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en tant que chargé de recherche CNRS en 2012. Mes 
travaux se sont principalement concentrés sur 
l'hydrodynamique des films liquides minces : (i) les 
films liquides tombants soumis à l'instabilité de 
Kapitza ; (ii) les films liquides annulaires au sein de 
géométries cylindriques soumis à l'instabilité de 
Plateau-Rayleigh ; (iii) films liquides ou couches de 
vapeur soumis aux instabilités de Rayleigh-Taylor et 
Marangoni ; et (iv) les films liquides s'étalant sur un 
substrat en interaction avec des microparticules. Pour 
les trois premières configurations, où l'écoulement 
est soumis à des instabilités interfaciales à ondes 
longues, j'ai développé des modèles à basse 
dimension fondés sur l'approche intégrale de couche 
limite aux résidus pondérés (WRIBL). Ma contribution 
a été d'étendre cette approche aux écoulements de 
films à deux fluides, où le film liquide est en contact 
avec un fluide extérieur actif, par exemple un film 
liquide tombant 

cisaillé par un contre-écoulement de gaz. En outre, 
j'ai appliqué des techniques de simulation 
numérique directe basées sur les équations 
complètes de Navier-Stokes. 
Une partie importante de mon travail a été 
consacrée aux films liquides tombants et, en 
particulier, à la façon dont un écoulement de gaz 
affecte leur stabilité linéaire ainsi que la dynamique 
et la stabilité des ondes de surface non linéaires. 
Aussi, je me suis concentré sur des configurations 
fortement confinées, telles que les minicanaux ou 
les tubes étroits, et sur le rôle des ondes de surface 
dans l'occlusion/l'engorgement ainsi que dans 
l'intensification du transfert de chaleur et de masse. 
J'ai également travaillé sur l'occlusion des voies 
respiratoires pulmonaires par des films de mucus, 
l'accélération du mouillage à l'aide de 
microparticules et les instabilités secondaires au 
sein de films minces soumis à l'instabilité de 
Rayleigh-Taylor. 
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la recherche scientifique for their trust.

I also wish to thank laboratoire FAST for having supported my CNRS candidacy in
2012 and for having welcomed me. In particular, I am indebted to Christian Ruyer-
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Abstract

The present habilitation document summarizes my research since joining Laboratoire
FAST as a CNRS research associate in 2012. My work has mainly focussed on the hydro-
dynamics of thin liquid films: (i) falling liquid films subject to the Kapitza instability;
(ii) annular liquid films in cylindrical geometries subject to the Plateau-Rayleigh insta-
bility; (iii) liquid films or vapour layers subject to the Rayleigh-Taylor and Marangoni
instabilities; and (iv) spreading liquid films in interaction with microparticles. For the
first three configurations, where the flow is subject to long-wave interfacial instabilities, I
have developed low-dimensional models based on the weighted residual integral boundary
layer (WRIBL) approach. My contribution has been to extend this approach to two-fluid
film flows, where the liquid film is in contact with an active outer fluid, e.g. a falling liquid
film sheared by a counter-current gas flow. In addition, I have applied direct numerical
simulation techniques based on the full Navier-Stokes equations. A substantial part of
my work has been dedicated to falling liquid films, and, in particular, how an adjacent
gas flow affects their linear stability and the dynamics and stability of nonlinear surface
waves. Thereby, I have focused on strongly-confined configurations, such as minichan-
nels or narrow tubes, and the role of surface waves in causing occlusion/flooding events
and heat/mass transfer intensification. I have also worked on the occlusion of pulmonary
airways by mucus films, the acceleration of wetting via microparticles, and secondary
instabilities in thin films subject to the Rayleigh-Taylor instability.
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Résumé

Ce manuscrit d’habilitation résume mes recherches depuis que j’ai rejoint le Laboratoire
FAST en tant que chargé de recherche CNRS en 2012. Mes travaux se sont principalement
concentrés sur l’hydrodynamique des films liquides minces : (i) films liquides tombants
soumis à l’instabilité de Kapitza ; (ii) films liquides annulaires au sein de géométries
cylindriques soumis à l’instabilité de Plateau-Rayleigh ; (iii) films liquides ou couches
de vapeur soumis aux instabilités de Rayleigh-Taylor et Marangoni ; et (iv) films liq-
uides s’étalant sur un substrat en interaction avec des microparticules. Pour les trois
premières configurations, où l’écoulement est soumis à des instabilités interfaciales à on-
des longues, j’ai développé des modèles à basse dimension fondés sur l’approche intégrale
de couche limite aux résidus pondérés (WRIBL). Ma contribution a été d’étendre cette
approche aux écoulements bicouche, où le film liquide est en contact avec un deuxième
fluide actif, par exemple un film liquide tombant cisaillé par un contre-écoulement de
gaz. En outre, j’ai appliqué des techniques de simulation numérique directe basées sur
les équations complètes de Navier-Stokes. Une partie importante de mon travail a été
consacrée aux films liquides tombants et, en particulier, à la façon dont un écoulement de
gaz modifie leur stabilité linéaire ainsi que la dynamique et la stabilité des ondes de sur-
face non linéaires. Aussi, je me suis concentré sur des configurations fortement confinées,
telles que les minicanaux ou les tubes étroits, et sur le rôle des ondes de surface dans
l’occlusion/l’engorgement ainsi que dans l’intensification du transfert de chaleur et de
masse. J’ai également travaillé sur l’occlusion des voies respiratoires pulmonaires par des
films de mucus, l’accélération du mouillage à l’aide de microparticules et les instabilités
secondaires au sein de films minces soumis à l’instabilité de Rayleigh-Taylor.
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Introduction

This habilitation document covers the research I have conducted since becoming a CNRS
researcher at laboratoire FAST in 2012. During this time, I have worked on different thin
film flows involving interfacial instabilities.

In particular, I have studied falling liquid films, which develop large-amplitude surface
waves due to the inertia-driven Kapitza instability (Kapitza, 1948). My interest has been
to understand the linear and nonlinear behavior of these waves and their effect on the
velocity field within the liquid film, in particular when the latter is subjected to a strongly-
confined and hydrodynamically active (counter-current) gas flow. Such a configuration is
encountered in rectification columns used for cryogenic air separation, where oxygen-rich
liquid air and nitrogen-rich gaseous air are put into contact within millimetric channels
formed by structured packings (Valluri et al., 2005). Even stronger confinement levels are
achieved in falling-film micro-reactors (Lapkin & Anastas, 2018).

In such systems, surface waves play a dual role: on the one hand, they significantly
intensify heat and mass transfer (Yoshimura et al., 1996), on the other hand they can
trigger catastrophic events associated with flooding, such as liquid arrest or a direct oc-
clusion of the channel cross section (Vlachos et al., 2001). My goal has been to elucidate
the mechanisms underlying these opposing effects linked to surface waves, and to identify
ways of producing optimal regimes that exploit the benefits of waviness while avoiding
their risks. In this context, I have mostly focused on extreme confinement levels, where
flow conditions in the gas are laminar, and which already produce a rich wave dynamics.
However, in currently ongoing work, I have started to study configurations with interme-
diate confinement levels, where the gas flow is turbulent. These conditions are closest to
those typically encountered in air separation units.

Another focus of my work have been annular liquid films in narrow cylindrical tubes,
where the Plateau-Rayleigh instability (Plateau, 1849; Rayleigh, 1892) can produce liq-
uid plugs occluding the tube cross section. Here, I have studied occlusion scenarios for
two different flow configurations involving an active core fluid. The first concerns falling
liquid films in vertical tubes, where the Plateau-Rayleigh and Kapitza instabilities are
simultaneously active. This configuration is encountered in tubular multiphase heat ex-
changers, such as falling film evaporators for milk inspissation (Jebson & Chen, 1997),
which have been successfully miniaturized (Seebauer et al., 2012). Another example is
surfactant replacement therapy in the human lung, where gravity determines the sur-
factant distribution within the respiratory network (Filoche et al., 2015). The second
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2 Contents

configuration concerns very narrow tubes, where the effect of gravity and thus the role of
the Kapitza instability is negligible versus that of the Plateau-Rayleigh instability. This
situation is encountered in the terminal bronchioles of the human lung, where the coating
mucus film can cause airway occlusion accompanied by cell damage (Bian et al., 2010).
Such occlusion events may be triggered by the breathing-induced core air flow.

My work on these two topics has led me to study two related problems involving thin
film flows. Firstly, I have studied liquid/gas flows in horizontal channels. Here, the mean
flow is driven by an imposed pressure drop and not by gravity, and the Yih instability
(Yih, 1967), due to the inter-phase viscosity contrast, generates large-amplitude surface
waves, that are quite similar to waves on falling liquid films. Such flows are encountered
in micro-gap coolers used for microprocessor cooling (Kabov et al., 2011). Secondly, I
have worked on fluid films subject to the Rayleigh-Taylor and Marangoni instabilities,
where secondary instability can cause the spontaneous motion of liquid drops suspended
from a ceiling or vapor blisters forming underneath a liquid layer. Such phenomena can
cause defects in coating operations , and the sliding instability may also play a role in
the spontaneous migration of Leidenfrost drops (Bouillant et al., 2018). More generally,
the sliding phenomenon seems to be linked to fluid films draining under the effect of an
interfacial instability, as I have also observed it in annular liquid films, where it can trigger
the occlusion of narrow tubes.

Finally, I have worked on a thin-film problem that is not directly linked to interfacial
instabilities, i.e. the interaction between a liquid film spreading on a plane substrate and
a micro-particle placed in its path. On the one hand, the addition of a micro-structure
can accelerate the spreading rate of the liquid (Cazabat & Stuart, 1986; Bico et al., 2001),
which may be exploited in the design of heat pipes (Jouhara et al., 2017) or labs on a chip
(Blanchard et al., 1996). On the other hand, the interaction between the contact line and
the micro-particle can produce large forces acting on the latter, which may be exploited
in the cleaning of contaminated surfaces (Aramrak et al., 2013; Zoueshtiagh et al., 2014;
Khodaparast et al., 2017).

The interfacial instabilities studied here all originate at zero wave number, and thus the
underlying thin film flows are amenable to the so-called “long-wave” hypothesis, i.e. the
characteristic wavelength of surface waves is much larger than the characteristic thickness
of the film. I have exploited this property to describe the studied flows via high-fidelity
low-cost computations based on low-dimensional models. In particular, I have applied the
weighted residual integral boundary layer (WRIBL) method (Ruyer-Quil & Manneville,
1998; Kalliadasis et al., 2012), which I learned from Christian Ruyer-Quil upon my arrival
at FAST. My contribution has been to extend this approach to two-fluid film flows, in
particular liquid/gas flows, e.g. falling liquid films in interaction with a strongly-confined
counter-current gas flow. The development and detailed validation of these models has
been a substantial part of my work. Further, they helped uncover several key physical
phenomena associated with the linear and nonlinear dynamics of surface waves for the
various two-fluid film flows studied.

In addition, I have applied numerical methods based on the full Navier-Stokes equa-
tions: Orr-Sommerfeld linear stability calculations, and nonlinear direct numerical simu-
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lations (DNS). Depending on the problem studied, the DNS were performed with three
different open-source numerical codes, which are all based on the volume of fluid (VOF)
and continuum force (CSF) methods: Gerris (Popinet, 2009), Basilisk (Popinet, 2015),
and OpenFOAM (Rusche, 2002). On the one hand, these computations based on first prin-
ciples were used to validate our WRIBL models. On the other hand, they were employed
to investigate phenomena outside the scope of these models, i.e. inter-phase scalar trans-
fer in falling liquid films flowing on corrugated substrates, and spreading liquid drops
interacting with micro-particles.

The current habilitation document does not cover my postdoctoral work before joining
FAST, which was performed at the Institute of Heat and Mass Transfer at RWTH Aachen
University, where I was group leader of the Film Group from 2010 to 2011 (Haustein et al.,
2013; Rohlfs et al., 2013, 2012a,b; Dietze & Kneer, 2011). This work mainly concerned
numerical and experimental investigations of wavy falling liquid films and their response
to electric fields and heating.

The research presented here has involved several collaborations. Thus, where appro-
priate, I will privilege the impersonal “we” and “our” (Alley, 2018) versus “I” and “my”.
The current document is self-contained, i.e. it presents in each chapter a summary of the
salient features of our publications on a given topic. The title pages of these publications
are appended at the end of each chapter, for reference.

As this document covers 9 years of research, the state of the art has evolved since the
publication of our earliest papers. Thus, in chapters 5-9, which present our main physical
findings, the literature overview is presented in two steps. At the start of a chapter, the
state of the art at the time of publication of our papers is sketched, and we discuss our
main novel contributions. Then, at the end of each individual section, we discuss relevant
literature that has appeared since the publication of our papers, and how our work has
impacted this.

Chapter 1 is dedicated to the derivation of four novel WRIBL models, which we have
developed for and applied to the following two-dimensional flow configurations:

• Two-fluid film flows in narrow rectangular channels (Dietze & Ruyer-Quil, 2013),
e.g. falling liquid films sheared by a counter-current gas flow, or pressure-driven
two-layer Poiseuille flows.

• Two-fluid film flows in cylindrical geometries (Dietze & Ruyer-Quil, 2015), e.g. an-
nular falling liquid films in narrow tubes or mucus films within the pulmonary
airways.

• Thin films subject to the Rayleigh-Taylor and Marangoni instabilities in contact
with an unconfined outer fluid (Dietze et al., 2018), e.g. liquid films suspended from
a ceiling or vapour films underneath a liquid layer.

• Falling liquid films in contact with a turbulent gas flow, where the liquid film is
modelled via the WRIBL approach and the gas flow is represented via an asymp-
totic expansion approach based on a simple mixing-length model for representing
turbulence.
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Our respective models are introduced in sections 1.1, 1.2, 1.3, and 1.4. At the end of each
section, we discuss how our models improved upon prior modelling works for predicting the
studied flows, and how the state of the art has been impacted since their publication. We
have deliberately chosen to write out our models first and to discuss the literature after,
so that the reader can appreciate more precisely what novel contributions our modelling
work involves. All four models, which were published in different papers, have been recast
in a unified mathematical form for this habilitation document, and I have corrected two
small mistakes that appeared in Dietze & Ruyer-Quil (2013) and Dietze & Ruyer-Quil
(2015).

In chapter 2, we discuss the different numerical solutions that can be obtained with our
WRIBL models. Therein, section 2.1 is dedicated to spatial and temporal linear stability
calculations. Section 2.2 concerns nonlinear computations: numerical continuation of
travelling-wave solutions (TWS), and spatio-temporal computations on periodic or open
domains. Finally, in section 2.3, we establish the validity range of our models based on
Orr-Sommerfeld linear stability predictions and DNS.

In chapter 3, we write out the Orr-Sommerfeld linear stability problems for the dif-
ferent flow configurations studied, and we discuss the employed numerical methods to
solve them. Further, we demonstrate via stability calculations of this kind that only long-
wave instability modes are relevant for the laminar gas-sheared liquid films studied in
this habilitation document. Such instability modes can be accurately captured with our
long-wave WRIBL models. Finally, we introduce a transient stability analysis method
that we will use in section 8.1 to study the secondary instability of a slowly evolving film
subject to the Rayleigh-Taylor instability.

Chapter 4 discusses our DNS. Therein, we start by writing the full governing equations
and boundary conditions for the different problems studied. Further, we discuss the
numerical methods underlying the three DNS codes employed (Gerris, Basilisk, and
OpenFOAM), and we detail the computational setup for each type of simulation. At the
end of the chapter, section 4.3 provides a validation of the employed codes based on
experiments and analytical solutions for representative benchmark configurations.

Chapters 5, 6, 7, 8, and 9, are dedicated to the physical problems studied with the
methods introduced in chapters 1 to 4. Chapters 5, 6, and 9 gather our work on falling
liquid films in a quiescent atmosphere and in confined rectangular channels, and chapter
7 gathers our work on liquid films in cylindrical tubes. Finally, chapter 8 brings together
several individual studies that are not closely linked to one another. At the start of
each chapter (or section in the case of chapter 8), we provide a general introduction that
establishes the context of our work, and we briefly summarize our main novel contributions
to the state of the art. In the ensuing sections (subsections), we then detail the different
studies that led to these results.

Chapter 5 concerns falling liquid films in a quiescent atmosphere, where the surround-
ing gas has no effect on the dynamics of the liquid film. Although this topic has been
studied for a very long time, we have elucidated two unresolved problems: the origin of
the so-called precursory capillary ripples preceding large-amplitude waves (Dietze, 2016),
and the hydrodynamics within three-dimensional solitary waves (Dietze et al., 2014).
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Chapter 6 concerns falling liquid films in superconfined rectangular channels in contact
with a counter-current laminar gas flow. In section 6.1, we discuss the implications of
such a strong confinement on the linear stability of the liquid film (Lavalle et al., 2019),
whereas section 6.2 is dedicated to the effect of the gas flow on the dynamics of nonlinear
waves. In particular, we focus on secondary instabilities and catastrophic events, such
as wave reversal and occlusion (Dietze & Ruyer-Quil, 2013; Lavalle et al., 2020, 2021).
Section 6.3 concerns the intensification of inter-phase heat and mass transfer via surface
waves and wall corrugations (Dietze, 2019).

Chapter 7 is dedicated to annular liquid films in narrow cylindrical tubes in contact
with a core gas flow. In section 7.1, we focus on wave-induced occlusion scenarios in
falling liquid films (Dietze et al., 2020), whereas section 7.2 is dedicated to mucus films
in the pulmonary airways, where the effect of gravity is negligible and the liquid film is
subject to an oscillating air flow (Dietze & Ruyer-Quil, 2015).

Chapter 8 summarizes our work on several other thin film flows. Section 8.1 focusses on
thin films subject to the Rayleigh-Taylor and Marangoni instabilities (Dietze et al., 2018),
section 8.1 on spreading liquid films in interaction with micro-particles (Nakamura et al.,
2020b,a), and section 8.2 on pressure-driven two-phase Poiseuille flow through narrow
rectangular channels (Dietze & Ruyer-Quil, 2013).

Chapter 9 reports our ongoing work on falling liquid films sheared by a turbulent gas
flow, which extends our work on strongly-confined falling liquid films (chapter 6) to flow
conditions that are more representative of liquid/gas flows in cryogenic air separation
units.

In chapter 10, we draw conclusions and discuss several routes for future work. Ap-
pendix A contains mathematical expressions for the coefficients of the WRIBL models
derived in sections 1.1, 1.2, and 1.3. The document is completed by a curriculum vitae
and a comprehensive list of publications.

The outcomes presented in this habilitation document have benefited from collabora-
tions with distinguished colleagues, the work contributed by graduate and postdoctoral
students, and the funding provided by government agencies and companies.

My work on low-dimensional modelling has benefited greatly from an ongoing and close
collaboration with Christian Ruyer-Quil (Université Savoie Mont Blanc), who introduced
me to this approach and has guided me at many stages. This modelling work has been a
driving force in my research, yielding deep insight into the physical mechanisms governing
the studied flows and helping to orient the choice of problems investigated.

The presented work on plane falling liquid films is quite relevant for cryogenic air
separation units. In this context, I have collaborated since 2011 with Guillaume Mougin
and Jacopo Seiwert, from “Paris Innovation Campus” at Air Liquide in Les Loges-en-
Josas. A new CIFRE PhD. thesis on falling condensate films is supposed to start in
2022. Our theoretical and numerical investigations have been accompanied at many
stages by the experiments of Sophie Mergui (Sorbonne Université), which were performed
at Laboratoire FAST. Further, a very productive collaboration with Gianluca Lavalle
(École des Mines Saint-Étienne) has been ongoing since his post-doctoral stay in Orsay
between 2017 and 2018. Finally, I have collaborated on this topic with Nicolas Grenier



6 Contents

(Université Paris-Saclay) and Benoit Scheid (Université Libre de Bruxelles).
My work on annular liquid films in narrow cylindrical geometries was performed with

Christian Ruyer-Quil and Gianluca Lavalle. It has proven that the WRIBL technique
is a very promising approach for studying mucus flow in the pulmonary airways. In
this context, I have started a new collaboration with Marcel Filoche (École Polytech-
nique) and Nicolas Grenier, via the LaSIPS project mucusFILM. This project, which funds
a postdoctoral-fellow at laboratoire FAST, Anjishnu Choudhury, focusses on modelling
mucociliary clearance of viscoelastic mucus (see section 10).

My work with Ranga Narayanan (University of Florida) and Jason Picardo (IIT Bom-
bay) on thin films subject to the Rayleigh-Taylor and Marangoni instabilities was initiated
in 2015 during a three-month stay at the University of Florida, as an invited researcher
in the group of Ranga Narayanan. This stay was funded by an IRSES project led by
Farzam Zoueshtiagh (Université de Lille). During that time, I gave a series of lectures on
the WRIBL method to graduate students and researchers at the Department of Chemical
Engineering. This led to an ongoing collaboration with Ranga Narayanan which is cur-
rently continuing through the PhD. thesis of Igin Ignatius (University of Florida), who
has secured a four-month Chateaubriand fellowship to join FAST in March 2022. His
work concerns thin films subject to the Marangoni instability and mechanical vibrations.

Our work on liquid films in interaction with micro-particles is part of a rich long-
term collaboration with Ichiro Ueno (Tokyo University of Science). In particular, I have
participated in an international exchange project funded by Tokyo University of Science,
which also involved Farzam Zoueshtiagh (Université de Lille) and Harunori Yoshikawa
(Université de Nice). This project has funded several visits by myself to Tokyo University
of Science and two four-month stays of Japanese graduate students at FAST. The collab-
oration is ongoing and will intensify further following my joining of the ANR project FEFS
(Fluid Engineering for Food Security), directed by Farzam Zoueshtiagh, which focuses on
using multi-phase flows for cleaning surfaces that are contaminated by bacteria.

I have also been an active member of the CNRS research networks GDR3373 (“Ruis-
sellement et films cisaillés”) and GDR2042 (“TransINTER”), which brought/bring together
researchers working on interfacial instabilities in fluid flows. The regular meetings orga-
nized by these networks greatly helped in fostering collaborations.

Several students and post-doctoral fellows have particularly contributed to the pre-
sented work:

• Gianluca Lavalle (École des Mines Saint-Ètienne) was a post-doctoral fellow working
between LIMSI and FAST from 2017 to 2018, as part of the ANR project wavyFILM,
which I headed as PI. He contributed greatly to our work on superconfined falling
liquid films discussed in chapter 6 (Lavalle et al., 2019, 2020, 2021). Our collabora-
tion has been ongoing since. In 2020, he was appointed assistant professor at École
des Mines Saint-Ètienne.

• Jason Picardo was a visiting Fulbright doctoral scholar at University of Florida and
later a post-doctoral fellow at Tata Institute of Fundamental Research in Banga-
lore, when we worked together on thin films subject to the Rayleigh-Taylor and
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Marangoni instabilities as discussed in section 8.1 (Dietze et al., 2018). He is now
a faculty member at IIT Bombay and we continue to collaborate.

• Yiqin Li was a post-doctoral fellow at FAST between 2017 and 2019 in the context
of the ANR project wavyFILM. Her experiments allowed to confirm the strong stabi-
lization observed in superconfined falling liquid films, which is discussed in section
6.1 (Lavalle et al., 2019).

• Misa Ishimura is a PhD. student from Université Savoie Mont Blanc, whom I am
currently co-supervising at FAST together with Sophie Mergui (Sorbonne Univer-
sité) and Christian Ruyer-Quil (Université Savoie Mont Blanc). Her thesis, which
will be completed in 2022, concerns our work on falling liquid films sheared by a
turbulent gas flow discussed in section 1.4 and chapter 9.

• Wilko Rohlfs was a PhD. student at RWTH Aachen University when we worked
on the hydrodynamics of three-dimensional falling liquid films as discussed in sec-
tion 5.2 (Dietze et al., 2014). Before my joining FAST, we had worked together
on falling liquid films subject to electric fields and thermally-induced Marangoni
stresses (Rohlfs et al., 2012b,a, 2013).

• Motochika Inoue was a visiting Japanese master’s student, who spent four months
at laboratoire FAST in 2016. His hard work laid the basis for our numerical
simulations of liquid-film/micro-particle interactions as discussed in section 8.1
(Nakamura et al., 2020b,a).

