figure 5.29 depicts time traces of stream-
wise wall shear stress Twz=fu Ou/0y|,_, (subfigure 5.29(a)) and wall Nusselt
number Nu=h dxu/ki* (subfigure 5.29(b)) for case 1. In both subfigures, the
corresponding film thickness time trace is also displayed. Time traces were
evaluated at ©=198.0 mm, which corresponds to the cusp in the fifth pathline
from the wall in subfigures 5.27(c) and 5.28(a). This cusp occurs at the time

fThe wave celerity is larger than the liquid velocity in the residual layer.
FWith h=—Fk 0T /0y|,—o /(Tw — To), where Tw=350 K designates the wall temperature
and Tp=300 K a reference temperature in the gaseous phase.
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Figure 5.29: Simulated time traces of film thickness, wall shear stress and Nus-
selt number for case 1 evaluated over one period length at x=198.0
mm (see subfigure 5.27(c)).

point t=2.094525 s, which is represented in subfigure 5.27(c).

Concerning the Nusselt number time trace, subfigure 5.29(b) shows that Nu
correlates inversely and proportionally with film thickness in the residual layer
up to the second capillary maximum. As discussed in subsection 2.3.2, this
behaviour has frequently been explained by the proportionality of crosswise
conduction resistance and film thickness. However, in film flows, streamwise
convective transport cannot be neglected’. Instead, a more physically sound

explanation can be derived from the elaborations of subsections 2.3.1 and 2.3.2.

TIndeed, considering equation 2.21, and that in the capillary wave region € ~1, streamwise
convective transport is not negligible compared to crosswise conduction, due to the large
local Péclet number value Pe=Re Pr ~100.
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5.3 Effect on wall-side heat transfer

There, it was established that the streamwise velocity profile in the residual
layer is locally developed (more precisely parabolic with a vanishing crosswise
derivative at the interface). Consequently, the local Nusselt number can be
approximated by Nu'=1.88 (see table 2.7) if the local film thickness is intro-
duced as length scale, i.e. Nu'=hd/k. Then, expressing the Nusselt number
represented in subfigure 5.29(b) in terms of this, yields Nu = h onu/ki ~ dxu/0.

Tracking the Nusselt time trace upstream of the second capillary maximum,
it is clear that the above established proportionality no longer holds. Indeed,
a relatively strong modulation of Nu is evident at the second capillary mini-
mum and an even stronger one at the first capillary minimum. Formally, these
modulations must be associated with a departure of the velocity field from the
locally developed state, which indeed takes place at the second and first capil-
lary minimum as a result of the flow deceleration and re-acceleration as well as
the occurrence of the CSE there (see figure 5.4). Further, as shown in subfig-
ures 5.27(a) to 5.28(a), the first and second capillary minimum are associated
with crosswise convective transport evidenced by the “loop”- and “hook”-shaped
pathline distortions’. Indeed, at t=2.094525 s, which corresponds to the dras-
tic increase of the Nusselt number in subfigure 5.29(b), the fifth pathline from
the wall in subfigure 5.27(c) reaches its minimal wall distance. Meanwhile, the
sign change of the wall shear stress in subfigure 5.29(a) shows that this point in
time is associated with the CSE. From a heat transfer perspective, the “loop”-
or “hook”™shaped pathlines transport “cold” liquid, emanating from regions fur-
ther away, to the wall where it is “heated up” before moving it away again. This
increases the driving potential at the wall similarly to the effect of turbulence.
From an Eulerian perspective the pathline distortions induce liquid mixing,

resulting in the temperature contour distortion evidenced by figure 5.25(a).

After having attained its maximum, the Nusselt number in subfigure 5.29(b)
decreases with film thickness in the large wave hump. Thereby, the initial
decrease is drastic and associated with fluid elements moving away from the

wall and assuming a larger and further constant wall distance as shown in

TThe smaller “hook”shaped pathline distortions preceding the large distortions (see e.g.
5.28(a)) are associated with the second capillary minimum.
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5 Capillary flow separation

subfigure 5.28(a) (or, from an Eulerian perspective, with the decompression of
temperature contours in subfigure 5.25(a)). For the regime investigated here,
the CSE induced increase of the Nusselt number is not as dramatic as reported
in the work of Kunugi & Kino (2005) and its influence on the temporally

averaged Nusselt number is therefore not dominant.

To conclude this subsection on heat transfer intensification, the analysis per-
formed above for case 1 will be applied to case 8 in order to assess in what
way conditions are altered by the significantly different open shape of the CSE
in the latter case (compare streamline plots in subfigures 5.4(a) and 5.5(a)).
Accordingly, subfigures 5.30(a) to 5.31(a) depict pathlines and the correspond-
ing film thickness distribution in the fully developed region of the film for case
8 calculated over a time interval ranging from ¢=3.253050 s to t=3.280750
s. Compared to the pathline sequence for case 1 (see subfigures 5.27(a) to
5.28(a)) two principal differences can be discerned. First, all pathlines inde-
pendent of their wall distance exhibit “loop”-shaped distortions, which of course
results from the fact that the open CSE induces flow reversal over the entire
film thickness. In subfigure 5.31(a) a photographic insert is included, which
shows a “loop”™-shaped pathline obtained experimentally by Al-Sibai (1998) un-
der somewhat different flow conditions’. Further, subfigure 5.31(b) shows a
close-up view of near-wall “loop”-shaped pathlines. Second, the local mixing
length is significantly larger than for case 1, which can be attributed to the
larger characteristic crosswise velocity o (see equation 5.10) induced by the
open CSE. A larger “hook”shaped distortion induced by the second capillary
minimum is also evident in subfigures 5.30(a) to 5.31(a), resulting from the rel-
atively strong deceleration and re-acceleration of the flow there, as illustrated
in figure 5.6(a).

Figures 5.32(a) and 5.32(b) depict time traces of film thickness, wall shear
stress and wall Nusselt number for case 8 evaluated at £=56.0 mm, which cor-

responds to the minimum of the seventh “loop”-shaped pathline from the wall
attained at t=3.271050 s (see subfigure 5.30(d)). The Nusselt number time

TExperiments were performed in the optical setup developed by Adomeit & Renz (2000),
using pure DMSO.
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Figure 5.30: Simulated fluid element pathlines in the residual layer for case 8
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points during the transition of the first capillary minimum.
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Figure 5.31: General and close-up view of pathlines (calculated from the start-
ing time t=3.25305 s) for case 8 at t=3.280275 s, exhibiting “loop”-
shaped distortions caused by the CSE.

trace is strikingly similar to the corresponding time trace for case 1 (see subfig-
ure 5.29(b)), although the mean mixing length is considerably larger. However,
a closer look at the pathlines in subfigures 5.31(a) and 5.28(a) reveals that path-
lines very close to the wall, which are the most relevant from the point of view
of wall-side heat transfer, exhibit a very small mixing length for both cases!.
This, of course, is due to the large velocity difference ¢ — u (see equation 5.10)
close to the wall. Judging from the very large pathline distortions near the
interface in subfigure 5.31(a), it can be inferred that interfacial heat transfer
is affected to a much larger extent by the CSE, which would confirm the ex-

perimental and numerical evidence from the literature mentioned at the onset

fIn accordance with the relatively weak distortion of temperature contours close to the
wall illustrated in figure 5.25.
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Figure 5.32: Simulated time traces of film thickness, wall shear stress and Nus-
selt number evaluated over one period length for case 8: =>56.0
mm (see subfigure 5.30(c)).

of this subsection. Due to the simulation method employed in this thesis it
was unfortunately not possible to consider the case of interfacial transfer. Such

investigations have to be deferred to future work.

5.4 Influence of control parameters

Before concluding the elaborations on 2-dimensional capillary flow separation,
the influence of two principal control parameters on the previously established
kinematics and dynamics of the phenomenon, namely the Reynolds number Re
and the wave frequency f, will be addressed in this subsection. This will be done

on the basis of experimental data from PIV and LDV measurements as well as
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numerical data. For this, the parameters Re and f were varied in a series of
experiments and 2-dimensional numerical simulations, which are characterized
in tables 4.2 and 3.1. The Reynolds number influence was established for the
vertically falling liquid film by varying Re from 8.6 to 15.0 at a constant wave
frequency of f=16 Hz. Experiments realizing this parameter variation (which
were performed in the optical test setup) are quantified by the first four lines
in table 4.2. The corresponding numerical simulations are quantified in table
3.1 in the form of cases 5, 6, 7 and 8.