I have received funding from several sources, which greatly helped in supporting and
orienting the research presented in this habilitation document. The following list reports
the different projects funded and my role in these projects:

PhD. co-supervisor
since 2018

PhD. scholarship from Université Savoie Mont Blanc:
“Confined wavy liquid films on corrugated substrates: transfer
intensification versus flooding”
PhD. candidate: Misa Ishimura
Partners: Christian Ruyer-Quil (Université Savoie Mont Blanc),
Sophie Mergui (Sorbonne Université)

Principal Investigator
2016-2019

ANR project wavyFILM: “Harnessing waves on liquid films
to optimize distillation processes”
Partners: Sophie Mergui (Sorbonne Université), Nicolas Gre-
nier (Université Paris-Saclay), Guillaume Mougin (Air Liq-
uide), Gianluca Lavalle and Yiqin Li (postdoctoral fellows)
Grant: 323.000 EUR

Project Partner
since 2016

Tokyo University of Science exchange program: “Fluid
dynamics in the vicinity of a macroscopic contact line in in-
teraction with microparticles.”
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Partners: Ichiro Ueno (Tokyo University of Science), Farzam
Zoueshtiagh (Université de Lille), Harunori Yoshikawa (Uni-
versité de Nice)

Principal Investigator
2014-2015

INSIS project DYNAFILM: “Excitation spatiale de la
dynamique non-linéaire d’un film liquide tombant : application
à l’optimisation des échangeurs à films ruisselants”
Partners: Christian Ruyer-Quil, Marguerite Gisclon, and Di-
dier Bresch (Université Savoie Mont Blanc)
Grant: 15.000 EUR

Principal Investigator
2017

Industrial consulting contract
Partner: Air Liquide
Grant: 4.000 EUR

Invited Researcher
2015

Fellowship funded by European Union IRSES project:
“Patterns and Surfaces”
Host institution: University of Florida
Partners: Farzam Zoueshtiagh (Université de Lille), Ranga
Narayanan (University of Florida)

Principal Investigator
2013

Industrial consulting contract
Partner: Air Liquide
Grant: 10.000 EUR

Principal Investigator
2013

Computation time on supercomputer JUROPA
at Forschungszentrum Jülich
Partners: Reinhold Kneer and Wilko Rohlfs (RWTH Aachen
University)
Grant number: HAC27

Principal Investigator
2013

Junior researcher project funded by Université Paris-Sud:
“Experimental study of the Poiseuille-Rayleigh-Bénard insta-
bility in complex fluids”
Partners: Sophie Mergui (Université Pierre et Marie Curie)
Grant: 15.000 EUR (unfortunately, this project did not yield
publishable results)

Further, I have secured funding for several new projects, which will allow extending the
work presented here, and to move toward new topics:

PhD. supervisor
to start in 2022

CIFRE PhD. grant from Air Liquide: “Optimization
of condensation channels in cryogenic vaporizer-condensers”
Partners: Jacopo Seiwert and Nicolas Kofman (Air Liquide),
Christian Ruyer-Quil (Université Savoie Mont Blanc), Sophie
Mergui (Sorbonne Université)
Candidate: currently soliciting applications
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Project Partner
since October 2021

ANR project FEFS: “Fluid Engineering for Food Security”
Partners: Farzam Zoueshtiagh (Université de Lille), Ichiro
Ueno (Tokyo University of Science), and Harunori Yoshikawa
(Université de Nice)
Grant: 20.000 EUR

Principal Investigator
since September 2021

LaSIPS project mucusFILM: “Low-dimensional modelling of
a viscoelastic mucus film in an individual pulmonary airway”
Partners: Nicolas Grenier (Université Paris-Saclay), Marcel
Filoche (École Polytechnique), and Anjishnu Choudhury (post-
doctoral fellow)
Grant: 57.500 EUR





Chapter 1

WRIBL models for two-fluid film
flows

We are interested in modelling thin liquid film flows subject to long-wave interfacial
instabilities, which originate at wave number k=2π/Λ=0. In this case, the characteristic
thickness of the liquid film h0 is much smaller than the characteristic wavelength Λ of
surface waves resulting from instability. We are particularly interested in configurations
where the liquid film is subject to an active outer fluid, usually a gas, which is confined
by a narrow geometry. We designate these as two-fluid film flows, and we wish to predict
the linear and nonlinear dynamics resulting from interfacial instability, through low-cost
computations based on low-dimensional models.

Figure 1.1 shows several examples studied in this work. The aspect ratio of the graph-
ical representations in the different panels is true to scale, allowing to appreciate the
slenderness of the studied two-fluid film flows. The star superscripts, which mark the lon-
gitudinal coordinate x⋆ and the wall-normal coordinates y⋆ and r⋆, denote dimensional
quantities here and throughout this document. Panels 1.1a and 1.1b correspond to ver-
tically falling liquid films in narrow planar channels (chapter 6) and cylindrical tubes
(chapter 7), where surface waves form as a result of the Kapitza and Plateau-Rayleigh
instability, respectively. In both cases, the outer fluid is air, which is either quiescent or
flows counter-currently. Panel 1.1c corresponds to a highly viscous mucus film in a pul-
monary airway, which is subject to the Plateau-Rayleigh instability (section 7.2). Panel
1.1d corresponds to a water film suspended from a ceiling, forming droplets due to the
Rayleigh-Taylor instability (section 8.1).

These flows are amenable to the so-called long-wave approximation ǫ=h0/Λ ≪ 1,
under which the governing equations reduce in accordance with boundary layer theory
(Schlichting & Gersten, 2001). Different modelling approaches may be applied to further
simplify the resulting boundary layer equations, leading to low-dimensional models in
terms of the film thickness h(x, t) and flow rate q(x, t).

Long-wave asymptotic models (Oron et al., 1997; Craster & Matar, 2009) rely on suc-
cessively truncating the boundary layer equations at increasing orders of the long-wave
parameter ǫ, and developing the solution by asymptotic expansion of the primary flow

11
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Figure 1.1: Examples of two-fluid film flows studied in this work: liquid film (black) in
contact with an active gas (white) within a narrow geometry. The aspect ratio in all
representations is true to scale. Here, the wall-adjacent film is always liquid and the
outer fluid is always air, but liquid/liquid and vapour/liquid combinations have also been
studied. (a) Falling liquid film of DMSO-water (flowing from left to right) in a vertical
planar channel of height H⋆=2 mm; (b) falling liquid film of silicone-oil in a vertical
cylindrical tube; (c) highly viscous model mucus film in a cylindrical model of a terminal
bronchiole; (d) water film suspended from a ceiling forming droplets.

around the long-wave limit k=0. This approach yields a single evolution equation for the
film thickness h(x, t), capturing different physical effects, depending on the order of ǫ at
which the expansion is truncated. For example, at leading order, i.e. consistent at ǫ0,
one obtains so-called lubrication models, which do not account for inertia nor streamwise
viscous diffusion. The validity of long-wave asymptotic models is limited to regimes in
the vicinity of the instability threshold, where the entire span of unstable wave numbers
κ is small. Outside this validity range, high-order nonlinear terms in the evolution equa-
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tion may cause unphysical behaviour, such as the finite-time blow-up observed for falling
liquid films (Pumir et al., 1983).

In the current work, we employ a different approach, the so-called integral boundary
layer (IBL) method. Instead of expanding around the primary flow like the methods
described above, this method relies on expanding around a leading-order base flow that
varies dynamically with h(x, t) and q(x, t). In this case, one obtains two coupled evolution
equations for h and q, by integrating the boundary layer and continuity equations across
the film. The approach is inspired by the integral method of von Kármán and Pohlhausen
(von Kármán, 1921; Pohlhausen, 1921) for boundary layer flows. It was first applied to
falling liquid films by Kapitza & Kapitza (1949), and later improved by Shkadov (1967).
Subsequently, Ruyer-Quil & Manneville (2000) perfected the method, by introducing a
weighted residual formalism to enforce that the model equations converge toward the
linear long-wave limit of the Navier-Stokes equations, allowing to recover exactly the cor-
responding instability threshold. This constitutes the weighted residual integral boundary
layer (WRIBL) method, which will be detailed in the current chapter.

When I was introduced to the WRIBL method by Christian Ruyer-Quil in 2011, it had
been applied to many problems of liquid film flows where the outer fluid was not taken into
account (Ruyer-Quil et al., 2012; Ruyer-Quil & Manneville, 2002; Ruyer-Quil et al., 2008;
Scheid et al., 2006; Trevelyan et al., 2007; Kalliadasis et al., 2012; Ruyer-Quil, 2012). My
contribution has been to account for the effect of an additional active outer phase (either
gas or liquid), by building on the works of Amaouche et al. (2007), Mehidi & Amatousse
(2009), and Alba et al. (2011). Versus these works, I have extended the method so that
counter-current two-phase flows with arbitrary density ratios and can be represented. In
particular, I developed WRIBL models for four different configurations of two-fluid film
flows (Dietze & Ruyer-Quil, 2013, 2015; Dietze et al., 2018):

• Planar liquid films in rectangular channels (section 1.1)

• Annular liquid films in cylindrical tubes (section 1.2)

• Fluid films subject to the Rayleigh-Taylor and Marangoni instabilities (section 1.3)

• Falling liquid films sheared by a turbulent gas (section 1.4)

Most of our computations with these models have concerned systems where the outer
fluid is air, but liquid/liquid systems and vapour films underneath a liquid layer have also
been studied.

1.1 Planar liquid films in rectangular channels

We consider the configuration sketched in figure 1.2, a liquid film flowing along a plane
wall in contact with a co- or counter-current gas flow confined by a second wall at a
distance H⋆. The two parallel plates form a 2-dimensional planar channel. The liquid
film is either driven by gravity (panel 1.2a), in which case the channel is vertical (chapter
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Figure 1.2: Liquid film (subscript 1) flowing on a planar wall subject to a strongly-confined
co- or counter-current gas flow (subscript 2). (a) Gravity-driven falling liquid film; (b)
pressure-driven liquid/gas channel flow (no streamwise gravity). The flows are laminar
and all fluids are Newtonian.

6) or inclined at an angle φ, or by an applied pressure gradient (panel 1.2b), in which
case the channel is horizontal (section 8.3).

The liquid (subscript k=1) and the gas (subscript k=2) are assumed to be Newtonian
fluids and their viscosity µ, density ρ, and surface tension σ are assumed to be constant.
Further, h denotes the film thickness and q the flow rate per unit width. The flow is
assumed to be laminar and 2-dimensional. Although the planar WRIBL model is applied
only to liquid/gas systems in this work, fluids 1 and 2 can be chosen freely. For example,
liquid/liquid configurations can also be studied.

We introduce L and Uk to scale dimensional variables (denoted with a star):

uk =
u⋆k
Uk
, vk =

v⋆k
ǫUk

, x = ǫ
x⋆

L , y =
y⋆

L , t = ǫ t⋆
U1
L , pk =

p⋆k
ρkU 2

k

, (1.1)

where the length scale ratio ǫ=L/Λ⋆ is usually called long-wave parameter, Λ⋆ denoting
a characteristic wavelength. For the length scale in y-direction L, we choose the channel
height, L=H⋆, and for the velocity scale Uk we choose the phase-specific surface veloc-
ity, Uk=q⋆k/H

⋆, based on the corresponding signed nominal flow rate per unit width q⋆
k
.

Nominal refers to the fully-developed state (subscript ∞) of a considered wavy-film solu-
tion. Depending on whether the solution evolves in time subject to periodicity conditions
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(2.31), or in space subject to an inlet condition (2.35), q⋆
k
is defined through a spatial

average over the wavelength Λ or a temporal average over the wave period 1/f :

spatially periodic solution : q⋆
k
=

1

Λ⋆

∫ Λ⋆

0

{q⋆k}∞ dx⋆ (1.2)

time periodic solution : q⋆
k
= f ⋆

∫ 1
f⋆

0

{q⋆k|x⋆=0}∞ dt⋆. (1.3)

Depending on the direction of the flow, q⋆
k
, and thus Uk, is positive or negative.

Our derivation is consistent at ǫ2, i.e. the governing equations are truncated at ǫ2, terms
of order ǫ3 and smaller dropping out. In that limit, the dimensionless Navier-Stokes and
continuity equations for the liquid (k=1) and gas (k=2) reduce to1:

Xk ǫ ∂tuk + ǫ uk∂xuk + ǫ vk∂yuk = −ǫ ∂xpk +
1

Rek

{
ǫ2∂xxuk + ∂yyuk

}
+
X2

k

Fr2
sin(φ), (1.4a)

0 = −ǫ ∂ypk + ǫ2
1

Rek
∂yyvk − ǫ

X2
k

Fr2
cos(φ), (1.4b)

∂xuk + ∂yvk = 0, (1.4c)

where Rek=ρkUkL/µk=q
⋆
k
ρk/µk denote the phase-specific Reynolds numbers, and

Fr=U1/
√
gL is the liquid Froude number. The parameter Xk accounts for the differ-

ent velocity scales in the two phases:

X1 = 1, X2 = Π−1u , (1.5)

introducing the velocity scale ratio Πu=U2/U1. The inter-phase coupling conditions at
y=h for the normal and tangential stresses truncated at ǫ2 are:

ǫ p1 − ǫWe ǫ2κ +
2 ǫ2

Re1
(−∂yv1 + ∂xh ∂yu1) =

ΠρΠ
2
u ǫ p2 +ΠµΠu

2 ǫ2

Re1
(−∂yv2 + ∂xh ∂yu2) ,

(1.6a)

−
(
∂yu1 + ǫ2 ∂xv1

)
+ 4 ǫ2 ∂xh ∂xu1 = ΠuΠµ

{
−
(
∂yu2 + ǫ2 ∂xv2

)
+ 4 ǫ2 ∂xh ∂xu2

}
, (1.6b)

where We=σ/ρ1/U 2
1/L denotes the Weber number, relating capillary to liquid inertial

effects. Note that this definition, commonly used in the falling film literature, is the re-
ciprocal of the usual definition. We will also use the Kapitza number Ka=σρ−11 g−1/3ν

−4/3
1 ,

which involves only fluid properties, and which is related to We via Ka=WeFr2/3Re
4/3
1 .

1See section 4.1.1 for full governing equations.
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The term κ=−∂xxh in (1.6a) corresponds to the order ǫ0 approximation of the (di-
mensionless) film surface curvature C:

C = LC⋆ = ∇ · n = −∂xxh, (1.7)

where ∇=L∇⋆=[ǫ ∂x, ∂y] and n, both dimensionless, are the gradient operator and the
normal vector (pointing from liquid, k=1, toward gas, k=2) of the orthonormal surface
coordinate system:

n = [−ǫ ∂xh, 1]
(
1 + ǫ2∂xh

2
)−1/2

, τ = [1, ǫ ∂xh]
(
1 + ǫ2∂xh

2
)−1/2

. (1.8)

In (1.6a), the capillary pressure jump ǫWe ǫ2κ has been retained, and this implies
O(ǫWe)=1. Thus, our approach is restricted to flows where capillary effects dominate
inertia, i.e. where We is large (Gjevik, 1970). Typical falling film liquids, such as water
and different aqueous solutions, allow to satisfy this condition. For example, We=36.2 for
the case shown in panel 1.1a, which is the most unfavourable considered.

The system is completed by the kinematic inter-phase coupling conditions at y=h:

u1 = Πuu2, v1 = Πuv2 (1.9a)

X−1k vk =
dh

dt
= ∂th+X−1k uk ∂xh, (1.9b)

where the so-called kinematic condition (1.9b) results from the impermeability of the film
surface assumed here, and the crosswise boundary conditions:

u1|y=0 = v1|y=0 = 0, u2|y=H = v2|y=H = 0. (1.10)

The streamwise boundary conditions depend on the type of computation (see section
2.2). They can either impose periodicity on a domain spanning one wavelength, e.g. for
the computation of travelling-wave solutions, or they can mimic inlet/outlet conditions
encountered in experiments of spatially developing films.

Equations (1.4) to (1.10) are the two-phase analog of the system obtained in classical
boundary layer theory (Schlichting & Gersten, 2001). We further simplify these equations
by recasting (1.4a) and (1.4b) into a single equation. Integrating (1.4b) between y and h
and substituting the resulting expression for the pressure pk into (1.4a), yields the (second-
order) boundary layer equations BLEk for the liquid film and gas layer, respectively:

BLEk : Xk ǫ ∂tuk + ǫ uk∂xuk + ǫ vk∂yuk =

− ǫ ∂x [pk|h] +
X2

k

Fr2
{sin(φ)− ǫ cos(φ)∂xh}

− ǫ2 1

Rek
∂x [∂xuk|h] +

1

Rek

{
2 ǫ2∂xxuk + ∂yyuk

}
.

(1.11)
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The momentum equation of our WRIBL model is obtained by performing a weighted
integration of BLEk across the respective layers and summing the two results:

ME :

∫ h(x,t)

0

w1(y) BLE1 dy +ΠρΠ
3
u

∫ H

h(x,t)

w2(y) BLE2 dy, (1.12)

where we have introduced the weight functions wk, and where the multiplicative factor
ΠρΠ

3
u is a direct consequence of the chosen phase-specific scaling (1.1). These weight func-

tions are tailored to produce several desired properties of the model. The first condition
imposed on wk is:

Πu

∫ H

h

w2(y) dy = −
∫ h

0

w1(y) dy, (1.13)

which allows to recast the pressure term in (1.12) as follows:

−∂x [p1|h]
∫ h

0

w1(y) dy − ΠρΠ
3
u ∂x [p2|h]

∫ H

h

w2(y) dy =

− ∂x
[
p1|h − ΠρΠ

2
u p2|h

] ∫ h

0

w1(y) dy.

(1.14)

As a result, the pressure variable can be eliminated from (1.14) by substituting the normal
stress balance (1.6a) for p1|h −ΠρΠ

2
u p2|h.

To perform the integration required in (1.12), we decompose the longitudinal velocity

component uk into an order ǫ0 base profile ûk and an order ǫ1 correction u
(1)
k :

uk(x, y, t) = ûk(x, y, t)︸ ︷︷ ︸
O(ǫ0)

+ u
(1)
k (x, y, t)︸ ︷︷ ︸
O(ǫ1)

, (1.15)

implying that û is sufficiently close to the exact solution uk of (1.4)-(1.10), a condition to
be checked a posteriori by comparing with direct numerical simulations (DNS). Following
the WRIBL approach for single-fluid film flows (Samanta et al., 2011), we require ûk to
satisfy the leading-order governing equations, i.e. (1.4)-(1.10) truncated at ǫ0:

∂yyûk = Zk, ∂yû1|h = ΠµΠu ∂yû2|h , û1|h = Πu û2|h , û1|0 = û2|H = 0, (1.16a)

and to yield the phase-specific local instantaneous flow rates (per unit width) qk(x, t)
corresponding to the full system (1.4)-(1.10):

∫ h(x,t)

0

û1dy = q1(x, t),

∫ H

h(x,t)

û2dy = q2(x, t). (1.16b)

This defines the constants Zk and parametrizes the base profile ûk in terms of h, q1, and
q2, which will emerge as the three dependent variables of the WRIBL model:

ûk(x, y, t) = fki(y, h) qi(x, t), (1.17)
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where fki are defined through the boundary value problem (1.16):

∫ h

0

f11dy =

∫ H

h

f22dy = 1,

∫ h

0

f12dy =

∫ H

h

f21dy = 0. (1.18)

They are given explicitly in (A.4) of appendix A.1. Importantly, as a result of 1.16b, the

integrals of the velocity corrections u
(1)
k vanish:

∫ h

0

u
(1)
1 dy =

∫ H

h

u
(1)
2 dy = 0. (1.19)

The wall-normal velocity component vk is obtained from the continuity equation (1.4c):

vk(x, y, t) = v̂k(x, y, t)︸ ︷︷ ︸
O(ǫ0)

+ v
(1)
k (x, y, t)︸ ︷︷ ︸
O(ǫ1)

, (1.20)

v̂k(x, y, t) = −δk1
∫ y

0

∂xû1 dỹ + δk2

∫ H

y

∂xû2 dỹ, (1.21)

where we have introduced the Kronecker symbol δij , and the base profile v̂k(x, y, t) can
be factorized as follows:

v̂k(x, y, t) = gk1(y, h) q1∂xh + gk2(y, h) q2∂xh+ gk3(y, h) ∂xq1 + gk4(y, h) ∂xq2. (1.22)

The coefficients gkj are given explicitly in (A.5) of appendix A.1.

The last remaining step in the model derivation is to eliminate terms from the momen-
tum equation (1.12) involving the velocity corrections u

(1)
k and v

(1)
k , which are unknown

at this stage. This is done in three steps:

• Most terms involving u
(1)
k and v

(1)
k drop out because they are smaller than the truncation

limit ǫ2.

• Inertial corrections of order ǫ2, such as ǫ
∫
wkûk∂xu

(1)
k dy, are dropped under the assump-

tion that inertial effects are weak compared to capillary effects. This requires We≫ 1
for the primary fluid and We/Πρ/Π

2
u ≫ 1 for the outer fluid. Assuming We is at the low

end, this would imply O(Πu) ≥ O(Π−1/2ρ ) for the outer fluid. For liquid-gas systems,
where O(Πρ)=10−3, the characteristic gas velocity is thus allowed to be up to

√
103

times greater than the liquid velocity, i.e. O(Πu)=103/2. We point out that order ǫ2

inertial corrections can, in principle, be accounted for in the WRIBL approach, as has
been shown by Ruyer-Quil & Manneville (2002) for the limiting case of a passive outer
phase (Πρ=Πµ=0). Although this would expand the range of validity of our model, it
would also render it much more involved, in particular due to accounting for the active
outer phase.
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• The viscous correction terms Re−1k

∫
wk∂yyu

(1)
k dy, which are of order ǫ0, can be recast

through twofold integration by parts:

Re−11

{∫ h

0

w1 ∂yyu
(1)
1 dy − ΠµΠ

2
u

∫ H

h

w2 ∂yyu
(1)
2 dy

}
=

Re−11

{∫ h

0

∂yyw1 u
(1)
1 dy − ΠµΠ

2
u

∫ H

h

∂yyw2 u
(1)
2 dy

+
[
u
(1)
1 ∂yw1

]h
0
−ΠµΠ

2
u

[
u
(1)
2 ∂yw2

]H
h
+
[
w1∂yu

(1)
1

]h
0
− ΠµΠ

2
u

[
w2∂yu

(1)
2

]H
h

}
,

(1.23)

where we have used the identity ΠρΠ
3
uRe

−1
2 =ΠµΠ

2
uRe

−1
1 . The different terms on the

RHS of (1.23) can be eliminated or substituted step for step, by requiring the weight
functions wk to satisfy the boundary value problem:

∂yywk = Zk, w1|0 = w2|H = 0,

w1|h = Πu w2|h , ∂yw1|h = ΠµΠu ∂yw2|h ,
(1.24)

by invoking the gauge conditions (1.19), boundary conditions (1.10), and kinematic

inter-phase coupling condition (1.9a) for u
(1)
k , and, finally, by substituting the expres-

sion:

w1∂yu
(1)
1

∣∣∣
h
− ΠµΠ

2
u w2∂yu

(1)
2

∣∣∣
h
= w1|h

{
∂yu

(1)
1

∣∣∣
h
− ΠµΠu ∂yu

(1)
2

∣∣∣
h

}
, (1.25)

via the inter-phase tangential stress balance (1.6b), with the base profile velocity gra-
dient jump ∂yû1|h −ΠµΠu ∂yû2|h.

The weight functions wk are defined through (1.24) and (1.13), up to an arbitrary constant,
and thus one of the Zk in (1.24) can be chosen freely. The system (1.24) is identical to the
boundary value problem (1.16a) defining the base profile ûk. In the case of single-fluid
films (Samanta et al., 2011), this implies w=û, similar to the Galerkin approach in finite
element numerical integration (Zienkiewicz et al., 2013). By contrast, in our two-phase
configuration, wk and ûk are necessarily different, owing to the integral constraint (1.13).
A suitable choice for wk then is2:

wk(y, h) = fk1(y, h)− Π−1u fk2(y, h). (1.26)

As a result, the final form of our momentum equation is:

Si∂tqi + Fijqi∂xqj +Gijqiqj∂xh = We ∂xxxh

+
1

Fr2
(1− Πρ) {sin (φ)− cos(φ)∂xh}+ Ciqi

+ Jiqi∂xh
2 +Ki∂xqi∂xh+ Liqi∂xxh+Mi∂xxqi,

(1.27)

2This choice implies
∫ h

0
w1 dr=1 and

∫ R

h
w2 dr=1.
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where the subscripts i and j are to be permuted through the phase indicators 1 and 2
using Einstein summation, and the coefficients Si, Fij , Gij , Ci, Ji, Ki, Li, and Mi are
known functions of the film thickness h and the control parameters, e.g. Rei, Πµ, and Πρ.
They are given in appendix A.1.

The terms on the LHS of (1.27), with coefficients Si, Fij, and Gij , account for the effect
of inertia. The first two terms on the RHS, respectively scaled by We and Fr, express the
effect of surface tension forces and gravity. Streamwise gravity enters through sin(φ) and
wall-normal gravity through cos(φ). The remaining terms account for viscous stresses.
Those with coefficients Ci express effects of order ǫ, and those with coefficients Ji, Ki, Li,
and Mi express effects of order ǫ

2.
Our model is closed with two additional equations obtained by integrating the continu-

ity equation (1.4b) across the liquid and gas layer, and applying the kinematic condition
(1.9b):

∂th+ ∂xq1 = 0, (1.28a)

−∂th+Πu∂xq2 = 0. (1.28b)

Taking the sum of these two equations, yields that the total flow rate qtot=q1+Πuq2 is
spatially invariant. From the perspective of solving (1.27) numerically, it is thus conve-
nient to eliminate q2 from the problem via:

q2 = Π−1u (qtot − q1) . (1.29)

Then, (1.28a), (1.27), and (1.29) constitute a closed system for the two unknowns q1(x, t)
and h(x, t). The gas flow is controlled either by prescribing qtot explicitly, or by imposing
a condition on the gas pressure drop ∆p2.

For the second scenario, a pressure equation is derived by applying a different set of
weight functions w̃1 and w̃2 to (1.12):

PE :

∫ h(x,t)

0

w̃1(y) BLE1 dy +ΠρΠ
3
u

∫ H

h(x,t)

w̃2(y) BLE2 dy, (1.30)

where we choose:

w̃k(y, h) = fk1(y, h) + Π−1u fk2(y, h). (1.31)

As a result of this choice, the pressure term in (1.30) takes the form:

−∂x [p1|h]
∫ h

0

w̃1(y) dy − ΠρΠ
3
u ∂x [p2|h]

∫ H

h

w̃2(y) dy =

− ∂x
[
p1|h − ΠρΠ

2
u p2|h

] ∫ h

0

w̃1(y) dy

− 2ΠρΠ
2
u ∂x [p2|h]

∫ h

0

w̃1(y) dy.

(1.32)
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The first RHS term is once again eliminated through (1.6a) but the second term remains.
As a result, (1.30) can be recast into a dynamic equation for the streamwise gas pressure
gradient ∂x [p2|h]:

2ΠρΠ
2
u ∂x [p2|h] = −S̃i∂tqi − F̃ijqi∂xqj − G̃ijqiqj∂xh +We ∂xxxh

+
1

Fr2
(1−Πρ) {sin (φ)− cos(φ)∂xh}+ C̃iqi

+ J̃iqi∂xh
2 + K̃i∂xqi∂xh + L̃iqi∂xxh+ M̃i∂xxqi

= −S̃i∂tqi +NLP(x, t),

(1.33)

where the coefficients S̃i, F̃ij , G̃ij, C̃i, J̃i, K̃i, L̃i, and M̃i are defined through the same
functions (given in appendix A.1) as their counterparts in (1.27), only that w̃k instead of
wk are used. Equation (1.33) can be employed either to evaluate the pressure distribution
a posteriori in a computation where qtot is prescribed, or to impose ∆p2 instead of qtot
through an integral condition:

∆p2 =

∫ L

0

∂x [p2|h] dx =
1

2ΠρΠ2
u

{∫ L

0

NLP(x, t) dx−
∫ L

0

S̃i∂tqi dx

}

=
1

2ΠρΠ2
u

{∫ L

0

NLP(x, t) dx−
∫ L

0

(
S̃1 −Π−1u S̃2

)
∂tq1 dx− ∂tqtot

∫ L

0

Π−1u S̃2 dx

}
,

(1.34)

where L designates the domain length of the computation. In the second case, ∂tq1 is
eliminated from (1.34) using the momentum equation (1.27), and ∂tqtot is adjusted to
yield the desired ∆p2. In some situations, it is convenient to relate ∆p2 to the weight of
the gas column, and so we introduce the normalized pressure gradient M :

M =
∆p⋆2
ρ2 g L⋆

. (1.35)

The limit M=sin(φ) corresponds to the reference case of an aerostatic pressure drop.
As a first basic consistency test, we have checked that (1.27) converges to equation

(41) of Ruyer-Quil & Manneville (2000) in the appropriate limit of a passive gas phase
(Πµ=Πρ=0), after rescaling with the natural scales:

Lν = ν
2/3
l g−1/3, Uν = (νl g)

1/3, Tν = Lν/Uν , (1.36)

where νl is the liquid kinematic viscosity. Similarly, in the limit of a passive liquid
(Π−1µ =Π−1ρ =0), and after appropriate rescaling (formulating the natural scales with the
kinematic viscosity νg of the gas), the same equation is obtained, only that the sign of
the normal gravity term involving cos(φ) is reversed. A detailed validation of our model
for the flow configurations studied in this work is provided in section 2.3.1.
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Relation to the state of the art and impact of our work: At the time of its
publication (Dietze & Ruyer-Quil, 2013), our planar two-phase WRIBL model, given by
(1.28a), (1.28b), (1.27), and (1.33), extended the state of the art on modelling liquid film
flows through narrow planar channels in several ways.

As far as the WRIBL method is concerned, our model extended the single-phase
WRIBL model of Ruyer-Quil & Manneville (2000) (see also Oron et al. (2009)), by ac-
counting for an active outer phase in contact with the liquid film. Further, it extended the
two-phase model of Amaouche et al. (2007), which was derived (consistent at order ǫ2) in
the limit of zero pressure gradient ∂xp2=0. In this limit, it is not necessary to eliminate
p2 through (1.13), (1.14), and (1.6a). However, without a driving pressure gradient, the
configuration of a liquid film sheared by a counter-current gas flow cannot be represented.
The idea for eliminating p2 through (1.13) was introduced later by Alba et al. (2011),
who derived a WRIBL model consistent at order ǫ1 for a pressure-driven two-phase chan-
nel flow. However, surface tension forces and gravity were neglected in that work, and
equal densities were assumed for the two fluids (Πρ=1). Our model improved upon the
models of Amaouche et al. (2007) and Alba et al. (2011) by generalizing the two-phase
WRIBL approach, so that counter-current flows with arbitrary density ratios (e.g. liquid-
gas flows) and surface tension can be represented. Also, our pressure equation (1.33),
which allows imposing the gas pressure drop or calculating the pressure distribution a
posteriori, extended the WRIBL methodology.

Our WRIBL model (applied up to order ǫ2) also improves upon other approaches that
had been applied to liquid films in narrow channels. For example, asymptotic models
(Jurman et al., 1989; Jurman & McCready, 1989; Tilley et al., 1994b,a), which are based
on the approach of Benney (1966) and Gjevik (1970), i.e. a long-wave expansion around the
primary flow3, are limited to the vicinity of the stability threshold, and, thus, only small-
amplitude nonlinear waves can be represented. Outside this range, asymptotic models are
prone to finite-time blow-up (Pumir et al., 1983). Lubrication models (Pozrikidis, 1998)
cannot account for the inertia-driven Kapitza instability, and IBL models (Sisoev et al.,
2009; Zakaria, 2012), which are based on the approach of Shkadov (1967), i.e. an un-
weighted integration of the boundary layer equations, cannot correctly predict the stabil-
ity threshold for inclined configurations. Moreover, such models have been developed only
up to order ǫ, and thus do not account for streamwise viscous diffusion, which is known
to significantly affect both the cut-off wave number of the instability and the amplitude
of precursory capillary ripples in nonlinear solutions (Ruyer-Quil & Manneville, 2000). In
some cases, the asymptotic approach was applied to one phase and the IBL approach to
the other (Matar et al., 2007).

Our WRIBL model accounts for the dynamic coupling between the two fluid phases
via the full inter-phase coupling conditions. However, it is limited to rather low values
of the Reynolds number (|Rek| ≤ 200) as well as strong confinement levels. In that
sense, our model complements weakly-coupled models that have been developed for liquid

3See Oron & Gottlieb (2004) for a discussion of the first- and second-order Benney equation applied
to falling liquid films.
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films sheared by high-speed gas flows (Demekhin, 1981; Alekseenko & Nakoryakov, 1995;
Tseluiko & Kalliadasis, 2011). Such models relax the coupling conditions by assuming
the film surface to be immobile relative to the gas. Although this assumption breaks
down at low gas velocities, it is well suited to describe turbulent gas flows. In section 1.4,
we will use this approach to derive a model for falling liquid films sheared by a turbulent
gas flow.

Since its publication, our paper Dietze & Ruyer-Quil (2013), which introduced and
validated our planar WRIBL model for two-fluid film flows through narrow channels, has
been cited 45 times, according to Web of Science. Here, we focus only on citations that
have referred to the methodological aspect of our paper, whereas section 6.2 will discuss
the impact of the physics we have uncovered with our WRIBL model. Several works have
acknowledged our paper as a seminal contribution to the modelling of two-phase film
flows:

Vellingiri et al. (2015); Schmidt et al. (2016); Saleh & Ormiston (2017); Miao et al.
(2017); Dandekar et al. (2018); Lavalle et al. (2015, 2017, 2018); Denner et al.
(2018); Pillai & Narayanan (2018b,a); Tsvelodub & Bocharov (2017, 2018,
2020); Samanta (2013, 2020); Vakilipour et al. (2021); Tsvelodub et al. (2021);
Mohamed et al. (2021).

Some of these works have built upon our approach by incorporating additional physical
effects. For example, Samanta (2013) extended our WRIBL model by accounting for
variations in interfacial tension due to an insoluble surfactant, and used the model to
study the role of the Marangoni effect in inclined liquid/liquid channel flows. Later,
Pillai & Narayanan (2018a) incorporated heat transfer and phase change to study the
dynamics of an unstable liquid/vapour bilayer within a narrow horizontal gap. Other
works have used our benchmark data on pressure-driven two-layer channel flows an gas-
sheared falling liquid films to validate their own low-dimensional models (Lavalle et al.,
2015; Miao et al., 2017) and DNS solvers (Vakilipour et al., 2021).

1.2 Annular liquid films in cylindrical tubes

We consider the axisymmetric configuration sketched in figure 1.3, an annular liquid film
coating the inner surface of a cylindrical tube of radius R⋆ in contact with an active core
fluid. The liquid film is either driven by gravity (panel 1.3a), in which case the tube is
vertical (section 7.1), or the tube is so narrow that capillarity dominates all other driving
mechanisms (panel 1.3a), in which case the flow is entirely governed by the Plateau-
Rayleigh instability, e.g. in the case of mucus films within the pulmonary airways (section
7.1). The core fluid may flow co- or counter-currently w.r.t the liquid film, or it may be
quiescent. For example, we will consider an oscillating core gas flow in section 7.1, to
mimic the air flow induced by breathing.

The derivation of our cylindrical model follows the WRIBL approach described for
the planar configuration in section 1.1. From a physical point of view, the main differ-
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Figure 1.3: Axisymmetric annular liquid film (subscript 1) lining the inner surface of a
narrow cylindrical tube and subject to an active core fluid (subscript 2). (a) Gravity-
driven vertically falling liquid film in contact with a co- or counter-current gas flow; (b)
gravity-free liquid film in contact with an oscillating gas flow (mucus films in pulmonary
airways) or a quiescent core liquid (oil/water systems in porous media). The flows are
laminar and both fluids are Newtonian. The star symbol denotes dimensional quantities.

ence versus the planar configuration is the azimuthal curvature of he film surface, which
introduces the Plateau-Rayleigh instability. All other changes are due to moving from
Cartesian differential operators to cylindrical ones. The liquid film (subscript k=1) and
core fluid (subscript k=2) are again assumed to be Newtonian with constant fluid proper-
ties, and they are assumed to flow in a laminar two-dimensional (axisymmetric) manner.
The core fluid is either a gas or a liquid, but we will focus on the former case4. We keep
the same notations as in section 1.1, but qk will now designate the cross-sectional flow
rates:

q1 = 2π

∫ R

d(x,t)

ru1 dr, q2 = 2π

∫ d(x,t)

0

ru2 dr (1.37)

where we have introduced the core radius d, i.e. the radial distance between the tube axis
and the film surface, which will be our main dependent variable instead of h. Variables
are once again scaled according to (1.1), this time choosing the tube radius as the length
scale L=R⋆. For the velocity scale U , we distinguish between gravity-driven flow (panel

4Results for liquid/liquid combinations are discussed in Dietze & Ruyer-Quil (2015).
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1.3a) and capillary-driven flow (panel 1.3b):

gravity-driven flow : Uk =
q⋆k
πR⋆2

, (1.38)

capillary-driven flow : Uk = U =
σ

µ1
,Πu = 1, (1.39)

and the time scale is T =L/U1.
Compared to equations (1.4), (1.6), and (1.9) for the planar configuration, we obtain

the following non-dimensional governing equations truncated at order ǫ2 for the cylindrical
configuration. The Navier-Stokes and continuity equations read:

Xk ǫ ∂tuk + ǫ uk∂xuk + ǫ vk∂ruk = −ǫ ∂xpk +
1

Rek

{
ǫ2∂xxuk +

1

r
∂r (r∂ruk)

}
+
X2

k

Fr2
, (1.40a)

0 = −ǫ ∂rpk + ǫ2
1

Rek
∂r

{
1

r
∂r (rvk)

}
, (1.40b)

∂xuk +
1

r
∂r (rvk) = 0, (1.40c)

where, once again, X1=1 and X2=Π−1u . The inter-phase coupling conditions for the
normal5 and tangential stresses at r=d are:

ǫ p1 + ǫWe ǫ2κ− 2 ǫ2

Re1
∂rv1 = ΠρΠ

2
u ǫ p2 −ΠµΠu

2 ǫ2

Re1
∂rv2, (1.41a)

−
(
∂ru1 + ǫ2 ∂xv1

)
+ 2 ǫ2 ∂xd (∂xu1 − ∂rv1) =

ΠuΠµ

{
−
(
∂ru2 + ǫ2 ∂xv2

)
+ 2 ǫ2 ∂xd (∂xu2 − ∂rv2)

}
,

(1.41b)

where κ again designates the order ǫ0 approximation of the full curvature C=∇·n (4.19):

κ =
1

ǫ−2d
− 1

2

∂xd
2

d
− ∂xxd, (1.42)

introducing the nabla operator ∇=[ǫ∂x, r
−1 + ∂r] in cylindrical coordinates, and the or-

thonormal surface coordinate system:

n = [−ǫ ∂xd, 1]
(
1 + ǫ2∂xd

2
)−1/2

, τ = [1, ǫ ∂xd]
(
1 + ǫ2∂xd

2
)−1/2

. (1.43)

Further, we have the kinematic coupling conditions at r=d:

u1 = Πuu2, v1 = Πuv2 (1.44a)

5The sign of the We term in (1.41a) is inverted w.r.t (1.6a), because the normal vector n (1.43) points
into the liquid film.
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X−1k vk =
dd

dt
= ∂td+X−1k uk ∂xd, (1.44b)

and the radial boundary conditions:

u1|r=R = v1|r=R = 0, ∂ru2|r=0 = v2|r=0 = 0. (1.45)

The boundary layer equations for the annular liquid film and core fluid are obtained
in the same way as (1.11):

BLEk : Xk ǫ ∂tuk + ǫ uk∂xuk + ǫ vk∂ruk = −ǫ ∂x [pk|d] +
X2

k

Fr2

− ǫ2 1

Rek
∂x [∂xuk|d] +

1

Rek

{
2 ǫ2∂xxuk + ∂rruk

}
,

(1.46)

and are combined as follows:

ME :

∫ R

d(x,t)

rw1(r) BLE1 dr +ΠρΠ
3
u

∫ d(x,t)

0

rw2(r) BLE2 dr, (1.47)

to construct the final integral momentum equation of our cylindrical WRIBL model
(rescaled by setting ǫ=1):

Si∂tqi + Fijqi∂xqj +Gijqiqj∂xd =
We

2π
∂xκ+

1

2π
Fr−2 (1− Πρ) +

1

2π
Ciqi

+ Jiqi∂xd
2 +Ki∂xqi∂xd+ Liqi∂xxd+Mi∂xxqi,

(1.48)

which is analogous to (1.27) of the planar model, and where κ is defined according to
(1.42) (rescaled by setting ǫ=1). The model coefficients are known functions of d and the
control parameters of the problem, e.g. Rek, Πµ, and Πρ. They are defined in terms of
the base velocity profiles ûk and v̂k:

ûk(x, r, t) = fki(r, d) qi(x, t), (1.49)

v̂k(x, r, t) = gk1(r, d) q1∂xd+ gk2(r, d) q2∂xd (1.50)

+ gk3(r, d) ∂xq1 + gk4(r, d) ∂xq2,

which satisfy:

1

r
∂r (r∂rûk) = Zk, ∂ru1|d = ΠµΠu ∂ru2|d , u1|d = Πu u2|d , u1|R = ∂ru2|0 = 0,

(1.51a)

2π

∫ R

d(x,t)

rû1dr = q1(x, t), 2π

∫ d(x,t)

0

rû2dy = q2(x, t), (1.51b)

v̂k(x, r, t) =
1

r
δk1

∫ R

r

r̃∂xû1 dr̃ −
1

r
δk2

∫ r

0

r̃∂xû2 dr̃, (1.51c)
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and the weight functions wk:

wk(r, d) = fk1(r, d)− Π−1u fk2(r, d), (1.52)

which satisfy:

1

r
∂r (r∂rwk) = Zk, w1|R = ∂rw2|0 = 0, (1.53)

w1|d = Πu w2|d , ∂rw1|d = ΠµΠu ∂rw2|d , (1.54)

Πu

∫ d(x,t)

0

rw2(r)dr = −
∫ R

d(x,t)

rw1(r)dr = −
1

2π
(1.55)

All coefficients involved in (1.48), (1.49), and (1.50) are defined in appendix A.2.
The model is closed with the integral continuity equations:

∂td−
1

2πd
∂xq1 = 0, (1.56)

∂td+
Πu

2πd
∂xq2 = 0, q2 = Π−1u (qtot − q1) , (1.57)

and the pressure equation:

2ΠρΠ
2
u ∂x [p2|d] = −S̃i∂tqi − F̃ijqi∂xqj − G̃ijqiqj∂xd

+
We

2π
∂xκ+

1

2π
Fr−2 (1 + Πρ) +

1

2π
C̃iqi

+ J̃iqi∂xd
2 + K̃i∂xqi∂xd+ L̃iqi∂xxd+ M̃i∂xxqi

= −S̃i∂tqi +NLP(x, t),

(1.58)

which can be used to apply a condition on the pressure drop ∆p2 through (1.34), and
which is analogous to (1.33) for the planar model. The coefficients in (1.58) satisfy the
same functions as their counterparts in (1.48), which are given in appendix A.2, only that
the modified weight functions w̃k are used:

w̃k(r, d) = fk1(r, d) + Π−1u fk2(r, d). (1.59)

To allow representing liquid plugs (see figure 2.19 for an example), where a singularity
is reached as d→ 0, we augment our momentum equation (1.48) with a source term Πϕ:

Si∂tqi + Fijqi∂xqj +Gijqiqj∂xd =
We

2π
∂xκ+Πϕ +

1

2π
Fr−2 (1− Πρ) +

1

2π
Ciqi

+ Jiqi∂xd
2 +Ki∂xqi∂xd+ Liqi∂xxd+Mi∂xxqi,

(1.60a)
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which was introduced in Dietze et al. (2020):

Πϕ = −We

2π
ΠCRL exp

[
λ

(
1− d(x, t)

dplug

)]
∂xκϕ, (1.60b)

with κϕ =
1

d

[
1− 1

2
(∂xd)

2

]
.

Here, ΠCRL sets the magnitude of Πϕ, λ is a slope coefficient (λ=1 in our computations),
and dplug designates the core radius of a pseudo-plug. By pseudo-plug, we mean a liquid
annulus that fills the entire tube cross section except for an extremely thin filament of
core fluid with d=dplug ≪ 1 (dplug=0.01 in our computations). This way, liquid plugs can
be represented without violating the requirement of a finite core radius d(x).

Conceptually, the source term Πϕ is comparable to the disjoining pressure used for im-
posing a stable precursor film in lubrication models for contact line problems (Thiele et al.,
2001). At d=dplug and ΠCRL=1, Πϕ (1.60b) exactly cancels the azimuthal capillary term
We
2π
∂xκϕ in (1.60a), which is responsible for the Plateau-Rayleigh instability, thus render-

ing the cylindrical surface of the pseudo-plug stable. For d & dplug, |Πϕ| .
∣∣We
2π
∂xκϕ

∣∣ and
the Plateau-Rayleigh mechanism is dominant, whereas the opposite holds for d . dplug.
As a result, the film surface is attracted toward d=dplug from both sides.

Because Πϕ varies very sharply around dplug, this effect is felt only when d is close to
dplug, and it translates into a very strong repulsion of the film surface away from the tube
axis as d → 0. Moreover, the cylindrical surface d=dplug can be rendered entirely stable
even in the presence of a mean flow, via an appropriate choice of ΠCRL ≥ 1 (see discussion
of panel 2.3d in section 2.1.2).

A discussion of how pseudo-plugs are constructed numerically is provided in section
2.2.3. And, we will show in section 2.3.2 that our augmented model (1.60) yields quite
accurate predictions of real liquid plugs.

Relation to the state of the art and impact of our work At the time of its
publication (Dietze & Ruyer-Quil, 2015), our cylindrical WRIBL model for core-annular
flow, given by (1.56), (1.57), (1.48), and (1.58), extended the state of the art on modelling
annular liquid films in narrow cylindrical geometries in several ways.

As far as the WRIBL method is concerned, our model extended the single-phase model
of Ruyer-Quil et al. (2008) (see also Novbari & Oron (2009)) by accounting for an active
core fluid6. Further, it extended the two-phase WRIBL model of Mehidi & Amatousse
(2009) beyond the limiting case of a zero core-fluid pressure gradient ∂x p2|d=0, via an
appropriate choice of weight functions (1.52). This allows to study pressure-driven core-
annular flows and annular falling liquid films subject to a quiescent, co-, or counter-current
core gas.

6The model of Ruyer-Quil et al. (2008) was written for a falling liquid film on the outside of a cylindri-
cal fibre, but it can be transposed to the configuration in figure 1.3 by making the fibre radius negative.
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By employing the WRIBL method, and developing our model up to order ǫ2, we
were able to improve upon other modelling approaches that had been applied to annu-
lar liquid films. For example, thin-film models (Hammond, 1983; Lister et al., 2006b)
cannot represent the occlusion of the tube, lubrication models (Gauglitz & Radke, 1988;
Camassa et al., 2014) cannot account for the inertia-driven Kapitza instability, first-order
IBL models (Johnson et al., 1991; Trifonov, 1992; Zhou et al., 2016; Liu & Ding, 2017;
Ding et al., 2019) cannot account for axial viscous diffusion, and quasi-static approaches
(Jensen, 2000) constrain the shape of interfacial deformations.

In terms of representing the core fluid, our fully-coupled model complements the mod-
els of Halpern & Grotberg (2003) and Camassa et al. (2017), which are based on a re-
laxed form of the inter-phase coupling conditions in the limit of high-frequency core
flow oscillations or large velocity contrasts between the two fluids. For example, the
model of Camassa et al. (2017) was designed for turbulent gas core flows in contact
with a laminar annular liquid film7. By contrast, our model covers the range of moder-
ate velocity contrasts (strongly-confined laminar-laminar two-phase flows) and slow core
flow oscillations (e.g. due to breathing in the pulmonary airways), where the models of
Halpern & Grotberg (2003) and Camassa et al. (2017) are not applicable.

Our representation of liquid plugs through the source term (1.60b) in (1.60), which was
introduced in Dietze et al. (2020), allows to continue computations past occlusion events.
This has enabled us to perform fully developed computations of falling liquid films in
narrow tubes beyond the occlusion limit, as opposed to other studies (Zhou et al., 2016),
where computations broke down at the first occlusion event. For example, we have suc-
cessfully reproduced the occlusion experiment of Camassa et al. (2014) (see computation
in figure 2.20 of section 2.3.2). In the future, we plan to use our augmented model to
study the dynamics of gravity-driven liquid plugs (currently ongoing), in complement to
the works of Suresh & Grotberg (2005) on plugs in planar channels, and Ubal et al. (2008)
on pressure-driven plugs in tubes.

Wang (2016) studied core annular liquid-liquid systems with zero base flow via a
two-phase lubrication model. He was able to continue computations quite far toward
the formation of liquid plugs, without any special mathematical treatment. In his case,
the core fluid was very viscous and thus the drainage of liquid from the thin cylindrical
thread forming at the center of the tube was slow. This strongly delays the actual pinch-
off of the core fluid, allowing a cascade of satellite droplets to form, as a result of the
Plateau-Rayleigh instability.

We have not considered in this work pressure-driven core-annular flows, for which there
is a vast body of literature (Aul & Olbricht, 1990; Chen & Joseph, 1991; Kerchman, 1995;
Joseph et al., 1997; Govindarajan & Sahu, 2014). Our model is capable of capturing long-
wave instabilities in these flows (see figures 2.4 and 2.15d). This is another interesting
prospect for future work, but care must be taken to avoid regimes where short wave
instability modes are relevant.

7We will use the gas-side formalism introduced by Camassa et al. (2017) to develop a weakly-coupled
WRIBL model for planar falling liquid films sheared by a turbulent gas in section 1.4.
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Since their publication, our papers Dietze & Ruyer-Quil (2015), which introduced our
cylindrical two-phase WRIBL model, and Dietze et al. (2020), which introduced our rep-
resentation of liquid plugs (1.60), have been cited 25 and 5 times, respectively, according
to Web of Science. Here, we focus only on citations that have referred to the method-
ological aspects of our papers, whereas sections 7.1 and 7.2 will discuss the impact of
the physics we have uncovered. Several works have acknowledged our papers as seminal
contributions to the modelling of annular liquid films and core-annular flows:

Wang (2016); Zhou et al. (2016); Lavalle et al. (2017); Liu & Ding (2017);
Camassa et al. (2017); Wang & Papageorgiou (2018); Pillai & Narayanan (2018a);
Sirwah & Zakaria (2019); Liu & Ding (2020); Camassa et al. (2021); Ogrosky
(2021b,a); Rohlfs et al. (2021).

Some of these papers have noted the usefulness of our WRIBL model for predicting
the occlusion limit of annular liquid films in narrow cylindrical tubes (Camassa et al.,
2021; Ogrosky, 2021b; Romano et al., 2021; Ogrosky, 2021a). For example, we found in
Dietze et al. (2020) that accounting for axial viscous diffusion within the liquid film is
essential to accurately predict the occlusion limit in the case of highly-viscous fluids, such
as Newtonian model liquids for mucus.