The influence of wave frequency was established through two sets of param-
eter variations. For the vertically falling liquid film, the wave frequency was
varied from 16 Hz to 24 Hz at Re=10.7. Corresponding experiments are quan-
tified by the second and fifth to seventh entries in table 4.2, while numerical
conditions are quantified in table 3.1 in the form of cases 6, 9 and 107. For
the inclined film, the wave frequency was varied from 11.3 Hz to 24.0 Hz at
Re=21.4. Here, only numerical simulations were performed, which are quanti-
fied as cases 2 to 4 in table 3.1.

5.4.1 Reynolds number influence

The Reynolds number influence on kinematics in the capillary wave region is
illustrated in figures 5.33 to 5.38. Figure 5.33 depicts streamwise film thick-
ness distributions for the four different Reynolds number values (i.e. Re=8.6,
10.7, 12.9, 15.0). As discussed in subsection 2.2.2, the wavelength of large
waves increases with Re according to the empirical correlation of Nosoko et al.
(1996). This leads to an increase in the number and amplitude of capillary
waves preceding the large wave and a decrease in their wavelength, which is
clearly discernible in figure 5.33. Tihon et al. (2006) made the same observation
(see subsection 2.3.1), conjecturing that to “stabilize” large waves of increas-
ing amplitude (caused by an increasing wavelength) capillary waves of larger

amplitude and smaller wavelength are needed.

TThe case f=24 Hz was not simulated numerically due to difficulties concerning the outlet
boundary condition in connection with secondary instabilities.
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Figure 5.33: Simulated streamwise film thickness distribution over a single wave
for cases 5 to 8 in table 3.1: Ka=509.5, f=16.0 Hz.
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Figure 5.34: Film thickness and streamwise velocity time traces measured in

the optical test setup using CCI and LDV (at y=120 pym).
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The effect of the Reynolds number on interface topology is also evident in
figures 5.34 and 5.35, which depict experimental film thickness (obtained with
CCI) and streamwise velocity (obtained with LDV) time traces for the four
Reynolds number values. However, the wavelength of capillary waves cannot
be determined from these time traces. Meanwhile, the LDV time traces, which
were measured at a constant crosswise position of y=120 pym in the residual
layer, show that the streamwise velocity component strongly correlates with
film thickness as was established in subsection 5.1.2 (see figures 5.7 and 5.8).
Indeed, the number of subsidiary extrema in the capillary wave region is the
same in both sets of time traces. Concerning the Reynolds number influence,
streamwise velocity time traces in figures 5.34 and 5.35 display a modulation
amplitude in the capillary wave region, which increases with Re, in accordance
with the increase in capillary film thickness modulation discussed with respect
to figure 5.33. In particular, this concerns the deceleration occurring at the first
capillary minimum. Indeed, for Re=8.6 (see subfigure 5.34(a)), although the
streamwise velocity component attains small values, it stays positive. For the
larger Reynolds number values, Re=10.7, 12.9 and 15.0 (see subfigures 5.34(b)
to 5.35(b)), the streamwise velocity does attain negative minimal values, which
increase in magnitude with Re. Meanwhile, the maximal streamwise velocity

(which is attained within the large wave) also increases with Re.

These streamwise velocity time traces suggest that flow separation occurs
for all considered Reynolds number values except Re—8.6, which is confirmed
by the corresponding streamline plots in the region of the first capillary min-
imum depicted in figure 5.36 and obtained from PIV measurements. These
show that for Re=8.6, the flow is merely decelerated and re-accelerated (see
subfigure 5.36(a)), while for the other Reynolds number values, capillary flow
separation occurs (see subfigures 5.36(b) to 5.36(d)). Thereby, the size of the

CSE increases with the Reynolds number.