This was acknowledged by Ogrosky (2021a) as a motivation for developing his three-
layer asymptotic model up to order O(ǫ2). That model consists of two coaxial annular
liquid films lining the inner surface of a cylindrical tube, in contact with a gaseous core.
Such a configuration is well suited for representing the serous-mucus bilayer coating the
pulmonary airways (Grotberg, 1994, 2011).
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Figure 1.4: Fluid film (subscript 1) on a planar wall in contact with an active outer fluid
(subscript 2) and subject to the Rayleigh-Taylor. If the wall-adjacent fluid is heated,
the Marangoni instability also intervenes. (a) Water film suspended from a horizontal
ceiling in contact with air; (b) gas film underneath a liquid layer (e.g. vapour underneath
a Leidenfrost drop). At the boundary marked by the dot-dashed line, a slip boundary
mimics an unconfined outer phase. All fluids are Newtonian.

1.3 Films subject to the Rayleigh-Taylor andMarangoni

instabilities

We consider the planar configurations in figure 1.4, i.e. a liquid film suspended from a
horizontal ceiling in contact with a gas (panel 1.4a), or a gas film trapped between a
liquid and a wall (panel 1.4b). These configurations will be studied in section 8.1. In
both cases, gravity acts from the liquid toward the gas and there is no mean base flow.
Thus, the film is subject to the Rayleigh-Taylor instability in the presence of surface
tension (Yiantsios & Higgins, 1989). It the wall-adjacent fluid is additionally heated,
which we will consider only later in this section, the Marangoni instability also intervenes
(Boos & Thess, 1999; Alexeev & Oron, 2007).

In contrast to the film flows in panel 1.2a, we impose a slip condition at the outer
boundary y=D:

∂yu2 = v2 = 0. (1.61)

The thickness of the outer phase is assumed sufficiently large to exclude confinement
effects, D ≫ h, but sufficiently small to satisfy the long-wave approximation, D ≪ Λ.

Applying the two-phase WRIBL approach to the current problem, involves only two
modifications w.r.t. section 1.1, which both result from the new boundary condition (1.61).
Firstly, the base velocity profile now satisfies:

∂yyûk = Zk, ∂yû1|h = ΠµΠu ∂yû2|h , û1|h = Πu û2|h , û1|0 = ∂yû2|D = 0,

∫ h(x,t)

0

û1dy = q1(x, t),

∫ D

h(x,t)

û2dy = q2(x, t),
(1.62)
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and, secondly, the weight functions now satisfy:

∂yywk = Zk, w1|0 = ∂yw2|D = 0,

w1|h = Πu w2|h , ∂yw1|h = ΠµΠu ∂yw2|h .
(1.63)

The final model equations have the same form as (1.27) and (1.28) in the limit φ=0, only
that the model coefficients, defined in appendix A.1, are now evaluated using ûk and wk

according to (1.62) and (1.63):

Si∂tqi + Fijqi∂xqj +Gijqiqj∂xh = We ∂xxxh +
1

Fr2
(1−Πρ) + Ciqi

+ Jiqi∂xh
2 +Ki∂xqi∂xh+ Liqi∂xxh+Mi∂xxqi,

, (1.64)

∂th+ ∂xq1 = 0, −∂th+Πu∂xq2 = 0. (1.65)

Equation (1.26) remains a suitable choice for wk, where the coefficients fki, which are
defined through (1.17), are to be based on ûk according to (1.62). The pressure equation
is given by (1.33), where coefficients are to be evaluated with w̃k according to (1.31), once
again using coefficients fki based on ûk according to (1.62).

We introduce scales that are more appropriate for the Rayleigh-Taylor problem:

L = h̄⋆, U1 = U2 = U =
∆ρgL2

µ1
, T = L/U , (1.66)

where the overbar denotes a spatial average and ∆ρ=ρ1− ρ2 is the density difference. As
a result, the dimensionless groups appearing in (1.64) are recast as:

Re−11 = Re−12

Πρ

Πµ
=

1

Ar
, Fr−2 =

1

AtAr
, We =

1

BoAr
, (1.67)

where At=∆ρ/ρ=1-Πρ denotes the Atwood number, Bo=∆ρgL2/σ the Bond number,
and Ar=∆ρρ1L3 g/µ2

1 the Archimedes number. Thus, the governing groups are now Ar,
Bo, Πρ, and Πµ.

In section 8.1, we will consider the current model in the lubrication limit, where
Si=Fij=Gij=Ji=Ki=Li=Mi=0, and we will assume a passive outer phase, i.e. Πµ=Πρ=0
and At=1. In that case, the model reduces to:

∂th = −∂xq1, (1.68a)

q1 =
1

3

[
h3∂xh+

1

Bo
h3∂xxxh

]
. (1.68b)

We have also investigated the additional effect of the Marangoni instability (Boos & Thess,
1999; Alexeev & Oron, 2007), produced by heating the wall-adjacent fluid layer from the
wall. In that case, (1.68b) is augmented as:

q1 =
1

3

[
h3∂xh +

1

Bo
h3∂xxxh

]
+

1

2

Ma

Bo
h2∂x θ|h , (1.69)
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where Ma=∂Tσ(Tw − T∞)/σ designates a modified Marangoni number, which is negative
in our case, and θ|h denotes the dimensionless film surface temperature:

θ|h =
T |h − Tw
Tw − T∞

= − Bi h

1 + Bih
. (1.70)

Here, Bi = H h0/k1 denotes the Biot number, and Tw and T∞ denote the wall and ambient
temperatures. The Biot number contains the inter-phase heat transfer coefficient H and
the thermal conductivity k1.

Relation to the state of the art and impact of our work Our model was intro-
duced in Dietze et al. (2018) to elucidate the sliding instability of thin fluid films subject
to the Rayleigh-Taylor instability (section 8.1). In contrast to prior modelling works
dedicated to the same configuration (Lister et al., 2006b; Glasner, 2007; Alexeev & Oron,
2007), it accounts for the effect of inertia, which produces oscillations during the early
evolution of a liquid film suspended from a ceiling (see panel 8.2b in section 8.1). How-
ever, our analysis of the sliding instability was mainly focused on the long-time evolution,
where the lubrication approximation is valid and where our model collapses with that of
Lister et al. (2006b) (1.68b) or, in the case of Rayleigh-Taylor-Marangoni instability, with
that of Alexeev & Oron (2007) (1.69), at least in the passive-gas limit (Πρ=Πµ=0).

Our work Dietze et al. (2018) has been cited 3 times. Pillai & Narayanan (2018a)
applied our approach to model a confined liquid-gas bilayer subject to the Rayleigh-Taylor
instability and additional evaporation, and Pillai & Narayanan (2020) to the problem of
a bilayer of dielectric fluids subject to electrostatic forcing. Most-recently, Dinesh et al.
(2022) have extended the approach to account for a corrugated bounding wall.

1.4 Falling liquid films sheared by a turbulent gas

Many industrial applications involve a laminar falling liquid film sheared by a counter-
current gas flow within a plane channel of intermediate confinement, i.e. H⋆ ≥ 5 mm
(Vlachos et al., 2001; Valluri et al., 2005). Although the long-wave approximation ǫ≪ 1
may still apply to such flows, the large Re2 values associated with these regimes increase
the importance of second-order inertial corrections ǫRe2û2∂xu

(1)
2 , which we have neglected

in our two-layer WRIBL approach introduced in section 1.1. Nonetheless, in the case
of turbulent flows, Reynolds stresses may become the dominant inertial terms in the
Reynolds-averaged Navier-Stokes (RANS) equations. Invoking the Boussinesq hypothesis,
these can be expressed via diffusional terms of the form:

Re−12 ∂y

(
µt

µ2

∂yū2

)
, (1.71)

where µt is the turbulent viscosity and the overbar indicates averaging over a time span
that is large versus the turbulent time scale but small versus the wave period (Reynolds
averaging).
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Figure 1.5: Falling liquid film (index 1) on an inclined wall subject to a counter-current
turbulent gas flow (index 2). The flow is confined by an upper wall at y=H=H⋆/L1 (not
shown) and a symmetry condition is imposed at the centreline of the average gas layer, i.e.
y=0 or y=D⋆/L1=ΠLD, where ΠL=L2/L1 accounts for the different scaling in the liquid
(1.1) and gas (1.78). Gas-liquid coupling is expressed through the tangential gas shear
stress T2 and the gas pressure P2 at the film surface y=h. Red dashed lines illustrate the
orthogonal curvilinear coordinate system (η, ξ) for the gas flow, where η=yd̄/d.

Such diffusional terms can be dealt with readily in the WRIBL framework, trough an
appropriate choice of the weight function w2 in the integral momentum equation (1.12).
This is an enticing prospect for future work. Here, we introduce a simpler modelling ap-
proach, which we have implemented in the context of the PhD. thesis of Misa Ishimura and
which is the focus of ongoing work. We briefly outline this approach next and preliminary
results will be discussed in chapter 9.

We consider the flow in figure 1.5. A laminar falling liquid film (index 1) flows along an
inclined plane under the action of gravity and interacts with a counter-current turbulent
gas flow (index 2). At y=H=H⋆/L1, the flow is confined by a second wall (not shown),
and we impose a symmetry condition at the centreline of the average gas layer. i.e. at
y=0 or y=D⋆/L1=ΠLD, where ΠL=L2/L1 accounts for the different scalings used in
the liquid (1.1) and gas (1.78). In the case of a symmetrical vertical configuration with
liquid films lining both walls (Vlachos et al., 2001), the symmetry condition is satisfied
analytically and we have D=H/ΠL/2. In the case of an inclined configuration with a dry
upper wall, the symmetry condition in the gas remains a good approximation in the limit
H ≫ h̄ (Tseluiko & Kalliadasis, 2011), which is the one we are interested in here. In that
case, D=(H+h̄)/ΠL/2.

Following several previous works (Halpern & Grotberg, 2003; Tseluiko & Kalliadasis,
2011; Samanta, 2014; Camassa et al., 2017), we apply a weakly-coupled treatment of the
two phases by relaxing the full kinematic inter-phase coupling conditions (4.1c).

The liquid film is modelled via the WRIBL method introduced in section 1.1, where
the effect of the gas enters via the gaseous tangential shear stress T2 and gas pressure P2
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at the film surface y=h8 (figure 1.5). The coupling quantities T2 and P2, which constitute
approximations of the RHS of equations (1.6a) and (1.6b), are obtained from the gas-side
model (1.98), which will be introduced later in this section9. These quantities are scaled
with the gas-side scales L2 and U2 defined in (1.79):

T2 = T ⋆
2

L2

µ2 U2
, P2 = p2|y=d = P ⋆

2

L2

µ2 U2
ǫ, (1.72)

where ǫ=L2/Λ
⋆ is the long-wave parameter for the gas layer. In this one-sided WRIBL

formulation, the weighted integral momentum equation (1.12) reduces to:

ME :

∫ h(x,t)

0

w1(y) BLE1 dy, (1.73)

where the base velocity profile û1 now satisfies:

∂yyû1 = Z1, ∂yû1|h =
ΠµΠu

ΠL
T2, û1|0 = 0,

∫ h(x,t)

0

û1dy = q1(x, t),

(1.74)

introducing the length scale ratio ΠL=L2/L1. Further, the weight function w1 now sat-
isfies:

∂yyw1 = Z1, w1|0 = 0, ∂yw1|h = 0, (1.75)

where Z1 is an arbitrary constant. This yields the following integral momentum equation
for the liquid film:

∂tq1 +
17

7

q1
h
∂xq1 −

9

7

q21
h2
∂xh =

5

6
Weh ∂xxxh +

5

6
Fr−2 h {sin (φ)− cos(φ)∂xh}

+ Re−11

{
−5
2

q1
h2

+ 4
q1
h2
∂xh

2 − 9

2h
∂xq1∂xh− 6

q1
h
∂xxh+

9

2
∂xxq1

}

+
ΠµΠu

ΠL
T2

{
Re−11

[
5

4
+
h

6
∂xxh+

1

2
∂xh

2

]
− 5

112
q1∂xh−

19

336
∂xq1h

}

− 19

672

Π2
µΠ

2
u

Π2
L

h2∂xhT
2
2 −

5

6
Re−12

ΠρΠ
2
u

ΠL

h ∂xP2

+
ΠµΠu

ΠL

{
∂xT2

[
Re−11

3

4
h∂xh−

15

224
hq1

]
− 25

1344

ΠµΠu

ΠL
h3 T2∂xT2 −

h2

48
∂tT2

}
,

(1.76)

to which is added the integral continuity equation (1.28a). Following
Tseluiko & Kalliadasis (2011), we will neglect the terms involving ∂xT2 and ∂tT2,

8Normal gaseous viscous stresses are neglected.
9The gas-side model is based on a mixing-length approach to describe the turbulent viscosity µt in

(1.71).
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but we will account for the space and time dependence of T2 and ∂xP2 in the remaining
terms, via the gas model (1.98). This amounts to a quasi-steady approximation. In the
limit T2=∂xP2=0, (1.76) reduces to equation (41) in Ruyer-Quil & Manneville (2000). In
the limit ∂xT2=∂tT2=∂xP2=0, it collapses with equation (3.9) of Samanta (2014)10.

The turbulent gas flow is governed by the continuity and Navier-Stokes equations
(4.1), written in the gas coordinates x and y (figure 1.5), then Reynolds-averaged, and
truncated at order ǫ:

∂xu2 + ∂yv2 = 0, (1.77a)

ǫ u2∂xu2 + ǫ v2∂yu2 = −
1

Re2
∂xp2 +

1

Re2

{
∂yyu2 + ∂y

[
µt

µ2

∂yu2

]}
+

1

Fr22
sin(φ), (1.77b)

0 = − 1

Re2
∂yp2 + ǫ

1

Fr2
2 cos(φ), (1.77c)

where we have omitted the overbar designating Reynolds-averaged quantities, µt is the
(dimensional) turbulent viscosity, Fr2=U2/

√
gL2, Re2=U2L2/ν2, and where we have used

the following scaling:

u2 =
u⋆2
U2
, v2 =

v⋆2
ǫU2

, x = ǫ
x⋆

L2

, y =
y⋆

L2

, p2 = p⋆2
ǫL2

µ2U2
, (1.78)

based on the gas-side reference scales:

L2 = H⋆, U2 =
q⋆2
L2

=
q⋆2
H⋆

. (1.79)

We have chosen to scale pressure using a measure for the viscous shear stress, in contrast
to (1.1), where the dynamic pressure was used. This choice is more appropriate in a
weakly-confined setting.

Time derivatives in (1.77b) have been neglected under the assumption Πu=U2/U1 ≫ 1,
which yields:

O
{

∂⋆t u
⋆
2

u⋆2∂
⋆
xu

⋆
2

}
=

1

Πu
≪ 1, (1.80)

assuming that the time scale is dictated by the waviness of the liquid film T1=Λ⋆/U1.
This amounts to a quasi-steady representation of the film surface.

The turbulent viscosity µt is formulated with Prandtl’s mixing-length approach (Prandtl,
1925):

µt

µ2

= Re2 l
2
t

∣∣∣∂yu2
∣∣∣ , (1.81)

where lt=l
⋆
t /L2 denotes the dimensionless mixing length. Finally, Πu ≫ 1 also implies that

the film surface can be approximated as a wavy wall with adherence and no-penetration
conditions at y = d (Tseluiko & Kalliadasis, 2011):

u2 = v2 = 0. (1.82a)

10There is a typo in the T2∂xh
2 term in equation (3.9) of Samanta (2014).
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In addition, we impose symmetry at y=0:

∂yu2 = v2 = 0. (1.82b)

We now introduce the curvilinear coordinates η and ξ:

η = y
d̄

d
, ξ = x+ ǫ F (ξ, η), (1.83)

where orthogonality implies:

∂ηF = ǫ
d

d̄2
∂ξd

1

ǫ∂ξF − 1
. (1.84)

Red dashed lines in figure 1.5 constitute curves of constant η and ξ, where11:

∂xy
∣∣
η
= − ∂yx

∣∣∣
ξ
=
y

d̄
∂xd. (1.85)

Following Camassa et al. (2017), we recast the governing equations (1.77) in terms of
these coordinates, while maintaining the same truncation limit ǫ, and we eliminate the
pressure variable p2 via an appropriate integration of (1.77c):

∂ξd

d
∂ξũ2 + ∂ξũ+

d̄

d
∂η ṽ2 = 0, (1.86a)

ǫ ũ2∂ξũ2 + ǫ
d̄

d
ṽ2∂ηũ2 =−

1

Re2
∂ξP2 +

1

Fr22
(sin(φ) + ǫ cos(φ)∂ξd)

+
1

Re2

d̄2

d2

{
∂ηηũ2 + ∂η

[
µ̃t

µ2
∂ηũ2

]}
,

(1.86b)

where we have invoked the projection rules:

u2 = ũ2 +O(ǫ2), v2 = ṽ2 +
∂ξd

d̄
ηũ2 +O(ǫ), (1.87)

∂x = ∂x̃ − η
∂ξd

d
∂η +O(ǫ), ∂y =

d̄

d
∂η +O(ǫ2), (1.88)

and where µ̃t satisfies:
µ̃t

µ2
=
d

d̄
Re2l̃

2
t |∂ηũ| , (1.89)

with l̃t=ltd̄/d. In this curvilinear formulation, the spatial variation of the mixing length l̃t
is expressed in terms of η, i.e. normal to the film surface, and thus correlations developed

11From equations (1.85) and (1.83), we obtain: F (ξ = const) = ξ − x =
y2

2d̄
∂xd.
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for parallel flows can be used. Here, we employ the van Driest equation (Van Driest,
1956):

l̃t = κ
(
d̄− η

){
1− exp

[√∣∣∣∂ηũ(0)2

∣∣∣
d̄
Re2

η − d̄
A

]}
, (1.90)

where A=26, and κ=0.41 denotes the von Karman constant. The square root in the
exponential argument results from rescaling the traditional formulation, which is based
on the friction velocity U+:

L+ =
µ2

ρ2 U+
, U+ =

{
µ2

ρ2

∣∣∣∂ηũ(0)2

∣∣∣
d̄

} 1
2

, (1.91)

in terms of our scales (1.78), introducing the zeroth-order velocity ũ
(0)
2 according to

(1.93a). Finally, the boundary conditions (1.82) become:

ũ2|η=d̄ = ṽ2|η=d̄ = 0, ∂ηũ2|η=0 = ṽ2|η=0 = 0. (1.92)

Following Camassa et al. (2017), we solve the BVP given by (1.86) and (1.92) order
by order based on the following asymptotic expansions in ǫ:

ũ2 = ũ
(0)
2 + ǫ ũ

(1)
2 +O(ǫ2), (1.93a)

ṽ2 = ṽ
(0)
2 + ǫ ṽ

(1)
2 +O(ǫ2), (1.93b)

P2 = P
(0)
2 + ǫ P

(1)
2 +O(ǫ2). (1.93c)

The zeroth-order problem is obtained by inserting (1.93a) into (1.86) and (1.92) and
then truncating at ǫ0. We anticipate a solution in the form of the product ansatz:

ũ
(0)
2 = g0(ξ)U0(η) =

d̄

d
U0(η), (1.94)

which leads to the variable-separated zeroth-order momentum equation:

d3

d̄3

{
1

Re2
∂ξP

(0)
2 −

1

Fr22
sin(φ)

}
=

1

Re2
∂ηηU0 + ∂η

{
l̃2t sgn (∂ηU0) (∂ηU0)

2
}
= C0, (1.95a)

subject to the boundary conditions:

U0|η=d̄ = ∂ηU0|η=0 = 0, (1.95b)

where we have employed the signum function sgn to substitute |∂ηU0|=sgn(∂ηU0)∂ηU0,
and where the separation constant C0 is subject to the gauge condition:

∫ d

0

ũ
(0)
2 dỹ =

∫ d̄

0

U0 dη =
q2
2
. (1.95c)
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At the next order, i.e. ǫ1, we obtain:

d2

d̄2

{
1

Re2
∂ξP

(1)
2

d

∂ξd
− 1

Fr22
cos(φ) d

}
= U2

0 +
1

Re2
∂ηηU1

+ ∂η

{
l̃2t sgn (∂ηU0) ∂ηU0 ∂ηU1

}
= C1,

(1.96a)

U1|η=d̄ = ∂ηU1|η=0 = 0, (1.96b)

∫ d

0

ũ
(1)
2 dỹ =

∫ d̄

0

U1 dη = 0, (1.96c)

where we have employed the product ansatz:

ũ
(1)
2 = g1(ξ)U1(η) =

∂ξd

d
U1(η). (1.97)

The augmented BVPs (1.95) and (1.96) are solved numerically for U0, U1, ∂ξP
(0)
2 ,

∂ξP
(1)
2 , C0, and C1 via the continuation software Auto07P (see section 2.2.4). Importantly,

this numerical solution needs to be computed only once for a given d̄ on a fixed domain
spanning 0 ≤ η ≤ d̄. Based on this, the coupling quantities T2 and ∂xP2, which appear in
the liquid-side model (1.76), are readily constructed at order ǫ1:

T2 = −
d̄

d

{
∂ηũ

(0)
2

∣∣∣
η=d̄

+ ǫ ∂ηũ
(1)
2

∣∣∣
η=d̄

}
+O(ǫ2), (1.98a)

= − d̄
2

d2

{
∂ηU0|η=d̄ +

∂x⋆d⋆

d̄
∂ηU1|η=d̄

}
+O(ǫ2),

∂xP2 = ∂ξP
(0)
2 + ǫ ∂ξP

(1)
2 +O(ǫ2) (1.98b)

= Re2

{
d̄3

d3

(
C0 + C1

∂x⋆d⋆

d̄

)
+

1

Fr22
(sin(φ) + cos(φ)∂x⋆d⋆)

}
+O(ǫ2).

Importantly, for a fixed d̄, the inter-phase coupling quantities T2 and ∂xP2 depend solely
on d=D-h/ΠL.

For completeness, the solution for the velocity expansion (1.93a) up to order O(ǫ) is:

ũ2 =
d̄

d
U0 +

∂x⋆d⋆

d
U1 +O(ǫ2). (1.99)

Relation to the state of the art and impact of our work Our model (which
has not been published yet), given by equations (1.28a), (1.76), and (1.98), extends the
work of Samanta (2014), who considered the limit of a constant T2 and neglected ∂xP2

altogether. Further, it extends the model of Tseluiko et al. (2013), who considered the
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limit of zero confinement, i.e. H →∞. It thus opens the possibility to study falling liquid
films at intermediate confinement levels, where the dynamics of the gas-liquid interaction
is still strongly affected by the channel height H , but the gas flow is already turbulent.
Such conditions are typically encountered in flooding experiments (Vlachos et al., 2001).

Our representation of the gas flow follows the seminal work of Camassa et al. (2017),
who inspired our work. However, our account of the liquid phase represents an improve-
ment w.r.t that paper. Camassa et al. (2017) considered the inertialess limit, which was
sufficient in their study of low Re1 co-current pressure-driven liquid-gas flows. However,
in the case of falling liquid films, inertia is essential for the Kapitza instability mechanism
(Brooke Benjamin, 1957; Yih, 1963), as will be discussed in section 5.1. Our model, which
applies the WRIBL approach to the liquid film, accounts for this effect via the LHS terms
in (1.76).



Chapter 2

WRIBL model computations

2.1 Linear stability analysis

Our WRIBL models introduced in sections 1.1, 1.2, and 1.3 are designed to capture exactly
the neutral stability threshold of long-wave instabilities. Also, they accurately predict,
within a certain validity range, the dispersion of the spatial (temporal) linear growth rate
in terms of the angular frequency ω (wave number k) of a perturbation. In the current
section, we outline the methods of linear stability analysis applied to our WRIBL models.
We also demonstrate their consistency in the long-wave limit ω → 0 (k → 0). Orr-
Sommerfeld (OS) linear stability calculations based on the full Navier-Stokes equations
will be discussed in chapter 3. In section 2.3, we will establish the validity range of our
WRIBL models based on such OS calculations.

Sections 2.1.1 and 2.1.2 are dedicated to the planar and cylindrical configurations
sketched in figures 1.2 and 1.3, where the primary flow is steady and subject to the Kapitza
and Plateau-Rayleigh instabilities. In section 2.1.3, we will apply transient linear stability
approaches to the configuration in figure 1.4, where secondary instability can cause the
spontaneous sliding of suspended liquid drops forming as a result of the Rayleigh-Taylor
instability.

2.1.1 Planar liquid films in rectangular channels

We apply linear stability analysis to the planar WRIBL model given by (1.27) and (1.28),
corresponding to the configuration in figure 1.2. First, the film thickness h and flow rates
q1 and q2 are perturbed around their steady primary-flow values h0, q10, and q20:

h = h0 + h′ = h0 + ĥ exp {i(kx− ωt)}

q1 = q10 + q′1 = q10 + q̂1 exp {i(kx− ωt)}

q2 = q20 + q′2 = q20 + q̂2 exp {i(kx− ωt)} ,

(2.1)

where the infinitesimal perturbations h′, q′1, and q′2 are assumed to grow exponentially
in time/space, starting from their initial amplitudes ĥ, q̂1, and q̂2. Using the continuity

41
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equations (1.28a) and (1.28b), q̂1 and q̂2 can be expressed in terms of ĥ:

q̂1 = −ĥ
ω

k
, q̂2 = ĥ

ω

k
Π−1u . (2.2)

Inserting (2.1) into the momentum equation (1.27) and then linearizing, yields the dis-
persion relation of the WRIBL model:

DR = i ω2 {S2 − S1}+ i k ω {−F22 q2 + F21 q2 − F12 q1 + F11 q1}

+ i k2
{
G22 q

2
2 + 2G12 q2 q1 +G11 q

2
1

}

+ i k2 Fr−2 {cos(φ)− Πρ cos(φ)} − i3 k4We

− {C1 ω + ∂hC1 k q1}+ {C2 ω − ∂hC2 k q2}

− i2 k3 {L1 q1 + L2 q2}+ i2 k2 ω {M2 −M1} = 0,

(2.3)

where all variables and coefficients correspond to the primary flow, i.e. h=h0, q1=q10, and
q2=q20, and where the coefficient derivatives ∂hC1 and ∂hC2 newly appear. This (complex)
algebraic equation can be solved for k in terms of ω (or vice versa). We will do this based
on two different formulations:

• In the case of a spatial stability formulation, we assume ω ∈ R and k=kr+i ki. Here,
−ki is the spatial growth rate and ω the angular frequency of a linear perturbation.
This is the most adequate formulation for convectively unstable flows, such as falling
liquid films (chapters 5 to 7). It breaks down however, when the liquid film succumbs
to absolute instability (AI), e.g. due to a counter-current gas flow (Vellingiri et al.,
2015). Beyond the AI limit, perturbations grow in time at every position and
solutions with Im(ω)=ωi=0 no longer exist. The loss of solutions within a spatial
stability calculation can thus be used to identify the AI threshold. For this, we
track the ∂ω(−ki)=0 maximum of the growth rate dispersion curve −ki(ω), which
degenerates into a pinch point1 ∂ω(−ki)→∞ at AI (see panels 2.11d and 2.15d).

• In the case of a temporal stability formulation, we assume k ∈ R and ω=ωr+i ωi,
or c=ω/k=cr+i ci. Here, kci=ωi is the temporal growth rate and cr=ωr/k is the
wave celerity of the linear perturbation. This formulation is adequate for problems
where there is no mean primary flow, such as the classical Rayleigh-Taylor (section
8.1) and Plateau-Rayleigh (section 7.2) configurations.

Although falling liquid films flowing in a passive atmosphere (Πµ=Πρ=0) are con-
vectively unstable, many studies have applied the temporal formulation to study
their instability. This is because the Gaster transformation (Gaster, 1962):

ωi

ki
= −∂krωr (2.4)

1Strictly-speaking, the AI limit corresponds to a pinch point in the −ki(kr) curve. Whether this
coincides with a pinch point in the −ki(ω) curve, depends on the group velocity ∂kr

ω=∂kr
ki/∂ωki. We

have checked for all our configurations that ∂kr
ω does not diverge at AI. Thus, ∂kr

(−ki)→∞ necessarily
implies ∂ω(−ki)→∞, and the AI limit can be obtained from the degeneration of the ∂ωki=0 maximum.
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applies in this limit (Brevdo et al., 1999).

We solve the algebraic dispersion relation (2.3) numerically with the continuation software
Auto07P. As only long-wave instabilities are considered here, the solution in the limit of
infinitely long perturbations can be used as a starting point:

Temporal formulation : k = 0, ci = 0, cr =
q1∂hC1 + q2∂hC2

C2 − C1

,

Spatial formulation : ω = 0, ki = 0, kr = 0.

(2.5)

Starting from this solution, the dispersion curve of the spatial growth rate −ki(ω)
(temporal growth rate ωi(k)) is obtained by numerically advancing ω (k). Panel 2.1a
shows examples of −ki(ω) curves for a weakly-inclined falling water film in contact with a
counter-current air flow (configuration in panel 1.2a). The two sets of curves correspond
respectively to Re1=20 (circles), which is supercritical, and Re1=10 (diamonds), which is
subcritical. Curves with symbols correspond to the WRIBL dispersion relation (2.3) and
solid lines without symbols were obtained from OS linear stability calculations based on
the full Navier-Stokes equations, which will be discussed in section 3.1.

The WRIBL and OS data sets in panel 2.1a converge exactly as ω → 0. In that limit,
the wave number k ∈ C can be expanded asymptotically in terms of ω:

k = k0 + k1 ω + k2 ω
2 + . . . . (2.6)

Successively truncating (2.3) at orders ω0, ω1 and ω2, we obtain:

k0 = k1 = 0, (2.7a)

and a purely complex solution for k2:

k2 = i

{
Fr−2 cos(φ) (1−Πρ)

Ψ2

Ξ3
+ q2 (F21 − F22)

Ψ

Ξ2
+ q1 (F11 − F12)

Ψ

Ξ2
(2.7b)

− q1q2 2G12
Ψ2

Ξ3
+ q21 G11

Ψ2

Ξ3
+ q22 G22

Ψ2

Ξ3
− S2

Ξ
+
S1

Ξ

}
,

with Ψ = C2 − C1, and Ξ = q1 ∂hC1 + q2 ∂hC2. (2.7c)

Curves for −ki(ω) based on (2.6) and (2.7) are represented with dot-dashed lines in panel
2.1a. Because k1, k2 ∈ R, the sign of Im(k2) decides over instability (Im(k2) < 0) or
stability (Im(k2) > 0).

The neutral stability bound k2=0 is predicted exactly by our WRIBL model. We have
checked that (2.7) collapses analytically with the result obtained from the OS problem
(see (3.7) in chapter 3). This is shown graphically in panel 2.1b, representing curves
of the angular cut-off frequency ωc in terms of Re1. As the neutral stability thresh-
old is approached, ωc → 0, predictions of the WRIBL model (curves with symbols)
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Figure 2.1: Spatial linear stability predictions for a falling water film in contact with a
counter-current gas flow: φ=4◦, Ka=3406.9 (water II and air IV in table 2.1), H⋆=3 mm,
Re2=-20. Symbols: WRIBL model; solid/dashed lines without symbols: OS calculations.
(a) Dispersion curves of the linear growth rate −ki. Circles: Re1=20; diamonds: Re1=10;
dot-dashed lines: asymptotic expansion (2.6); (b) angular cut-off frequency and neutral
stability threshold Recrit1 = lim

ωc→0
Re1. Dashed line: passive-gas limit (Πµ=Πρ=0).

and OS analysis (lines without symbols) converge. In the special case of a passive at-
mosphere (Πµ=Πρ=0, dashed curves), both predictions yield the well known threshold
Recrit1 =5

6
cot(φ) (Brooke Benjamin, 1957; Yih, 1963).

Figure 2.2 compares predictions of the neutral stability bound k2=0 in terms of the
principal control parameters for the two planar configurations represented in figure 1.2.
For the falling liquid film configuration (panel 2.2a), instability is either helped (large
H⋆) or hindered (small H⋆) by an increasingly strong counter-current gas flow (controlled
by M), depending on the confinement level. However, for a large enough normalized
gas pressure drop M , all curves are bounded by a limit point, beyond which the flow
is either unconditionally unstable (large H⋆) or unconditionally stable (small H⋆), with
the exception of the blue curve, which corresponds to the passive gas limit. We have
investigated the stability of strongly confined planar falling liquid films in Lavalle et al.
(2019) and our results will be discussed in detail in section 6.1.

Panel 2.2b corresponds to the configuration of pressure-driven plane Poiseuille flow
of two superimposed fluids. In the limit Πρ=1, our WRIBL (dot-dashed blue curve)
and OS (blue open circles) predictions exactly recover the well-known stability bound
1/Πµ=(h0/d0)

2 (Yiantsios & Higgins, 1988). This result subsumes the special case Πµ=1
obtained in the limit h0/d0=1 (Yih, 1967). The other curves in panel 2.2b correspond to
lower density ratios, evidencing a stabilization of the flow as Πρ decreases.

The WRIBL prediction of the growth rate dispersion curve −ki(ω) (respectively ωi(k))
deteriorates as ω (respectively k) increases and linear perturbations become shorter, al-
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Figure 2.2: Neutral linear stability bound Im(k2)=Im(∂ωωki|ω=0)=0 according to (2.6) for
long-wave instability modes. Lines: WRIBL model (2.7b); symbols: OS problem (3.29).
(a) Configuration in panel 1.2a. Inclined water film in contact with an increasingly strong
counter-current air flow: Ka=3406.9 (air IV and water II in table 2.1). Solid curves from
top to bottom: H⋆=1, 2, 3, and 4 mm; (b) configuration in panel 1.2b. Poiseuille flow of
two superimposed fluids: φ=0◦. Solid curves from top to bottom: Πρ=0.1, 0.15, 0.2, and
0.3. The dashed (panel a) and dot-dashed (panel b) blue lines correspond to Πµ=Πρ=0
and Πρ=1, respectively. “S” indicates stability, and “U” indicates instability.

though this effect is very weak in the particular case represented in panel 2.1a. This
limitation follows from the long-wave approximation underlying our modelling approach.
In section 2.3, we will establish the validity range of our different WRIBL models, which is
determined by their ability to accurately predict the linear growth rate −ki (respectively
ωi) and wave celerity (cr) over the entire range of unstable frequencies ω (respectively
wave numbers k).

Short-wave instabilities cannot be captured by our WRIBL models. In principle, such
instabilities can occur in the planar configurations of two-fluid film flow studied in this
work. However, we have checked that short-wave instability modes are always stable for
the flow conditions considered here. These tests were performed based on a solution of
the OS problem using Chebyshev polynomials, and they will be presented in section 3.1.
Thus, for the flows considered in this work only long-wave instability modes are relevant.

2.1.2 Annular liquid films in cylindrical tubes

We apply the same linear stability formulations discussed in section 2.1.1 also to our
cylindrical model (1.56), (1.57), (1.48), and (1.58), only that q1 and q2 now express the
cross sectional flow rates, and that the core radius d now defines the interface position
(configuration in figure 1.3). Thus, the amplitudes of the linear perturbations (2.1) are
now related by:

q̂1 = −2πd0 d̂
ω

k
, q̂2 = 2πd0Π

−1
u d̂

ω

k
, (2.8)
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and the dispersion relation is:

DR = i ω2 2πd
{
Π−1u S2 − S1

}

+ i k ω 2πd
{
−Π−1u F22 q2 + F21 q2 − Π−1u F12 q1 + F11 q1

}

+ i k2
{
G22 q

2
2 + 2G12 q2 q1 +G11 q

2
1

}

−
{
ωC1 d+ k

1

2π
∂dC1 q1

}
+

{
ωΠ−1u C2 d− k

1

2π
∂dC2 q2

}

− i2 k3 {L1 q1 + L2 q2}+ i2 k2 ω 2πd
{
Π−1u M2 −M1

}

− i3 k4We
1

2π
− i k2We

1

2π

1

d2

{
1− ΠCRL exp

[
λ

(
1− d

dplug

)]}
= 0,

(2.9)

where d and qk again correspond to the primary flow (the subscript 0 has been dropped for
convenience). The capillary term proportional to i k2We is due to the azimuthal curvature
of the film surface, and it includes the source term Πϕ introduced in (1.60b). Through
the parameter ΠCRL, this term can be tuned to fully stabilize a cylindrical surface at
d=dplug ≪ 1, allowing to represent stable pseudo-plugs in nonlinear computations (see
section 2.2.3).

In the classical Plateau-Rayleigh configuration (panel 1.3b), where qk=Πµ=Πρ=0, as-
suming temporally growing modes, i.e. k ∈ R and ω=iωi ∈ C, the cut-off wave number
kc is given by:

kc =
1

d

{
1−ΠCRL exp

[
λ

(
1− d

dplug

)]}1/2

. (2.10)

In this case, full stabilization (kc=0) is achieved for ΠCRL=1 at d/dplug=1. Conversely, in
the limit ΠCRL=0, which is the default setting, our WRIBL model correctly retrieves the
well-known analytical cut-off kc=1/d. Further, as shown in panel 2.3a, our model (solid
curves) accurately predicts the growth rate dispersion curve ωi(k) versus the solution of
the OS problem2 (symbols) for various real fluid combinations, including liquid-liquid
pairings.

In the falling liquid film configuration (panel 1.3a), ΠCRL > 1 may be required to fully
stabilize a pseudo-plug at d=dplug, due to the additional contribution of the inertia-driven
convective Kapitza instability. In this case, we choose a spatial stability formulation, i.e.
k = kr + iki ∈ C and ω ∈ R. Panel 2.3a compares growth rate dispersion curves −ki(ω)
obtained from (2.9) (symbols) with OS predictions (solid curves), for three examples of
annular falling liquid films in contact with air. For all three working liquids, which corre-
spond to real experiments (Camassa et al., 2014; Dao & Balakotaiah, 2000; Piroird et al.,
2011) and cover a wide Ka range, our WRIBL model predictions are in good agreement
with the OS results.

2Section 3.2 introduces the OS linear stability problem for the cylindrical configuration.
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Figure 2.3: Spatial and temporal linear stability of an annular liquid film in contact with
an active core fluid (figure 1.3). Symbols: WRIBL; solid lines: OS. (a) Falling liquid
film. Circles: R⋆=1.5 mm, Ka=121.4 (silicone oil III/air I in table 2.1), Re1=15.4, M=1;
asterisks: run 13 in Dao & Balakotaiah (2000), R⋆=3.175 mm, Ka=3.532 (glycerol(89%)-
water/air I), Re1=0.258, M=1; (b) Static liquid film: Re1=0, M=0, Fr−1=0. Squares:
panel 5b in Johnson et al. (1991), La=5314.3 (mucus I/air I), d0=0.8; crosses: panel 4b
in Tai et al. (2011), La=76.9 (mucus II/air I), d0=0.8; plus signs: figure 4 in Bian et al.
(2010), La=0.0280 (glycerol(96%)-water/silicone oil I), d0=0.77; (c) transition to absolute
instability (AI). Falling film from panel a (glycerol-water): Re1=0.1, 0.2, 0.3, 0.4, 0.5,
and 0.54 (from left to right); (d) stability of a pseudo-plug according to (1.60b). Silicone
oil film from panel a: d0=dplug=0.01, λ=1. Dashed: ΠCRL=1, Πµ=Πρ=0; dot-dashed:
ΠCRL=1.01, Πµ=Πρ=0; dot-dot-dashed: ΠCRL=1 (−ki has been multiplied by 103).

In the case of the low-viscosity silicone oil (blue open circles), the cut-off wave number
kcd0 is shifted w.r.t. the classical Plateau-Rayleigh solution kcd0=1, as a result of the
Kapitza instability. Thus, in the passive-core limit (Πµ=Πρ=0), ΠCRL > 1 is required to
fully stabilize a pseudo-plug at d=dplug. We show this in panel 2.3d, which represents
−ki(ω) curves for a pseudo-plug of d=dplug=0.01. Comparing the dashed and dot-dashed
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curves, we see that full stabilization is achieved by changing ΠCRL from 1 to 1.01. In the
case of an active core fluid, e.g. air, full stabilization is already achieved at ΠCRL=1 (solid
curve), but the growth rate magnitude is very small in this case (−ki has been multiplied
by 103 in the graph).

In the falling liquid film configuration, the interfacial instability is not always convec-
tive, even in the absence of a counter-current gas flow. There can be a transition from
convective instability to absolute instability (AI) when the Plateau-Rayleigh mechanism
overpowers the Kapitza mechanism. In panel 2.3c, this is achieved (for one of the work-
ing liquids from panel 2.3a) by reducing the core radius d0, via an increase of the liquid
Reynolds number Re1. Our WRIBL model (symbols) accurately predicts the transition
to AI versus OS calculations (solid lines). The AI limit coincides with the loss of solutions
within a spatial stability formulation (see section 2.1.1). It was identified by tracking the
∂ω(−ki)=0 maximum in terms of the continuation parameter d0, until reaching a limit
point (red curve in panel 2.3c), where the −ki(ω) curve produces a pinch point3.

Our cylindrical WRIBL model captures exactly the long-wave neutral stability bound
for both configurations in figure 1.3. Based on the spatial stability formulation and the
asymptotic expansion in (2.6), this bound is once-again given by Im(k2)=0 (as k0=k1=0),
where k2 satisfies:

k2 = i

[
4π2d {Πu S1 − S2}

1

Ξ
(2.11)

+8π3d2 {q2 (Πu F21 − F22) + q1 (Πu F11 − F12)}
Ψ

Ξ2

+ 16π3d2Πu

{
q1q2G12 + q21 G11 + q22 G22

} Ψ2

Ξ3

+4π2WeΠu

{
1− ΠCRL exp

[
λ

(
1− d

dplug

)]
Ψ2

Ξ3

}]
,

with Ψ = C2 − C1Πu, and Ξ = Πu {q1 ∂dC1 + q2 ∂dC2} . (2.12)

We demonstrate this graphically in figure 2.4, which compares WRIBL (lines) and OS
(symbols) predictions. For the case of a falling liquid film in contact with a counter-
current gas flow (panel 2.4a), the stable portion of the stability diagram shrinks very
rapidly when increasing the Kapitza number Ka from Ka=0. Thus, for realistic values
of Ka, the falling liquid film is always unstable. This is due to the surface tension term
4π2ΠuWe in (2.11), which does not appear in the planar problem (2.7b).

For the case of a pressure-driven core annular flow (panel 2.4b), our model reproduces
the well-known islands of stability (Preziosi et al., 1989) for liquid/liquid (Πρ=1, blue
lines and circles) and liquid/gas (green lines and crosses) combinations.

3See panel 2.15c in section 2.3.2 for a validation of this approach versus applying full spatio-temporal
stability analysis (Salin & Talon, 2019).
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Figure 2.4: Neutral stability bound Im(k2)=0 for the cylindrical configurations in figure
1.3. Lines: WRIBL model (2.11); symbols: OS problem (3.29). (a) Falling liquid film in
contact with a counter-current gas (panel 1.3a): R⋆=1.5 mm, Πρ=1.3 · 10−3, Πµ=4 · 10−3.
From solid to inner dashed curve: Ka=0, 1, and 4.4; (b) gravity-free core-annular flow
(panel 1.3b): R⋆=1.5 mm. Green lines and crosses: Πρ=1.3 · 10−3, Ka · 109=2, 10, 50,
and 191 (from solid to inner dashed line); blue lines and circles: Πρ=1, Ka=0.1, 1, 10,
and 121.4 (from solid to inner dashed line). “S” indicates stability, and “U” indicates
instability.

2.1.3 Time-evolving base state: Rayleigh-Taylor instability

We now consider the configuration in panel 1.4a, where a horizontal liquid film is subject to
the Rayleigh-Taylor instability. Our planar WRIBL model for this configuration is given
by (1.64), with scales according to (1.66). Because there is no mean flow in this case, a
temporal stability formulation is required. The standard linear stability approach outlined
in section 2.1.1 also applies here and we will not repeat it. We simply point out that our
WRIBL model predicts exactly the cut-off wave number kc=

√
Bo (Yiantsios & Higgins,

1989) in the limit of a passive atmosphere (Πµ=Πρ=0).

In section 8.1, we will study a suspended water film draining into liquid drops due
to the Rayleigh-Taylor instability, which starts to spontaneously slide as the result of a
secondary instability, before it has reached static equilibrium (see figure 8.2 for a sequence
of the events). We apply linear stability analysis to elucidate the nature of this secondary
instability, based on the lubrication model (1.68). We employ two different approaches to
account for the time-dependent nature of the base state, which is a transient nonlinear
solution of the model equations. First, a frozen-time approach, where the nonlinear base
state is assumed to evolve much slower than the instability. Second, a transient stability
analysis, where the time evolution of the base state is incorporated into the linear stability
problem (Schmid, 2007; Balestra et al., 2016).

In the frozen-time approach, we assume a quasi-steady base state profileH(x)=H(x, ti),
corresponding to a particular time t=ti in the nonlinear evolution of the liquid film. This
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is obtained a priori via a nonlinear numerical computation based on (1.68) on a domain
of length L=Λ/2, using symmetry conditions. As a result, the base state is perfectly sym-
metrical, precluding any bias in predicting symmetry-breaking instability modes. Next,
we perturb H(x), introducing the linear film thickness perturbation h′(x, t), which is
assumed to grow exponentially:

h(x, t) = H(x) + h′(x, t) = H(x) + ĥ(x) exp (η t) . (2.13a)

Upon inserting (2.13a) into (1.68) and linearising in terms of ĥ, an eigenvalue problem
with eigenvalue η and eigenfunction ĥ is obtained:

η ĥ = −∂x
[H3

3

(
∂xĥ +

1

Bo
∂xxxĥ

)
+H2

(
∂xH +

1

Bo
∂xxxH

)
ĥ

]
. (2.13b)

We choose a Fourier series ansatz with N = 100 for the eigenfunction ĥ:

ĥ(x) =
N∑

j=1

Aj cos (j 2πx/Λ) +Bj sin (j 2πx/Λ) , (2.13c)

and solve the eigenvalue problem with the Galerkin approach (Boyd, 1989). We then
identify the most-unstable (greatest η) eigenfunctions for two perturbation types: (i)
asymmetric perturbations, when Aj=0; and (ii) symmetric perturbations, when Bj=0.

For the transient stability analysis (Schmid, 2007), we follow the approach of
Balestra et al. (2016), which allows to study rapidly-evolving base states. We start by
linearizing (1.68) around the time-evolving nonlinear base state H=H(x, t):

∂th
′ + ∂xq

′
1 = 0,

q′1 =
1

3
H3

[
∂xh

′ +
1

Bo
∂xxxh

′

]
+ h′H2

[
∂xH +

1

Bo
∂xxxH

]
,

(2.14a)

where h′ and q′1 denote linear perturbations. The system (2.14a) allows to compute the
linear response w.r.t to a perturbation applied at t=ti over a time horizon T . This direct
problem is repeatedly solved starting from an iteratively improved initial condition:

h′(x, ti) =
1

2
h†(x, ti)G(T )

∫ L

0

h′old(x, ti)
2 dx, (2.14b)

where L denotes the domain length. This initial condition is obtained by solving the
adjoint problem:

∂th
† − 1

3

[
∂x(q1H3) +

1

Bo
∂xxx(q1H3)

]
+ q1H2

[
∂xH +

1

Bo
∂xxxH

]
= 0,

q1 = ∂xh
†,

(2.14c)
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starting from the end condition:

h†(x, ti + T ) = 2
h′(x, ti + T )∫ L

0
h′(x, ti)2 dx

, (2.14d)

and stepping backwards in time from ti + T to ti. The iterative procedure converges to a
solution with maximal gain:

G(T ) =

∫ L

0
h′(x, ti + T )2 dx
∫ L

0
h′(x, ti)2 dx

, (2.14e)

which quantifies growth over the time horizon T .

The direct problem (2.14a) can also be solved to determine the linear noise response
of the time evolving nonlinear base state. In that case, computations are started from a
noisy initial condition h′(x, ti)=hnoise:

hnoise = ǫ
N∑

j=1

cos(j∆k x− ϕrand), ∆k = 100 kc/N, kc =
√
Bo, (2.15)

Such computations always yield the most-amplified instability mode over a given time
horizon T . These can be compared with the linear response to the maximum-gain solution
obtained from the transient stability analysis (2.14), and with the most-unstable mode
obtained from the frozen-time approach (2.13c).

2.1.4 Falling liquid films sheared by a turbulent gas

We now consider the configuration in figure 1.5, where a falling liquid film is subject to a
turbulent gas flow. Our WRIBL model for this configuration is given by (1.76), (1.28a),
and (1.98). Applying linear stability analysis to this model, entails only a slight difference
w.r.t. section 2.1.1. It concerns the treatment of the inter-phase coupling quantities T2
(1.98a) and ∂xP2 (1.98b), which express the effect of the gas flow. Linear expansion of T2
and ∂xP2 yields:

T2 = T20 + ∂hT2|h0
(h− h0) = T20 + ∂dT2|d0

h′

ΠL
, (2.16a)

∂xP2 = ∂xP20 + ∂h (∂xP2)|h0
(h− h0) = ∂xP20 + ∂d (∂xP2)|d0

h′

ΠL
, (2.16b)

where we have made use of (2.1), and where the derivatives ∂dT2 and ∂d(∂xP2) can be
readily obtained from (1.98). In the linear limit, h̄=h0 and d̄=d0, and so the base flow
around which we have developed our gas-side model in section 1.4 corresponds to the
primary flow.
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Introducing (2.16) and (2.1) into the WRIBL model (1.76) and (1.28a), we obtain the
following dispersion relation for the linear stability problem:

DR = −i ω2 + i k ω
17

7

q1
h
− i k2 9

7

q21
h2

+
5

6
Fr−2

{
i k2 cos(φ)h− k sin(φ)

}

− i3 k4 5
6
We +

5

2

1

Re1

1

h2

{
ω − k 2q1

h

}
+ i2 k3

6

Re1

q1
h
− i2 k2 ω 9

2

1

Re1

−5
6
Πρ

Π2
u

ΠL

{
i k2

[
C1
h

d
+

cos(φ)

Fr22
h

]
− k

[
C0

(
1 +

3

2

1

ΠL

h

d

)
+

sin(φ)

Fr22

]}

+Πµ
Πu

ΠL

{
i2 k3

1

6

1

Re1
h ∂ηU0|d − i k2

[
5

112
q1 ∂ηU0|d +

5

4

1

Re1

1

d
∂ηU1|d

]

−i k ω 19

336
h ∂ηU0|d + k

5

4

1

Re1

1

ΠL

1

d
∂ηU0|d

}
+ i k2

19

672
Π2

µ

Π2
u

Π2
L

h2
(
∂ηU0|d

)2
= 0,

(2.17)

where we have dropped the index 0 referring to the primary flow, for convenience, and
where the last three lines correspond to the contribution due to the gas flow. The inter-
phase coupling quantities ∂ηU0|d, ∂ηU1|d, C0, and C1 are obtained by solving the BVPs
(1.95) and (1.96) numerically via the continuation software Auto07P (see section 2.2.4).