In order to investigate the Reynolds number influence on the dynamics un-
derlying the above discussed kinematics, figures 5.37 and 5.38 display numer-
ical data corresponding to subfigures 5.36(a) to 5.36(d). Thereby, subfigures
5.37(a), 5.37(c), 5.38(a) and 5.38(c) depict streamlines in the region of the
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5 Capillary flow separation

first capillary minimum, while subfigures 5.37(b), 5.37(d), 5.38(b) and 5.38(d)
depict the corresponding streamwise distributions of film thickness and force
ratio ¥. The figures show that, as the Reynolds number increases, the minimal
(negative) value of ¥ decreases causing the initiation and growth of the CSE.
As discussed in subsection 5.2 (see equation 5.6 there), the cause for this de-
crease in Wiy is an increase in magnitude of the negative streamwise interface
curvature derivative 9x/0zx (i.e. toward larger negative values Ok/0z) at the
first capillary minimum. Thereby, the increase in |0x/0x| is caused by an in-
crease in capillary amplitude and decrease in capillary wavelength, as evidenced
by the film thickness distributions in figures 5.33, 5.37 and 5.38. In summary,
an increase in the Reynolds number leads to larger wave separation, producing
more pronounced capillary waves, which in turn cause a larger adverse pressure
gradient, leading to the initiation and growth of the CSE.
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Figure 5.39: Simulated streamwise film thickness distribution over a single wave
for cases 9 and 10 in table 3.1: Re=10.7 Hz, Ka=509.5.

5.4.2 Wave frequency influence

In analogy to subsection 5.4.1, the influence of wave frequency on the kine-
matics and dynamics in the region near the first capillary minimum for the
vertically falling liquid film is represented in the form of figures 5.39 to 5.43,
in addition to subfigures 5.37(c), 5.37(d) and 5.33(b), which pertain to case 6.
Thereby, figure 5.39 depicts numerical streamwise film thickness distributions
for the frequencies f=18 Hz and f=20 Hz, adding to the previously introduced
film thickness distribution for f=16 Hz in figure 5.33(b). Figures 5.40 and 5.41
depict experimental film thickness (obtained with CCI) and streamwise velocity
(obtained with LDV) time traces evaluated at y=80 um for all four investigated
frequencies f=16 Hz, 18 Hz, 20 Hz and 24 Hz. Figure 5.42 depicts correspond-
ing streamline plots in the region of the first capillary minimum obtained from

PIV measurements. Finally, figure 5.43 displays numerical streamline plots
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measurements in the optical test setup: wave frequency influence.
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and corresponding distributions of the force ratio ¥ for f=18 Hz and 20 Hz,
which add to the corresponding plots for f=16 Hz, previously introduced in
the form of subfigures 5.37(c) and 5.37(d).

The influence of the wave frequency on these results can be understood when
considering its effect on wave separation. Indeed, wave separation increases
with decreasing wave frequency (see e.g. the empirical correlation of Nosoko
et al. (1996)) so that the effect of wave frequency acts counter to that of the
Reynolds number. This is evident in subfigures 5.33(b), 5.39(a) and 5.39(b),
which show an increase in capillary wave amplitude and decrease in capillary
wave length with decreasing wave frequency, leading to a larger flow decel-
eration at the first capillary minimum as evidenced by subfigures 5.40(a) to
5.41(b). Thereby, for f=24 Hz and f=20 Hz no flow reversal takes place. For
f=24 Hz, where the flow deceleration is weakest, the interface does not display
capillary waves altogether. Correspondingly, the PIV streamlines in figure 5.42
exhibit flow separation only for the lowest frequencies f=16 Hz and 18 Hz.
Finally, subfigures 5.37(c) and 5.37(d) and figure 5.43 show that as expected

the minimal value of ¥ decreases with decreasing wave frequency.

Concluding this section, figures 5.44 to 5.46 illustrate the wave frequency
influence on capillary flow separation for the inclined film on the basis of nu-
merical data for cases 1 to 4, corresponding to wave frequencies of f=11.3 Hz,
15.0 Hz, 17.7 Hz and 24 Hz. Case 1 was included here although the associated
Reynolds number is lower than for the other three cases. Figure 5.44 depicts
film thickness distributions, while figures 5.45 and 5.46 depict streamlines and
corresponding distributions of the force ratio ¥ in the region of the first cap-
illary minimum. In summary, these results exhibit the same effect of wave

frequency as for the vertically falling liquid film.
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