2.2 Nonlinear computations

We will perform three types of nonlinear computations based on our WRIBL models
derived in sections 1.1, 1.2, 1.3, and 1.4:

• Construction of travelling-wave solutions (TWS), which are stationary in the refer-
ence frame of the wave, using the continuation software Auto07P (Doedel, 2008).

• Transient periodic computations on a domain spanning the streamwise wavelength
Λ, using our own finite differences Fortran code.

• Spatio-temporal computations on an open domain of length L with inlet/outlet
conditions, using our own finite differences Fortran code.

In the next two sections, we will detail these numerical procedures based on our fully-
coupled planar WRIBL model, which is given by (1.27), (1.28a), (1.29), and (1.33), and
applies to the configuration in figure 1.2. In section 2.2.3, we will then point out differences
in the treatment of the cylindrical WRIBL model, which is given by (1.48), (1.56), (1.57),
and (1.58), and applies to the configuration in figure 1.3. In particular, we will discuss
the computation of pseudo-plugs based on our augmented model formulation (1.60).
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2.2.1 Travelling-wave solutions (TWS)

To construct TWS, we introduce the wave celerity c, and express the space and time
derivatives in our model equations (1.27), (1.28a), and (1.33) in terms of the wave coor-
dinate ξ:

ξ = x− c t, ∂x = ∂ξ, ∂t = −c ∂ξ, (2.18)

thus transforming the system of partial differential equations (PDEs) into a system of
ordinary differential equations (ODEs):

h′′′ = NL(h, h′, h′′, qMF
1 , qtot), (2.19a)

q1 − h c = q̄1 − h̄ c = qMF
1 , (2.19b)

qtot = q1 +Πuq2 = q̄1 +Πuq̄2, (2.19c)

where primes denote differentiation w.r.t. ξ, bars signify averaging over the wavelength Λ
in terms of ξ, the subscript MF refers to the moving reference frame, and where we have
used (1.28) to replace derivatives q

(j)
k by derivatives h(j) in (2.19a). Further, (2.19b) and

(2.19c) are the integral forms of (1.28a) and (1.29), which we have used to eliminate qk
from (2.19a). The system is closed through the periodicity boundary conditions:

h(j)
∣∣
ξ=0

= h(j)
∣∣
ξ=Λ

, j = 0, 1, 2, (2.19d)

and it is solved for fixed values of q̄1, which is enforced through an integral condition:

q̄1 = Λ−1
∫ Λ

0

q1 dξ, (2.20)

and qtot, which is imposed either explicitly, or indirectly through an integral condition on
the pressure drop (1.34):

∆p2 2ΠρΠ
2
u =

∫ Λ

0

NLP(h, h′, h′′, h′′′, qMF
1 , qtot)dξ −

∫ Λ

0

(
S̃1 − Π−1u S̃2

)
h′c dξ. (2.21)

In order to solve (2.19) with Auto07P, (2.19a) is recast into a dynamical system of
three first-order ODEs for the dependent variables U1=h, U2=h

′, and U3=h
′′:

U ′3 = NL(U1, U2, U3, q̄1, qtot), U ′2 = U3, U ′1 = U2. (2.22)

Solutions are obtained through numerical continuation, involving three steps. First, we
seek fixed points U1=h=const of the dynamical system by solving U2=U3=0 (setting IPS=1
in Auto07P) under the condition qMF

1 =q1-hc=q10-h0c, which ensures connecting to the
analytical primary-flow solution h=h0, q1=q10, and q2=q20, from which the continuation is
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Figure 2.5: First steps in the construction of the TWS of panel 2.12a with Auto07P.
Parameters correspond to panel 2.12a except for Ka=509.5/100 and h0=H/10, which
will be adjusted in subsequent steps. (a) Fixed point solution branches (solid red and
dot-dashed blue lines) according to (2.23), and periodic solutions continued from the Hopf
bifurcation points HB1 and HB2 (dashed lines); (b) profiles of TWS corresponding to the
periodic solutions in panel a in the limit of a homoclinic orbit (endpoints of the dashed
lines). The symbols indicate the adaptively refined grid disretization.

started. We vary the wave celerity c as principal continuation parameter while maintaining
h0=const, q10=const, and qtot=q10+Πuq20=const. In this limit, (2.19a) reduces to:

0 =
1

Fr2
(1− Πρ) sin (φ) + C1(h) {q10 + c (h− h0)}

+
C2(h)

Πu

{qtot − q10 − c (h− h0)} ,
(2.23)

which has two solutions for h. The first corresponds to the primary flow h=h0, and
the second represents a uniform perturbation w.r.t. h0 travelling at celerity c. The two
solutions are plotted in panel 2.5a as a function of c (solid red and dot-dashed blue
lines). Each of the two branches exhibits a Hopf bifurcation (marked by HB), from which
non-uniform periodic solutions h(ξ) emanate.

Next, we continue these periodic solutions in terms of c, starting from the Hopf bifur-
cation points (IPS=2 in Auto07P). The dashed lines in panel 2.5a represent the envelopes
hmin and hmax for the two periodic solutions, and panel 2.5b represents the corresponding
travelling wave profiles at the points where they have attained homoclinic orbits, i.e. where
the dashed lines in panel 2.5a intersect one of the fixed-point solution branches (crosses).
In terms of deviations from the primary flow, the wave profile corresponding to HB2 (dot-
dashed blue line in panel 2.5b) represents a positively-humped wave, whereas the profile
corresponding to HB1 (solid red line in panel 2.5b) a negatively-humped one. The former
are usually encountered in experiments and thus our TWS solutions are constructed from
HB2.
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In the final step for constructing TWS, integral conditions such as (2.20) and (2.21)
are activated (IPS=4 in Auto07P) and control parameters are continued one by one to
their target values. In the case of the planar configuration (figure 1.2), there are 3 control
parameters, i.e. q̄1 and M (or qtot), for defining the primary flow, plus a measure for
selecting the TWS, e.g. the wavelength Λ, the wave celerity c, or the wave frequency f .

In particular, our TWS codes allow imposing the spatially most-amplified frequency
f=fmax. To determine fmax, which changes with the control parameters varied in a given
continuation run, we additionally solve the dispersion relation (2.3) of the spatial linear
stability problem for ωmax=2πfmax:

DR(ωmax, k) = 0, ∂ωki|ω=ωmax
= 0, (2.24)

where the relation for ∂ωki is obtained through rearranging ∂ωDR=0. In a given continua-
tion run, the linear stability problem (2.24) is solved for the primary flow {q10, q20}={q̄1, q̄2},
which is fixed by the mean flow rates q̄1 and q̄2 of the current TWS. For example, this
procedure was applied to construct the results in panel 2.12a.

2.2.2 Transient periodic and spatio-temporal computations

In our transient periodic computations, we solve the WRIBL model equations (1.27) and
(1.28) iteratively by numerically advancing the solution in time. Upon eliminating q2 with
(1.29), the model equations are recast into:

∂tq1 + S2 (ΠuS1 − S2)
−1 ∂tqtot = NL(∂xjh, ∂xiq1), (2.25a)

∂th = ∂xq1, (2.25b)

and integrated over the time increment ∆t:

q1|new − q1|old + S2 (ΠuS1 − S2)
−1 ∂tqtot ∆t =

∫ tnew

told

NL dt, (2.26a)

hnew − hold =

∫ tnew

told

∂xq1 dt, (2.26b)

where the time evolution of the RHS terms is represented with a semi-implicit Crank-
Nicolson formulation (Patankar, 1980):

NL = NL|old +
t− told
∆t

{NL|new − NL|old} , (2.27a)

∂xq1 = ∂xq1|old +
t− told
∆t

{∂xq1|new − ∂xq1|old} , (2.27b)

and all spatial derivatives are approximated with first-order central finite differences.
Further, it is assumed in (2.26) that the model coefficients, Si, Fij , Gij, Ci, Ji, Ki, Li,
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andMi (evaluated at told), as well as ∂tqtot are constant over the time step. The nonlinear
operator NL|new of the momentum equation at tnew=told+∆t is linearized in terms of the

dependent variables h and q1, and their derivatives h(j) and q
(i)
1 :

NL|new = NL|old +
∂ NL|old
∂h(j)

{
h(j)
∣∣
new
− h(j)

∣∣
old

}

+
∂ NL|old
∂q(i)

{
q(i)
∣∣
new
− q(i)

∣∣
old

}
,

(2.28)

where the bracketed superscripts denote the power of differentiation w.r.t. x. The thus
obtained discretized evolution equations are evaluated at the Nx-1 points of an equidistant
grid spanning from x=∆x to x=Λ with grid spacing ∆x=Λ/(Nx − 1). The point x=0 is
excluded as it coincides with x=Λ due to streamwise periodicity, yielding a linear system
of Nx-1 algebraic difference equations:

Ax = b, (2.29)

x =
[
h|ix=2 , q1|ix=2 , . . . , h|ix=Nx

, q1|ix=Nx

]T
, (2.30)

where the solution vector x contains the solutions at the grid points ix, A is the coefficient
matrix, and b the inhomogeneity. The periodicity conditions:

h(j)
∣∣
x=0

= h(j)
∣∣
x=Λ

, (2.31a)

q(i)
∣∣
x=0

= q(i)
∣∣
x=Λ

, (2.31b)

are imposed directly by making use of the nodes at and downstream of x=0 in the for-
mulation of spatial derivatives at and upstream of x=Λ, and vice versa. As a result, A
looses its pentadiagonal shape through entries in its upper right and lower left corners.
The system (2.29) is referred to as a cyclic or periodic pentadiagonal system and can
be recast into a form that requires solving a series of purely pentadiagonal subsystems
(Navon, 1987). These subsystems are solved through LU decomposition with the Fortran
routine DGBSV, which is part of the LAPACK library. Using this procedure, we iteratively
solve (2.29) at each time step, starting from the initial condition:

h(x, t = 0) = h̄ [1 + ǫI sin(2πx/Λ)] , q1(x, t = 0) = q10
(
qtot(t = 0), h̄

)
, (2.32)

where the control parameters of the computation, h̄, Λ, and qtot, naturally appear, and
where ǫI denotes the initial perturbation amplitude. Alternatively, the computation can
be started from a the result of a previous run, or from a TWS constructed with Auto07P.
The latter option will be used to study the linear stability of TWS (see e.g. figure 6.8 in
section 6.2).

The time evolution of the total flow rate qtot is either prescribed explicitly4), or ob-
tained from an integral conditions on the pressure drop (1.34). In the second case, (1.34)

4In our Fortran codes, qtot can be varied in time according to a sigmoid function, allowing to gradually
increase the gas flow rate.
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Figure 2.6: Benchmark computation on an open domain with inlet/outlet conditions using
our Fortran solver based on the planar WRIBL model (1.27). Inclined falling liquid film
flowing in a passive atmosphere (Πρ=Πµ=0), according to the experiments in figure 6
of Liu & Gollub (1994): φ=5◦, Re1=58/3, f ⋆=3.0 Hz, Ka=253.0 (glycerol(54%)-water
mixture in table 2.1). The domain is discretized with Nx=13000 points and we have used
ǫ1=0.01 as the forcing amplitude (2.38). The red dashed line tracks the Lagrangian path
of one of the wave crests, evidencing a secondary instability (Liu & Gollub, 1993).

is recast to isolate ∂tqtot:

∂tqtot
1

Πu

{∫ L

0

S2
ΠuS̃1 − S̃2

ΠuS1 − S2
dx−

∫ L

0

S̃2 dx

}
= 2ΠρΠ

2
u∆p2 −

∫ L

0

NLP(x, t) dx

+

∫ L

0

(
S̃1 −

S̃2

Πu

)
NL(x, t) dx,

(2.33)

having eliminated ∂tq1 through (2.25), and then used to update qtot at each time step:

qtot|new = qtot|old + ∂tqtot|old ∆t. (2.34)

Our Fortran code for open-domain computations (see example in figure 2.6) relies on
the same numerical procedure as the transient periodic code. The only difference resides
in the use of inlet and outlet conditions at the left (x=0) and right (x=L) boundaries,
respectively. The linear system (2.29) is now set up for the grid points ranging from ix=1
(x=0) to ix=Nx (x=L) and A takes a purely pentadiagonal form.

Inlet conditions are set by explicitly prescribing h and q1 at the first two grid points
(ix=1,2) based on the primary flow:

h|ix=1 = h|ix=2 = h0, (2.35a)

q1|ix=1 = q1|ix=2 = q10 [1 + F (t)] , (2.35b)

which is implemented in (2.29) through:

A1i = δ1i + δ2i, A2i = δ3i + δ4i, (2.36)

b1 = b3 = h|ix=1 = h|ix=2 , b2 = b4 = q1|ix=1 = q1|ix=2 . (2.37)



58 2 WRIBL model computations

The function F (t) in (2.35b) allows to apply a tailored inlet forcing:

F (t) = ǫ1 sin(2π f t) + ǫ2

N∑

k=1

sin(2π k∆f t+ ϕrand), ∆f = 2 fc/N. (2.38)

The first term in (2.38) constitutes a harmonic perturbation of frequency f and the second
one mimics white noise through a series of N=1000 Fourier modes that are shifted by
a random phase shift ϕrand=ϕrand(k) ∈ [0, 2π] and that span a frequency range of twice
the linear cut-off frequency fc (Chang et al., 1996a). All our computations were run
with the same ϕrand(k) number series, which was generated once and for all with the
pseudo random number generator RandomReal in Mathematica (2014). The strength of
the two terms in (2.38) is determined through their amplitudes ǫ1 and ǫ2. When ǫ1=0,
the inlet perturbation consists of only white noise. This setting will be used to simulate
the natural, noise-driven, evolution of a wavy film as it would occur in an experiment. In
other computations, we will apply coherent inlet forcing by setting ǫ1>0, thus adding a
monochromatic harmonic perturbation to the inlet noise.

At the outlet, we apply the boundary conditions of Richard et al. (2016), which ensure
that liquid is always sufficiently drained from the domain, by introducing two downstream
ghost nodes at ix=Nx + 1,Nx + 2:

h|ix=Nx+1 = h|ix=Nx+2 = h|ix=Nx
, (2.39a)

q1|ix=Nx+1 = q10
qPG10 (h|ix=Nx

)

qPG10 (h0)
, (2.39b)

where qPG10 (h)=q10(Πρ = Πµ = 0, h) is the passive-gas limit of the primary flow rate q10 for
a given h. These ghost nodes are used to evaluate the finite differences approximations of
spatial derivatives at ix=Nx−1,Nx. Thereby, q1|ix=Nx+2 is not needed because derivatives
of q1 not higher than second-order intervene in (1.27), (1.28), and (1.33).

Our open-domain computations were always started from the initial condition:

h(x, t = 0) = h0, q1(x, t = 0) = q10. (2.40)

Figure 2.6 represents a snapshot of such a computation reproducing the experiments in
figure 6 of Liu & Gollub (1994), which were performed in a quiescent gas. Accordingly,
we have set Πρ=Πµ=0. The inlet forcing amplitude is ǫ1=0.01, following the work of
Samanta (2014), who had previously simulated this experiment. Agreement between our
data and the two references is good, our computation exhibiting spatial oscillations of the
wave height (highlighted by the red dashed line), which result from a secondary instability
of the saturated wave train (Liu & Gollub, 1993).

2.2.3 Liquid plugs in cylindrical tubes

We employ the same numerical approaches described in sections 2.2.1 and 2.2.2 to solve
our cylindrical model given by (1.56), (1.57), (1.48), and (1.58). Formally, all relations
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written for the planar configuration also apply to the cylindrical configuration, upon
replacing the film thickness h by the core radius d. For example, the initial condition
(2.32) becomes in the cylindrical formulation:

d(x, t = 0) = d0 [1 + ǫI sin(2πx/Λ)] , q1(x, t = 0) = q10
(
qtot(t = 0), d̄

)
, (2.41)

where d0 is used instead of d̄, because d̄ changes over time even when the liquid volume
V1 is fixed. The only substantial difference w.r.t. the formalism for the planar configura-
tion arises when computing liquid pseudo-plugs via the augmented momentum equation
(1.60a). In the case of TWS, we then solve the dynamical system:

d′′′ = NLCRL(d, d
′, d′′, qMF

1 , qtot,ΠCRL, λ, dplug), (2.42a)

q1 − πd2 c = q̄1 − πd2 c = qMF
1 , (2.42b)

qtot = q1 +Πuq2 = q̄1 +Πuq̄2, (2.42c)

where (2.42a) is obtained by recasting (1.60a) in terms of the moving-frame coordinate
ξ=x−ct, and ΠCRL, λ, and dplug represent the pseudo-plug parameters, the limit ΠCRL=0
allowing to recover the standard model.

By contrast, the pressure drop ∆p2 is computed via the standard equation (1.58):

∆p2 2ΠρΠ
2
u =

∫ Λ

0

NLP(d, d′, d′′, d′′′, qMF
1 , qtot)dξ −

∫ Λ

0

(
S̃1 − Π−1u S̃2

)
∂tq1 dξ, (2.43)

where ∂tq1 is obtained from the standard momentum equation (1.48), rearranged with
the help of (2.42c) in order to eliminate q2.

Figure 2.7 represents TWS obtained from (2.42) and (2.43) for an annular falling liquid
film within a cylindrical vertical tube in contact with air under an aerostatic pressure drop
M=1. We see that non-occluding TWS are bounded by a first limit point (LP1) and that
pseudo-plug solutions (blue solid line) branch off from the standard model (red dashed
line) in the vicinity of a second limit point (LP2). We will show in section 2.3.1 that these
pseudo-plug solutions are in good agreement with DNS data.

In the case of transient computations, we solve:

∂tq1 + S2 (ΠuS1 − S2)
−1 ∂tqtot = NL(∂xjd, ∂xiq1) + Πϕ (ΠuS1 − S2)

−1, (2.44a)

∂td =
1

2π d
∂xq1, (2.44b)

where (2.44a) corresponds to the augmented momentum equation (1.60a) upon substi-
tuting q2=Πu (qtot − q1), which collapses to the standard form (1.48) in the limit Πϕ=0.
The total flow rate qtot is either prescribed explicitly or updated according to:

∂tqtot
1

Πu

{∫ L

0

S2
ΠuS̃1 − S̃2

ΠuS1 − S2

dx−
∫ L

0

S̃2 dx

}
= 2ΠρΠ

2
u∆p2 −

∫ L

0

NLP(x, t) dx

+

∫ L

0

(
S̃1 −

S̃2

Πu

)
NL(x, t) dx,

(2.44c)
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Figure 2.7: TWS obtained with the augmented cylindrical model (1.60a), which allows
to represent liquid pseudo-plugs. Falling liquid film in contact with air within a vertical
cylindrical tube (panel 1.3a): Ka=121.4 (silicone oil III and air I in table 2.1), R⋆=1.5 mm,
M=1, Λ=5.4. (a) Minimal core radius dmin in terms of the normalized liquid volume. Solid
blue: ΠCRL=λ=1, dplug=0.01; dashed red: ΠCRL=0; (b) profiles of TWS corresponding to
crosses in panel a. From bottom to top: V1/π/R

3=1, 2, 2.5, 2.5, 2.85.

which allows imposing the pressure drop ∆p2. This equation is obtained by integrating the
standard pressure equation (1.58) and substituting ∂tq1 based on the standard momentum
equation (1.48).

Figure 2.8 demonstrates the formation of a liquid plug obtained from a transient
periodic computation based on (2.44) and started from the initial condition (2.41) with
perturbation amplitude ǫI=0.013. Parameters correspond to figure 2.7 and the liquid
volume was fixed at V1/π/R

3=2.85. In panel 2.8a, we see that the instantaneous liquid
and gas Reynolds numbers converge quite closely to the final values of our DNS (marked by
green dot-dashed lines), which will be introduced later (panel 2.19b). Further, panel 2.8b
shows that the liquid plug from our transient computation converges to the corresponding
TWS from panel 2.7b (dashed blue line in panel 2.8b).

Open-domain computations of liquid plugs based on the augmented momentum equa-
tion (1.60) can be costly, because a fine spatial resolution is required to resolve the plug
fronts (panel 2.20f). Thus, we will employ a less costly approach in some computations,
where only the dynamics upstream of the occlusion zone is of interest (panel 7.3). In that
case, d ≥ dcrit is enforced numerically at each time step via:

∀dold < dcrit : dold = dcrit. (2.45)

This alternative approach is to be understood as a numerical trick to continue computa-
tions past occlusion events, in order to reach a developed state.
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Figure 2.8: Transient periodic computation of a pseudo-plug forming by occlusion of a
vertical cylindrical tube. Parameters as in figure 2.7: V1/π/R

3=2.85. (a) Time traces of
the instantaneous Reynolds numbers q̄⋆k/νk in the liquid (solid) and gas (dashed), with

q̄k=Λ−1
∫ Λ

0
qk dx. Dot-dashed green lines mark final values for the DNS represented in

panel 2.19b; (b) profiles corresponding to crosses in panel a (solid black curves) and to
the TWS in panel 2.7b (dashed blue curve).

2.2.4 Falling liquid films sheared by a turbulent gas

Numerical solution of the nonlinear equation system (1.76) and (1.28a) follows the same
principles discussed in sections 2.2.1 and 2.2.2, only that the treatment of the gas is
different. To obtain the inter-phase coupling quantities T2 and ∂xP2, which enter (1.76)
and are governed by (1.98), the augmented nonlinear BVPs (1.95) and (1.96) need to be
solved for ∂ηU0|η=d̄, ∂ηU1|η=d̄, C0, and C1. We do this numerically via the continuation
software Auto07P, starting from the analytical solution in the laminar limit (µt=0):

U0 =
1

2
C0Re2

(
η2 − d̄2

)
, (2.46)

C0 = −
3

2

1

Re2

q2
d̄3
, (2.47)

U1 =
1

120
Re2

(
d̄− η

) (
d̄+ η

) {
C2

0Re
2
2

(
11 d̄4 − 4 d̄2 η2 + η4

)
− 60C1

}
, (2.48)

C1 =
6

35
C2

0 d̄
4Re22. (2.49)

In the case of TWS computations, equations (1.95) and (1.96) are solved with Auto07P

in conjunction with the film-model equations (1.76) and (1.28a), as well as the linear
stability problem (2.24), based on the dispersion relation (2.17). This allows to impose
the linearly most-amplified frequency f=fmax. Importantly, (1.95) and (1.96) have been
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Figure 2.9: Vertically-falling liquid film sheared by a turbulent air flow (figure 1.5):
Ka=509.5 (DMSO-water in table 2.1), H⋆=10 mm, Re1=15, Re2=-4123, f=fmax. (a)
Velocity profiles U0 (solid blue) and U1 (dashed red) from (1.99) obtained via numerical
solution of (1.95) and (1.96) using Auto07P; (b) nonlinear surface wave (solid black, left
ordinate) and corresponding profiles of T2 (dashed red, right ordinate) and ∂xP2 (dot-
dashed blue, left ordinate) according to (1.98).

developed around d=d̄, i.e. the spatial average of the nonlinear film surface position,
whereas (2.24) has been developed around the primary flow d=d0. These two reference
states are not necessarily the same, and thus (1.95) and (1.96) are solved twice, once for
d̄ corresponding to the nonlinear TWS and once for d̄ ≡ d0.

Figure 2.9 shows an example of such a fully-coupled TWS computation. Panel 2.9a
represents profiles of the velocity contributions U0 and U1 in (1.99), which display the
typical shapes associated with turbulent flow, and panel 2.9b represents the associated
(normalized) profiles of T2 (dashed red) and ∂ξP2 (dot-dashed blue) according to (1.98)
for a representative surface wave (solid black line).

In the case of transient computations on an open domain with inlet/outlet conditions,
the inter-phase coupling quantities ∂ηU0|η=d̄, ∂ηU1|η=d̄, C0, and C1 are provided via an
external look-up table. This table is generated by solving (1.95) and (1.96) via numerical
continuation using Auto07P. Choosing Re2 as the continuation parameter for the look-
up table, allows to vary the gas flow rate in a given open-domain computation, e.g. to
reproduce a particular experimental protocol. In contrast to our TWS computations, it is
not straightforward to define a representative d̄ for the solution of the gas-side problem, as
surface waves evolve spatially in an open-domain computation and may undergo dramatic
alterations, e.g. via coalescence. We thus choose d̄=d0, assuming that the average film
thickness of the nonlinear wavy film remains close to that of the primary flow.
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2.3 Validity range of our WRIBL models

In this section, we check the consistency of the planar (1.27) and cylindrical (1.48) WRIBL
models derived in sections 1.1 and 1.2 for the configurations in figures 1.2 and 1.3, and
we ascertain their range of validity. This is done in two steps for each of the two models5.

First, we confront linear stability predictions obtained from our WRIBL models with
solutions of the corresponding OS problem, as obtained from the full linearized Navier-
Stokes equations (see chapter 3). We use both spatial and temporal stability formulations,
depending on the situation. Numerical details of the different linear stability calculations
are given in section 2.1 and chapter 3. Second, we compare nonlinear WRIBL computa-
tions with DNS based on the full Navier-Stokes equations (see chapter 4). Details of the
employed numerical procedures are given in section 2.2 and chapter 4. Physical properties
for all fluids used in our computations are given in table 2.1.

Section 2.3.1 is dedicated to our planar WRIBL model and section 2.3.2 to our cylin-
drical one.

2.3.1 Planar model

Figure 2.10 reports linear stability predictions for two benchmark cases from the literature,
corresponding to the two configurations in figure 1.2:

(i) A falling liquid film flowing down an inclined plane in a passive atmosphere
(Brevdo et al., 1999), where Πρ=Πµ=0. The flow is gravity-driven (panel 1.2a) and
subject to the convective Kapitza instability (Brooke Benjamin, 1957; Yih, 1963).

(ii) Plane Poiseuille flow of two superimposed equal-density fluids through a rectangular
channel without gravity (Yiantsios & Higgins, 1988). The flow is pressure-driven
(panel 1.2b) and subject to the convective Yih instability (Yih, 1967).

Panels 2.10a and 2.10b report spatial linear stability predictions for case (i). They
represent dispersion curves for the spatial growth rate −ki and wave number kr in terms
of the purely real angular velocity ω. Four values of the liquid Reynolds number Re1
are considered. For small to moderate Re1, our WRIBL predictions (dashed lines) are
in excellent agreement with the OS data (solid lines) over the entire range of unstable
wave frequencies6. At larger values (Re1 ≥ 40), agreement starts to deteriorate due to

the increasing relevance of order ǫ2 inertial corrections, e.g. ǫRek
∫
wkûk∂xu

(1)
k dy in (1.12),

which we have neglected.
As mentioned in section 1.1, our WRIBL model collapses to the model of

Ruyer-Quil & Manneville (2002) in the limit of a passive outer phase (Πρ=Πµ=0). That
model having been checked versus the OS stability data of Brevdo et al. (1999), our com-
parisons in panels 2.10a and 2.10b do not add anything new. They simply verify that we
have not made any implementation errors.

5See Denner et al. (2018) for the validity range of single-phase WRIBL models.
6We have verified that our OS calculations match those reported in figure 9 of Brevdo et al. (1999).
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Liquids (fluid 1) ρ (kg/m3) µ (Pas) ν (m2/s) σ (N/m) Ka

Water I 1000.0 1.00 · 10−3 1.00 · 10−6 0.0769 3592.3
Water II 998.2 1.00 · 10−3 1.00 · 10−6 0.0728 3406.9
Water III 997.07 0.89 · 10−3 0.893 · 10−6 0.07201 3923.2
Water IV 998.3 1.03 · 10−3 1.035 · 10−6 0.071 3174.4
DMSO(83.11%)-water 1098.3 3.13 · 10−3 2.85 · 10−6 0.0484 509.5
Glycerol(54%)-water 1070 6.71 · 10−3 6.27 · 10−6 0.067 253.0
Glycerol(89%)-water 1223.9 0.167 1.36 · 10−4 0.065 3.532
Glycerol(99%)-water 1260.7 1.049 8.32 · 10−4 0.064 0.303
Alcohol I 1000 2.02 · 10−3 2.02 · 10−6 ρ 29 · 10−6 530.5
Mucus I 1098.3 3.1 · 10−3 2.8 · 10−6 0.031 330.5
Mucus II 1000 13 · 10−3 1.3 · 10−5 0.020 30.6
Mucus III 1000 1 · 10−3 1 · 10−6 0.020 934.3
Mucus IV 1223.9 0.01 8.2 · 10−6 0.025 58.0
Silicone oil I 924.3 10.7 · 10−3 11.6 · 10−6 0.01887 36.32
Silicone oil II 873 1.75 · 10−3 2.0 · 10−6 0.0183 388.6
Silicone oil III 900 4.5 · 10−3 5 · 10−6 0.020 121.4
Silicone oil IV 970 12.9 1.33 · 10−3 0.0215 3.29 · 10−3

Gases (fluid 2) ρ (kg/m3) µ (Pas) ν (m2/s) σ (N/m) Ka

Air I 1.200 1.80 · 10−5 15.00 · 10−6 - -
Air II 1.185 1.85 · 10−5 15.58 · 10−6 - -
Air III 1.000 1.00 · 10−5 10.00 · 10−6 - -
Air IV 1.205 1.82 · 10−5 15.13 · 10−6 - -
Air V 1.209 1.81 · 10−5 14.93 · 10−6 - -

Liquid/liquid ρ (kg/m3) µ (Pas) ν (m2/s) σ12 (N/m) Kak

1 Glycerol(96%)-water 1251 0.624 5.00 · 10−4 0.030 0.2832
2 Silicone oil V 1191 6.24 · 10−3 5.24 · 10−6 0.030 129.3

1 Water IV 997.1 0.89 · 10−3 0.89 · 10−6 0.035 1908.0
2 Silicone oil VI 1191 0.005 4.20 · 10−6 0.035 202.7

1 Glycerol(80%)-water 1180 0.034 28.8 · 10−6 0.01227 2.57
2 SAE 30 oil 850 0.103 1.21 · 10−4 0.01227 1.12

1 Water 995 0.001 1.0 · 10−6 0.026 1212.5
2 Oil 905 0.601 6.64 · 10−4 0.026 0.23

Table 2.1: Properties of liquids and gases used in our computations. For liquid/gas

combinations, we give Ka=σρ−11 g−1/3ν
−4/3
1 , where σ is the surface tension of the liquid.

For liquid/liquid combinations, we give Kak=σ12ρ
−1
k g−1/3ν

−4/3
k , where σ12 is the interfacial

tension between the two liquids.
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Figure 2.10: Linear stability predictions for two benchmark cases from the literature
corresponding to the configurations in figure 1.2. Dashed lines: WRIBL model; solid lines:
OS problem. (a,b) Spatial stability calculations. Inclined falling liquid film in a passive
atmosphere according to figure 9 in Brevdo et al. (1999): Πρ=Πµ=0, φ=4.6◦, Ka=331.85.
From bottom to top: (3/2)Re1=10, (5/4) cot(φ), 20, 40, and 60; (c,d) temporal stability
calculations. Pressure-driven two-layer channel flow: h0=0.5, Πρ=1, Πµ=0.2. Symbols:
OS data reported by Tilley et al. (1994a). Crosses: La=σH⋆ρ1/µ

2
1=0.2, qtotRe1=1.6;

open circles: La=0.008, qtotRe1=0.32.

In case (ii), the second fluid plays an essential role in the instability mechanism, and
thus the two-phase nature of our WRIBL model comes into play. Panels 2.10c and 2.10d
report linear stability predictions for two parameter sets considered in the OS calculations
of Yiantsios & Higgins (1988) and Tilley et al. (1994b). In accordance with these works,
we use a temporal stability formulation, event though the instability is convective. The
two panels represent dispersion curves of the imaginary part ci and real part cr of the
complex wave celerity c=ω/k in terms of the purely real wave number k. Two different
values of the total flow rate qtot are considered. Dashed lines represent predictions of our
WRIBL model, solid lines our OS calculations, and symbols mark numeric values of OS
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Figure 2.11: Spatial linear stability predictions for the configuration in panel 1.2a. Ver-
tical (panels a-c) or inclined (panel d) falling liquid film in contact with an increasingly
strong counter-current gas flow: Ka=509.5 (DMSO-water and air II in table 2.1), Re1=15.
(a) Dispersion curves (solid lines) of the spatial growth rate −ki, from OS calculations.
From right to left: M=1, Re2=-90, -110, and -118. The dot-dashed curve traces the locus
of {−ki}max, up to the onset of absolute instability (AI); (b) corresponding WRIBL pre-
dictions; (c-d) maximal growth rate in terms of Re2, in relation to the aerostatic (M=1)
limit {−kasi }max. Dashed: WRIBL; solid: OS; (c) vertical film: φ=90◦. Circles: H⋆=1
mm; diamonds: H⋆=1.5 mm; (d) inclined film: φ=10◦. Squares: H⋆=2.35 mm; asterisks:
H⋆=1.88 mm; crosses: H⋆=1.78 mm; pentagons: H⋆=1.69 mm; plus signs: H⋆=1.22 mm.
“S” indicates linear suppression of the Kapitza instability.

calculations reported in Tilley et al. (1994a). Agreement between our WRIBL and OS
calculations is very good over the entire range of unstable wave numbers (ci > 0). For
greater values of k, the long-wave approximation breaks down and our WRIBL predictions
deteriorate. This occurs beyond k ≈ 5, where the wavelength Λ has become comparable
to the channel height.

We turn now to two liquid-gas flows that will be studied in sections 6.2 and 8.3. First,
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figure 2.11 reports spatial linear stability predictions for a vertical/inclined falling liquid
film subject to a strongly confined counter-current laminar gas flow (configuration in
panel 1.2a). The liquid corresponds to an aqueous solution of dimethylsulfoxide (DMSO)
typically used in experiments (Dietze et al., 2009) and the gas is ambient air. The liquid
Reynolds number is constant at Re1=15, while the gas Reynolds number Re2, which
is negative for counter-current flow, is varied such as to produce an increasingly strong
counter-current gas flow.

Panels 2.11a (OS) and 2.11b (WRIBL) represent dispersion curves (solid lines) of the
spatial growth rate obtained for a vertically falling liquid film. Different curves correspond
to different values of Re2. The dashed line in each of the panels traces the locus of the
maximum growth rate {−ki}max. As the magnitude of Re2 increases, {−ki}max becomes
greater and eventually diverges, indicating the onset of AI. Vellingiri et al. (2015) and
Schmidt et al. (2016) have demonstrated with OS calculations the transition from con-
vective to absolute instability for essentially the same problem. However, Vellingiri et al.
(2015) considered turbulent flow in the gas, and Schmidt et al. (2016) considered only
moderate density (Πρ=10) and viscosity (Πµ=5) contrasts. Our OS calculations in panel
2.11b thus complete this picture for laminar liquid-gas flows.

Our WRIBL model (panel 2.11b) reproduces the OS data (panel 2.11a) quite accu-
rately, except for the decrease of the cut-off wave number kc with increasingly negative
Re2, which is predicted only qualitatively. This stabilizing effect coincides with an increase
in {−ki}max, which implies a destabilization. The coincidence of stabilizing and destabi-
lizing effects has been reported by Alekseenko et al. (2009) for falling liquid films subject
to a turbulent counter-current gas flow. Our model captures this intricate behaviour well.
Direct comparison between the maximum growth rate curves in panels 2.11a and 2.11b
is made in panel 2.11c, where they have been plotted in terms of Re2, for two different
channel heights H⋆. In both cases, agreement is very good up to Re2 ≈ −120. For H⋆=1
mm (curves with circles), AI sets in within this range and thus the WRIBL model accu-
rately predicts this limit. For the less confined case (H⋆=1.5 mm, diamonds), absolute
instability sets in at much greater |Re2|, where the model prediction has deteriorated due
to the increasing relevance of inertial corrections. Nonetheless, our WRIBL prediction
remains in qualitative agreement.

Panel 2.11d represents similar curves for a falling liquid film inclined at φ=10◦ over a
wide range of confinement levels. For the weakest confinement (squares), the growth rate
increases monotonically with |Re2|. In this sense, the effect of the counter-current gas flow
is destabilizing. For intermediate confinement levels (asterisks and crosses), the effect of
the gas is non-monotonic, stabilization occurring at low flow rates and destabilization at
greater flow rates7. For strong confinement (pentagons and plus signs), the gas mono-
tonically stabilizes the film, up to the full suppression of the Kapitza instability (S). We
have studied this phenomenon in Lavalle et al. (2019), which will be discussed in section
6.1. The different behaviours observed in panel 2.11d are captured by our WRIBL model

7Vellingiri et al. (2015) and Trifonov (2017a) have also demonstrated a non-monotonic behaviour,
however, based on the cut-off wave number kc
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Figure 2.12: Nonlinear travelling wave for the configuration in panel 1.2a. Vertically
falling liquid film in contact with a counter-current air flow: H⋆=1.5 mm, f ⋆=15.86 Hz,
Ka=509.5 (DMSO-water and air II in table 2.1), Re1=15.07, Re2=-54.46. Streamlines in
the wall-fixed reference frame. (a) WRIBL computation of TWS with Auto07P: Λ=13.75,
liquid holdup h̄=0.200. Streamfunction constructed with (1.17) and (1.22); (b) transient
DNS with periodicity boundary conditions: Λ=13.67, liquid holdup h̄=0.201.

(dashed lines) in good agreement with the OS predictions (solid lines). Again, agreement
improves as the confinement increases and the long-wave approximation becomes more
accurate.

Figure 2.12 compares computations of a nonlinear saturated-amplitude travelling wave
on a vertically falling liquid film sheared by a counter-current gas flow. The WRIBL
prediction (panel 2.12a) was obtained via numerical continuation of TWS with Auto07P

(see section 2.2) and the transient periodic DNS (panel 2.12b) was done with Gerris (see
chapter 4). The control parameters f , Re1, and Re2 in the WRIBL continuation were set
according to the converged values of the DNS. Blue (liquid phase) and red (gas phase)
lines represent streamlines in the wall-fixed reference frame8. We see that our WRIBL
model accurately predicts the different vortical structures generated by the surface wave.
These will be discussed in section 6.2.

Our second example of liquid-gas flows concerns the pressure-driven plane Poiseuille
flow of two superimposed layers of water and air without gravity (configuration in panel

8For the WRIBL prediction, these were computed with the base flow velocity components û (1.17)
and v̂ (1.22).
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Figure 2.13: Spatial linear stability predictions for the configuration in panel 1.2b.
Pressure-driven gravity-free plane Poiseuille flow of two superimposed layers of water
(lower layer) and air (upper layer). Conditions according to figure 7 in Frank (2008):
h0=1/3, Ka=3592.3 (water I and air III in table 2.1), Πρ=10−3, Πµ=10−2. Lines: OS;
symbols: WRIBL. (a) Dispersion curves (solid lines; open symbols) of the spatial growth
rate −ki. From lowest to greatest growth rate: Re1|Re2=3.5|28.8, 3.9|32.1, 4.4|36.1,
4.7|38.6, 5.2|42.7, and 5.8|47.7. Dot-dashed line and filled circles trace the locus of max-
imum growth rate; (b) corresponding dispersion curves of the wave celerity c=ω/kr nor-
malized with the liquid surface velocity u10|h.

1.2b), according to the conditions in Frank (2008). Here, the Yih instability, which results
from the viscosity contrast between the two fluids, is responsible for generating surface
waves. Figure 2.13 reports spatial linear stability predictions for this case, as obtained
from our WRIBL (symbols) and OS (lines) calculations for different values of Re1. Our
model accurately predicts the dispersion curves of the growth rate −ki and wave celerity
c=ω/kr, as well as the variation of the maximal growth rate (dot-dashed line and filled
circles).

Finally, figure 2.14 confronts WRIBL (panel 2.14a) and DNS (panel 2.14b) predictions
of a nonlinear travelling wave for the same configuration at Re1=5.8, Λ⋆=26.0 mm, and
h̄=1/3. Blue (liquid) and red (gas) lines again represent streamlines in the wall-fixed
reference frame. Our WRIBL model accurately predicts the shape and amplitude of the
wave as well as the flow structure in the liquid and gas. In particular, the flow separation
zone at the first capillary trough is captured correctly. Such zones are typically observed
in falling liquid films (figure 2.12), and it is interesting to note that they also occur in
pressure-driven films. We will discuss surface waves resulting from the Yih instability in
section 8.2.
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Figure 2.14: Nonlinear travelling waves for the configuration in panel 1.2b. Pressure-
driven plane Poiseuille flow of two superimposed layers of water and air without gravity:
H⋆=0.39 mm, Ka=3592.3 (water I and air III in table 2.1), Λ=200/3, Re1=5.97, h̄=1/3.
Streamlines in the wall-fixed reference frame. (a) WRIBL continuation of TWS with
Auto07P: M=-256.0, Re2=33.86. Streamfunction constructed with (1.17) and (1.22); (b)
transient DNS with periodicity boundary conditions: M=-244.8, Re2=31.46.

2.3.2 Cylindrical model

We start by confronting our cylindrical WRIBL model with OS linear stability predictions
for several benchmark configurations from the literature in figure 2.15. The first three
panels correspond to the vertical configuration (sketched in panel 1.3a), where a falling
liquid film is in contact with a gas (panel 2.15a) or a liquid (panels 2.15b and 2.15c) core.
Agreement for the liquid/gas combination (Camassa et al., 2014) is excellent, whereas for
the liquid/liquid free-fall experiment of Chen et al. (1990) it deteriorates rather quickly
with increasing qtot (decreasing d0 in panel 2.15b)9. In panel 2.15c, we have reproduced
with our WRIBL model two curves from figure 3 in Hickox (1971). These represent c1 from
the asymptotic expansion of the complex celerity c=c0+ c1k+O(k2) in the framework of
temporal stability analysis. Agreement with the data of Hickox (not shown here) is good,
but not perfect, as a slight discrepancy occurs for the dashed curve. Because our WRIBL
model is designed to predict c1 exactly, we attribute this discrepancy to numerical errors.

9However, we believe that liquid/liquid systems can be studied with our WRIBL model, by focussing
on narrower tubes. We point out that the dominant instability mode for the conditions in panel 2.15b is
a long-wave mode (Preziosi et al., 1989).
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ĉ 1
/(
i
R̂
e 2
)

(d)

 0.01

 0.1

 1

0.003  0.01  0.1

AI

{−
k
i}

m
a
x

C̃a

Figure 2.15: Linear stability of core-annular flows through cylindrical tubes (configura-
tion in figure 1.3). Symbols: OS, lines: WRIBL. (a) Falling liquid film (Camassa et al.,
2014): Ka=3.29 · 10−3 (silicone oil IV, air I in table 2.1), R⋆=5 mm, M=1. Filled
circles: d0=2/3, open circles: d0=4/5; (b,c) vertical liquid/liquid flows according to
Chen et al. (1990) and Hickox (1971); (b) Ka1=2.57, Πµ=3.03, Πρ=0.72 (glycerol(80%)-
water, SAE 30 oil), R⋆=3.175 mm, M=0. Filled circles: d−10 =1.67, diamonds: d−10 =1.86,
open circles: d−10 =1.9. Crosses (Π−1ρ =1.1) and plus signs (Π−1ρ =0.8): We=0, Πµ=1,

Rg=d
⋆
0(d

⋆
0g)

1/2/ν2=10; (c) Π−1µ =20, R⋆=25.4 mm, M=0.049, We=0. Coefficient c1 in
asymptotic expansion of wave speed c=c0+c1k. Hat symbol indicates rescaling with L=d⋆0
and U=u⋆|r⋆=0. Solid: Πρ=1, dashed: Π−1ρ =0.75; (d) pressure-driven flow (Salin & Talon,

2019): Fr−1=0, Π−1µ =10, Πρ=1, R⋆=150 µm, Ka=1.98. Dashed: full WRIBL model, solid:
inertialess limit. From top to bottom: d0=0.4, 0.5, 0.6, and 0.75. Vertical lines: AI limit
from Salin & Talon (2019) for different C̃a=(q⋆tot/π/R

⋆2)µ2/σ.

As d0 intervenes both in the ordinate and abscissa values of panel 2.15c, the presented
curves are quite sensitive to such errors.

Panel 2.15d corresponds to pressure-driven core-annular flow without gravity. This
case allows to check the AI bound predicted by our WRIBL model based on a spatial
stability formulation (following the approach outlined in section 2.1.1) against the full
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Figure 2.16: Validity range of our cylindrical WRIBL model (1.48). Annular falling
liquid film in contact with air within a vertical cylindrical tube (panel 1.3a): Ka=121.4
(silicone oil III and air I in table 2.1). Maximum spatial growth rate from WRIBL
(dashed black lines) and OS (solid red lines) linear stability calculations. (a) Aerostatic
pressure drop: M=1. Diamonds: R⋆=1.5 mm; circles: R⋆=1 mm; squares: R⋆=0.75 mm;
(b) counter-current gas. Diamonds: Re1=15, R⋆=1.5 mm; circles: Re1=2, R⋆=1 mm;
squares: Re1=0.5, R⋆=0.75 mm.

spatio-temporal analysis of Salin & Talon (2019), who studied liquid/liquid flows. The
limit points (filled circles) of our ∂ω(−ki)=0 maximum growth rate curves in panel 2.15d
are in excellent agreement with the AI bounds obtained by Salin and Talon (vertical blue
lines in panel 2.15d)10.

We turn now to flow conditions that have been studied in this work. Figure 2.16
establishes the validity range of our cylindrical WRIBL model in terms of R⋆, Re1, and
Re2 for a vertically falling liquid film in contact with a quiescent or counter-current air
flow. The working liquid is a low-viscosity silicone oil, which is the most challenging of
all studied liquids11. In the case of a quiescent gas (panel 2.16a), our WRIBL model
accurately predicts the increase of the maximum growth rate {−ki}max with increasing
liquid Reynolds number Re1 versus OS calculations. This agreement holds up to the AI
limit (marked by symbols) and for tube radii up to R⋆=1.5 mm. Before reaching the AI
bound, the variation of {−ki}max with increasing Re1 can be non-monotonic (curve with
diamond), which is the result of two competing effects: an increase in the flow rate q10,
which favours convective instability and spatial growth, versus a decrease in core radius
d0, which favours AI and temporal growth.

A second effect favouring AI comes into play when the liquid film is subject to a
counter-current gas flow, as shown in panel 2.16b, where we have varied the gas Reynolds

10We thank Dominique Salin for providing the data underlying figure 3 in Salin & Talon (2019).
11The other liquids all exhibit large viscosities and thus neither inertia nor the effect of the gas are

relevant. Water/air systems were not considered here, because the Bond number Bo=ρ1gR
⋆2/σ for

narrow tubes is very high, causing an early transition to AI.
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Figure 2.17: Annular falling liquid film in contact with an active core gas within a vertical
cylindrical tube: Ka=121.4 (silicone oil III and air I in table 2.1), R⋆=1.5 mm, Λ=5.4.
(a) TWS obtained from WRIBL model (lines) and DNS with Gerris (Vl/π/R

3=2.35,
circles). Blue solid line and filled circle: M=1; dashed black line and open circle: Re2=-
17.3; (b) occlusion and plug formation in transient periodic computations: M=1 and
Vl/π/R

3=2.85 (vertical line in panel a). Red dot-dashed line: augmented WRIBL model
(1.60); diamonds: DNS; (c-d) profiles of TWS from panel a: Vl/π/R

3=2.35. Lines:
WRIBL; circles: DNS.

number Re2. However, because the Kapitza number of the silicone oil is quite low
(Ka=WeFr2/3Re

4/3
1 =121.4), accuracy of our WRIBL model cannot be maintained up to

the ‖Rey2 values corresponding to AI, unless R⋆ is very small (curves with squares in
panel 2.16b). Thus, we have limited our investigations to |Re2|<17.5.

Nonetheless, figure 2.17 shows that such small gas flow rates suffice to significantly
affect the nonlinear dynamics of a falling liquid film. For example, the gas can considerably
precipitate the occlusion limit of TWS, as evidenced by the LPs of the dashed and solid
blue curves in panel 2.17a. Our WRIBL model accurately predicts the TWS associated
with these curves. This is shown in panels 2.17c (M=1) and 2.17d (Re2=-17.3), which
compare TWS profiles obtained from our WRIBL model with DNS data obtained with
Gerris for the aerostatic and counter-current configurations at V1/π/R

3=2.35. Figure
2.18 represents streamlines (in the wave-fixed reference frame) for the TWS in panels
2.17c and 2.17d. Both for the aerostatic configuration (M=1, panel 2.18a) and for the
counter-current configuration (Re2=-17.3, panel 2.18b), the streamline patterns predicted
by our WRIBL model (upper halves of the graphs) are in good agreement with the DNS
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Figure 2.18: Streamlines in the wave-fixed reference frame corresponding to the TWS in
panels 2.17c and 2.17d. Upper halves: WRIBL model; lower halves: DNS with Gerris.
(a) Aerostatic gas pressure drop: M=1; (b) counter-current gas flow: Re2=-17.3.

(lower halves of the graphs).
Good agreement extends beyond the occlusion limit given by LP1 in panel 2.17a and

the formation of liquid plugs. This is shown in panel 2.17b, which confronts transient
periodic computations performed with our augmented WRIBL model (1.60) (dashed red
line) and with Gerris (symbols), for M=1 and Vl/π/R

3=2.35 in panel 2.17a (vertical
dot-dashed line there). As evidenced by the dmin and dmax time traces in panel 2.17b, our
WRIBL model accurately predicts the dynamics of occlusion. The liquid plugs resulting
from this occlusion are represented in figure 2.19. Here, we have represented stream-
lines in the moving reference frame within the liquid plugs (blue) and within the gas
bubbles (red) trapped between two plugs. Our WRIBL model (panel 2.19a) accurately
predicts the different vortices forming within the liquid and gas versus our DNS (panel
2.19b). The shapes of the plug and bubble are also predicted quite well, only that the
ends of the gas bubble are much less steep in the WRIBL computation, which is a hard
limitation imposed by the long-wave approximation underlying our model. Nonetheless,
a spherical-cap approximation (Lamstaes & Eggers, 2017) can be employed to mitigate
this discrepancy. In panel 2.19a (green dashed lines), we have applied the spherical-cap
approximation for |∂xd| ≥0.75, whereby the radius Rsc and center xsc of the spherical cap
are obtained by imposing continuity of d and ∂xd across the patching point (xp,dp), which
is marked by crosses in panel 2.19a:

d2p = R2
sc − (xp − xsc)2 , (2.50)

∂xd|x=xp
= − (xp − xsc){

R2
sc − (xp − xsc)2

}1/2 . (2.51)

In our computations from figure 2.19, Λ and V1 were fixed, and, thus, Re1, Re2, and the
plug speed c are outcomes. The values obtained for these measures from our WRIBL
computation (Re1=30.8, Re2=14.6, c⋆=0.31 m/s) are in excellent agreement with those
of the DNS (Re1=30.4, Re2=14.4, c⋆=0.30 m/s).

Further validation of our augmented WRIBL model (1.60a) is provided in figure 2.20,
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Figure 2.19: Liquid plugs forming in a vertical cylindrical tube. Streamlines in the
reference frame moving with the plug speed c. Parameters according to panel 2.17b:
Λ=5.4, V1/π/R

3=2.85, M=1. (a) Transient periodic computation with our augmented
WRIBL model (1.60): Re1=30.8, Re2=14.6, c⋆=0.31 m/s. Dashed green lines correspond
to spherical-cap approximation (2.50) patched at points with |∂xd|=0.75 (green crosses);
(b) periodic DNS with Gerris: Re1=30.4, Re2=14.4, c⋆=0.30 m/s.

where we have reproduced numerically the experimental runs in panels 3a, 3b, and 3c
of Camassa et al. (2014), who used a high-viscosity silicone oil in contact with air. Our
WRIBL computations were performed on an open domain using a noisy inlet perturbation
(2.38). Comparing the upper (experiment) and lower (WRIBL) graphs in panels 2.20a,
2.20b, and 2.20c, we conclude that our model correctly predicts all three experimental
regimes. In particular, the number of liquid plugs in panel 2.20f, which are produced
by occlusion events in the upper part of the tube and then convected downstream, is
correctly predicted.

Several measures of these liquid plugs can be predicted quite accurately by TWS based
on the linearly most-amplified frequency f=fmax. This is shown in figure 2.21. Both the
wavelength Λ (combined length of liquid plug and gas bubble), panel 2.21b, and the plug
speed c=Λfmax, panel 2.21c, lie within the error bars of the experiments in panels 3c and
3d12 of Camassa et al. (2014). These error bars were determines graphically from the

12The experiments from panel 3d in Camassa et al. (2014) are not shown in figure 2.20.
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Figure 2.20: Highly-viscous falling liquid film in contact with air: Ka=3.29 ·10−3 (silicone
oil IV and air I in table 2.1), R⋆=5 mm, M=1. (a,c,e) Experiments from panels 3a,
3b, and 3c of Camassa et al. (2014); (b,d,f) open-domain computations (true to scale
representation) based on our augmented WRIBL model (1.60a) for the representation of
liquid plugs, using inlet noise (2.38): ǫ1=0, ǫ2=10−4, dcrit=0.01. (a) Re1=2.3 · 10−4, (b)
Re1=4.5 · 10−4, (c) Re1=9.4 · 10−4.

variation of Λ between different plug/bubble pairs in the experimental photographs.

We point out that our computation in panel 2.20f was run with an imposed total flow
rate Qtot, obtained from the corresponding TWS in panel 2.21a. For this particular work-
ing liquid, our augmented WRIBL model did not behave well in open-domain or transient
periodic computations with imposed gas pressure drop M=1 beyond the occlusion limit.
This seems to be linked to a degeneration of the pressure equation (2.43) in this special
case, where the viscosity ratio is extremely small (Πµ=1.4 · 10−6). The problem did not
arise for other working liquids.

The gravity-free cylindrical configuration sketched in panel 1.3b is encompassed by
the vertical configuration sketched in panel 1.3a. Nonetheless, it provides a valuable
analytically tractable benchmark: Delaunay unduloids (Delaunay, 1841). These are sur-
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Figure 2.21: TWS at f=fmax andM=1 for the configuration in figure 2.20. Pseudo-plugs
(lower branch beyond LP2 in panel a) obtained with our augmented model (1.60) versus
experiments (filled squares) from panels 3c (Re1=4.5 · 10−4) and 3d (Re1=6.22 · 10−4) in
Camassa et al. (2014). (a) Minimal core radius; (b) wavelength; (c) wave/plug speed;
(d) plug profiles corresponding to crosses and asterisks in panels a, b, and c. Solid:
Re1=4.5 · 10−4, f ⋆

max=0.145 Hz; dashed: Re1=6.22 · 10−4, f ⋆
max=0.155 Hz.

faces of revolution with constant curvature C (4.19). This benchmark allows to establish
the validity range of the long-wave approximation underlying our WRIBL model, which
results in the truncated curvature κ (1.42). Figure 2.22 represents unduloids obtained
from numerical continuation with Auto07P based on the full curvature C (solid lines) and
its long-wave approximation κ (dashed lines), following Everett & Haynes (1972). Good
agreement is observed up to the limit point (LP) bounding the existence of unduloids.
For liquid volumes V1 beyond this point, the only possible equilibrium shape is that of a
liquid plug separated by two spherical bubbles. Those solutions lie on the y-axis at C=2.
Between that branch and the LP, lies a branch of unstable unduloids, and it is here that
our WRIBL model deteriorates. Such solutions contain increasingly steep portions of the
interface as C increases (panel 2.22b), up to the formation of spherical bubbles at C=2,
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Figure 2.22: Delaunay unduloids (Delaunay, 1841): surfaces of revolution with con-
stant curvature. (a) Family of solutions with d|−Λ/2=1, ∂xd|−Λ/2=0 (Everett & Haynes,
1972). Solid: using full curvature C (4.19); dashed: using long-wave approxima-
tion C=κ (1.42). Lines with/without symbols correspond to left/right ordinate, and

dVE=(1− V1/Λ/π/R3)
1/2

is the volume-equivalent core radius; (b) profiles corresponding
to crosses in panel a.

where ∂xd diverges.
The unduloids represented in figure 2.22 belong to a particular family of solutions,

which satisfy the boundary conditions:

d|−Λ/2 = 1, (2.52)

∂xd|−Λ/2 = 0. (2.53)

This implies that the film surface at the left unduloid trough connects smoothly to the
tube wall at r=1 (due to symmetry, the same applies at the right trough), which is the
physically most-relevant configuration. According to panel 2.22b, the unduloid wavelength
is always inferior or equal to the cut-off wavelength of the Plateau-Rayleigh instability
(Λ=Λ⋆/R⋆ ≤ 2π). Thus, unduloids can only form in a real system when the liquid film
trough produced by primary instability fully drains, leaving behind a dry patch that
increases in width until the film has retracted to the equilibrium length of the unduloid.

In figure 2.23, we have reproduced with our WRIBL model the transient periodic
computations of Johnson et al. (1991), who considered a liquid film of Newtonian model
mucus in contact with air within a pulmonary airway. Panels 2.23a and 2.23b correspond
to a liquid volume of V1/Π/R

3=1.14, i.e. below the unduloid threshold, and panels 2.23c
and 2.23d correspond to V1/Π/R

3=2.16, i.e. above the unduloid threshold. For both
cases, our WRIBL computations (lines) agree well with our own DNS (symbols), correctly
reproducing the unduloid/occlusion transition.

To conclude this chapter, figure 2.24 represents a similar comparison as in figure
2.23 for a liquid/liquid oil combination used in the experiments of Piroird et al. (2011).
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Figure 2.23: Time evolution of a gravity-free annular liquid film in contact with air within
a cylindrical capillary, according to figure 5 in Johnson et al. (1991): La=5000 (mucus III
and air I in table 2.1), R⋆=0.25 mm, Λ⋆=1.5 mm, Fr−1=0, M=0. Lines: WRIBL model;
symbols: DNS with Gerris. (a,b) Unduloid: V1/π/R

3=1.14, dVE=0.9; (c,d) occlusion:
V1/π/R

3=2.16, dVE=0.8. Dashed: inertialess limit (Si=Fij=Gij=0 in equation 1.60).
Dot-dashed lines in panels a and c represent initial condition. Arrows in panels b and d
mark time points for profiles in panels a and c.

Agreement between our WRIBL model and our own DNS is again good, confirming that
cylindrical liquid/liquid configurations subject to long-wave instability are within the
reach of our modelling approach.

Accounting for inertia is necessary in order to accurately predict the dynamics of
occlusion, both for liquid/gas (panel 2.23d) and liquid/liquid (panel 2.24b) systems. This
can be ascertained by comparing the dashed (inertialess limit) and solid (full WRIBL
model) lines in panels 2.23d and 2.24b.
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Figure 2.24: Gravity-free liquid/liquid system in a cylindrical tube: water IV/silicone oil
VI in table 2.1 (Piroird et al., 2011), R⋆=1.5 mm, Λ=7, V1/π/R

3=Λ(1−d2VE)=2.52,M=0.
(a) Streamlines at t(1 − dVE)

3=110 (red dot-dashed line in panel b). Top half: WRIBL;
bottom half: DNS with Gerris; (b) time traces of dmin and dmax. Symbols: DNS; solid
blue: WRIBL; dashed blue: inertialess limit (Si=Fij=Gij=0 in equation 1.60).



Chapter 3

Orr-Sommerfeld linear stability
analysis

As a reference for testing the WRIBL models introduced in sections 1.1 and 1.2, we apply
normal-mode linear stability analysis (Chandrasekhar, 1981) to the full two-phase Navier-
Stokes equations. As far as long-wave instabilities are concerned, the Orr-Sommerfeld
eigenvalue problem governing stability is solved via numerical continuation using Auto07P.
Such calculations have allowed us to ascertain the validity range of our WRIBL models
in sections 2.3.1 and 2.3.1.

In addition, we have written a Chebyshev collocation code to check for short-wave
instability modes that our long-wave WRIBL models cannot capture. Such modes can
arise in plane two-phase channel flows (Floryan et al., 1987; Yiantsios & Higgins, 1988;
Tilley et al., 1994b; Trifonov, 2017a) as well as core annular flows through cylindrical
tubes (Preziosi et al., 1989). However, we have applied the analysis only to the planar
configuration (figure 1.2) here. Among the liquid-gas flows studied in chapters 5 to 8,
this configuration was the most susceptible to short-wave instability modes (only small
gas velocities were studied for the cylindrical configuration).

3.1 Planar liquid films in rectangular channels

We start with the full governing equations for the planar configuration (figure 1.2), which
are written in (4.1) of section 4.1.1. Next, we shift the coordinate system to the fluid/fluid
interface of the primary flow, y=h0, by introducing the new normal coordinate s (Yih,
1967):

s = y − h0. (3.1)

The primary-flow velocity profiles then read:

uk0 = bks
2 + aks+ ck, (3.2)

81
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with coefficients:

b1 = −6 q10
(n+Πµ)

h30∆
+

3

2
Γ
n2

∆
, a1 = 6 q10

(n2 −Πµ)

h20∆
+ 2Γ

h0n
2

∆
, (3.3a)

c1 = 6 q10
n(1 + n)

h0∆
+ Γ

h20n
2

2∆
, (3.3b)

b2 = −q10
6

h30∆

(n+Πµ)

ΠµΠu

− 1

2
Γ
4n+Πµ

∆

1

ΠµΠu

, a2 = Π−1µ Π−1u a1, c2 = c1Π
−1
u , (3.3c)

where q10=1 is the dimensionless primary-flow liquid flow rate, and where we have intro-
duced the thickness ratio n=d0/h0, ∆=Πµ + n(4 + 3n), and Γ=(Πρ − 1)sin(φ)Re1/Fr

2.
Next, we introduce the stream functions Φ (fluid 1) and Ψ (fluid 2):

u1 = ∂sΦ, v1 = −∂xΦ, (3.4a)

u2 = ∂sΨ, v2 = −∂xΨ, (3.4b)

and eliminate the pressure variable through cross-differentiation of the Navier-Stokes
equations (4.1a). Then, we perturb the system around the primary flow:

h = h0 + h′(x, t), Φ = Φ0 + Φ′(x, s, t), Ψ = Ψ0 +Ψ′(x, s, t), (3.5)

and linearize the governing equations in the perturbations, for which we seek solutions in
terms of normal modes:



h′

Φ′

Ψ′


 =




ĥ
φ(s)
ψ(s)


 exp {ik(x− ct))} , (3.6)

where the scale for c is U1, which follows directly from the choice of the time scale in (1.1).
Although (3.6) resembles the typical temporal stability formulation (k ∈ R, c ∈ C), we can
easily recover the spatial formulation (k ∈ C, ω ∈ R) through the constraint kc=ω ∈ R.
We thus obtain the familiar Orr-Sommerfeld equations for two-fluid (inclined) channel
flow (Tilley et al., 1994a):

φiv − 2k2φ′′ + k4φ = iRe1k
{
(c− u10)

(
k2φ− φ′′

)
− φu′′10

}
, (3.7a)

ψiv − 2k2ψ′′ + k4ψ = iRe2k
{(

Π−1u c− u20
) (
k2ψ − ψ′′

)
− ψu′′20

}
, (3.7b)
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and the associated boundary, kinematic, and dynamic coupling conditions:

s = −h0 : φ = φ′ = 0, (3.7c)

s = d0 : ψ = ψ′ = 0, (3.7d)

s = 0 : φ′ − Πuψ
′ =

φ

c̃
(Πua2 − a1) , (3.7e)

s = 0 : φ = Πuψ, (3.7f)

s = 0 : φ′′ + k2φ− 2φ′Ω = ΠµΠu

{
ψ′′ + k2ψ

}
− 2Πuψ

′Ω, (3.7g)

s = 0 : − φ′′′ + 3k2φ′ +ΠuΠµ

{
ψ′′′ − 3k2ψ′

}
− ikRe1 {c̃φ′ + a1φ} (3.7h)

+ ikRe1ΠρΠu {c̃ψ′ + a2Πuψ} =
ikRe1
c̃

φ

{
cos(φ)

Fr2
(Πρ − 1)− k2We

}
,

where primes denote differentiation w.r.t. s, and where we have introduced c̃ = c− u10|s=0

and Ω=(b1 − b2ΠµΠu)/(a1 − Πua2). Equations (3.7) reduce to equations 4 and 5 in
Yiantsios & Higgins (1988) in the limit sin(φ)=0 (horizontal flow), upon setting Πu=1
and interchanging the phase indices (Yiantsios and Higgins designated the upper layer as
fluid 1). In particular, the third term on either side of (3.7g), which is associated with
streamwise gravity, will vanish in that limit. Taking the further limit Πρ=1 and h0=1/2,
our equations collapse to those of Yih (1967).

For the interfacial coupling conditions (3.7e)-(3.7h), we recall that the linear pertur-
bation f ′1 of the interfacial value f(h)=F |h(x,t) of a field variable F (x, y, t) comprises one
contribution due to changing the position y at constant interface height h and another
due to changing h at constant y (Yih, 1967):

dF = ∂yF |h dy + ∂hF |y dh,

f ′ = df = f(h0 + h′)− f(h0) = ∂yF |h=h0
h′ + ∂hF |y=h0

dh,

⇒ f ′ = ∂yF0|y=h0
h′ + F ′|y=h0

,

where F0 and F
′=F̂ (y) exp {ik(x− ct))} are the primary-flow and perturbation quantities

of the field variable F , which are both defined on the domain of the primary flow.

We solve the fourth-order eigenvalue problem (3.7) numerically using two different
methods. The first method makes use Auto07P (Doedel, 2008) to track long-wave in-
stability modes through numerical continuation, starting from the analytically tractable

1Primes do not denote differentiation in this paragraph.
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limit ω=k=0, where ci=0 and:

c̃ = cr − u10|s=0 = Ξ d20 h
2
0

{
d40 + 2Πµd0h0

(
2d20 + 3d0h0 + 2h20

)
+Π2

µh
4
0

}−1
, (3.8)

φ =
12

Υ
(h0 + s)2

{
d30 + 2Πµh

2
0s+Πµd0h0

[
−h0 + 2s+ s

h0
c̃
(a1 −Πua2)

]}
, (3.9)

ψ =
12

Υ

h0
Πud0

(d0 − s)2
{
−Πµh

3
0 + 2d0h0s+ d20

[
h0 + 2s+ s

h0
c̃
(a1 − Πua2)

]}
, (3.10)

having introduced:

Ξ = 2Πµa1H + b1
(
d20 − Πµh

2
0

)
+ΠµΠu

{
−b2d20 − 2a2H +Πµb2h

2
0

}
, (3.11)

Υ = 4d30 h
3
0 − 2Πµh

6
0 +Πµd0h

5
0

{
−6 + h0

c̃
(−a1 +Πua2)

}
, (3.12)

and which is valid both in the spatial and temporal formulations.
To exclude the trivial solution φ=ψ=0 from consideration, and to fix the arbitrary

integration constant arising from the fourth derivative in (3.7a), (3.7) is augmented by an
integral condition on φ: ∫ 0

−h0

φ ds = 1. (3.13)

In the case of spatial stability calculations, it has proven practical to introduce ω into
(3.6) indirectly through an additional equation ω=kc ∈ R. This forces k to become non-
zero, as soon as the control parameter ω is moved from its starting value (because cr 6= 0
at the starting point). Otherwise, when introducing ω directly in (3.6), our continuations
erred around the immediate vicinity of the starting point, where ω=k=0.

The second solution method is based on expanding φ and ψ in terms of Chebyshev
polynomials (Boomkamp et al., 1997; Barmak et al., 2016):

φ(ξ) = c10 +

Np∑

j=1

c1j Tj(ξ), ψ(ξ) = c20 +

Np∑

j=1

c2j Tj(ξ), (3.14)

where Tj are jth-degree Chebyshev polynomials of the first kind, defined on the interval
ξ ∈ [−1, 1], with ξ=2s/h0 + 1 in fluid 1 and ξ=2s/d0 − 1 in fluid 2. Thus, there are
2(Np + 1) unknown coefficients ckj, which are fixed by the 8 conditions in (3.7c)-(3.7h),
and 2(Np + 1)− 8 additional constraints obtained by evaluating the ODEs (3.7a) at the
inner collocation points ξ2, . . . , ξNp−2, defined according to:

ξi = cos

[
i π

Np

]
∀i ∈ [0, Np]. (3.15)

Instead of solving for the coefficients ckj, we solve directly for the 2(Np+2) unknowns
φ(ξi) and ψ(ξi), arranged into the solution vectors:

φ =
[
φ(ξ0), . . . , φ(ξNp

)
]T
, ψ =

[
ψ(ξ0), . . . , ψ(ξNp

)
]T
. (3.16)
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Then, by making use of the Chebyshev differentiation matrix D (Trefethen, 2000):

[
φ(i)(ξ0), . . . , φ

(i)(ξNp
)
]T

= Di
[
φ(ξ0), . . . , φ(ξNp

)
]T
, (3.17)

[
ψ(i)(ξ0), . . . , ψ

(i)(ξNp
)
]T

= Di
[
ψ(ξ0), . . . , ψ(ξNp

)
]T
, (3.18)

where i=1, 2, 3, 4, and (i) indicates the order of differentiation w.r.t. ξ, (3.7) is cast into
a generalized eigenvalue problem in matrix form:

Ax = c̃ Bx, (3.19)

with the coefficient matrices A and B and the concatenated solution vector x=[φ,ψ]T .
We solve (3.19) for the eigenvalues c̃ and eigenvectors x, using the function eig in MATLAB

(MATLAB, 2015)2. We have applied the Chebyshev collocation method in the framework
of the temporal stability formulation (k ∈ R, c ∈ C).

In contrast to the continuation method, the full set of eigenmodes is computed at once.
Thus, short-wave instability modes, i.e. modes with ki,ci 6=0 at k=ω=0, can be readily
obtained. Once a mode has been identified at a given wavenumber k, it can be tracked
by advancing k, using the function eigs, which searches for eigenvalues in the vicinity of
a previous solution.

To validate our two numerical OS approaches, we have confronted in figure 3.1 our
predictions of the most-unstable eigenmode for the two cases of horizontal two-phase
Poiseuille flow reported in panels 16a and 16b of Yiantsios & Higgins (1988). In accor-
dance with Yiantsios & Higgins (1988), our data were rescaled with L=d⋆0 and U=u⋆10|s=0.
In the first case (panels 3.1a and 3.1c), the most-unstable mode is a long-wave interfa-
cial mode. Both our OS calculations, using numerical continuation (solid red lines) and
using the Chebyshev collocation method (symbols), accurately predict the growth rate
dispersion curve kci(k) (panel 3.1a) and the associated eigenfunctions φ and ψ (panel
3.1c), in accordance with Yiantsios & Higgins (1988). In the second case (panels 3.1b
and 3.1d), the most-unstable mode is a short-wave mode. This mode is accurately cap-
tured by our Chebyshev collocation calculation, versus the data of Yiantsios & Higgins
(1988), evidencing a Tollmien-Schlichting type eigenfunction in fluid 1.

Next, we apply our thus validated Chebyshev collocation approach to check for short-
wave instability modes within the liquid-gas flows studied in chapters 5, 6, and 8. In
short, only long-wave eigenmodes are unstable for the flow conditions investigated here
(see figures 3.2 to 3.4), and thus our long-wave WRIBL models can accurately describe
the linear dynamics of the studied two-phase flows.

Nonetheless, we briefly discuss the different short-wave instability modes that can arise
for the two configurations sketched in figure 1.2. For falling liquid films (panel 1.2a) in a
passive outer phase (Πµ=Πρ=0), Floryan et al. (1987) identified a short-wave shear mode,
with an eigenfunction similar to the Tollmien-Schlichting instability, for Re1 > ReSM1 .
However, ReSM1 is of the order of several thousands, and thus this mode becomes relevant
only at extremely small inclination angles φ, when the flow is quasi-horizontal and the
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Figure 3.1: Numerical solutions of the Orr-Sommerfeld eigenvalue problem (3.7) for
two cases of the configuration in panel 1.2b (φ=0◦), corresponding to figures 15 and
16 in Yiantsios & Higgins (1988): m=Π−1µ =0.05, r=Π−1ρ =1.16, n=h0/d0=1, F=(r −
1)gL/U 2=5903/Re2, and S=σ/ρ1/L/U 2=829/Re2, where L=d⋆0 and U=u⋆10|s=0, which
have also been used to rescale underscored quantities. Solid red lines: continuation from
k=0 using Auto07P; symbols: solution based on Chebyshev polynomials (3.14). (a,c)
Re=ρ2 u

⋆
10|s=0 d

⋆
0/µ2=80: long-wave “interfacial mode”; (b,d) Re=230: short-wave “shear

mode”. Eigenfunctions in panels c and d correspond to k=5 and k=1.40, respectively.
Chebyshev polynomials of degree Np=60 were used.

threshold of the interfacial mode Recrit1 =(5/6) cot(φ) is itself very large. For the inclination
angles and Re1 studied in this work, the long-wave interfacial Kapitza instability always
dominates.

In the case of an active outer phase, e.g. a counter-current gas flow, additional long-
and short-wave instability modes come into play, both in the falling film (panel 1.2a)
and pressure-driven horizontal (panel 1.2b) configurations (Boomkamp & Miesen, 1996;

2The Matlab script provided by Singh (2014) was a useful starting point for our code.
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Figure 3.2: Numerical solutions of the OS eigenvalue problem (3.7) in the temporal for-
mulation (k ∈ R, c ∈ C). Inclined falling liquid film subject to a counter-current gas
flow according to panel 2.11d: Ka=509.5 (DMSO-water and air II in table 2.1), φ=10◦,
H⋆=1.69 mm, Re1=15. Solid red lines: numerical continuation with Auto07P starting
from k=0; symbols: Chebyshev collocation method (3.14) with Np=80. Open circles:
Re2=-80; crosses: Re2=-100. (a,c) Most-unstable long-wave mode; (b,d) most-unstable
short-wave mode. Eigenfunctions in panels c and d are evaluated at k=0.214. Green
symbols: liquid; blue symbols: gas.

Barthelet et al., 1995; Charru & Hinch, 2000). One of these is the previously discussed
long-wave interfacial mode resulting from the viscosity contrast between the two fluids
(Yih, 1967). Another, short-wave, interfacial mode takes hold in the limit of zero surface
tension (We=0) (Hooper & Boyd, 1983; Hinch, 1984). Finally, a short-wave Tollmien-
Schlichting mode can arise also in the outer phase (Yiantsios & Higgins, 1988; Tilley et al.,
1994a; Renardy, 1985; Trifonov, 2017a). It is this mode in particular that we have kept
an eye on with our Chebyshev collocation calculations.

Figures 3.2 and 3.3 report results of such calculations for the strongly-confined falling
liquid films considered in panel 2.11d. The left column in these figures corresponds to the
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Figure 3.3: Same as figure 3.2, but for conditions in the vicinity of the absolute instability
threshold according to panel 2.11d: Ka=509.5 (DMSO-water and air II in table 2.1),
φ=10◦, H⋆=1.878 mm, Re1=15. Open circles: M=sin(φ); crosses: Re2=-184. (a,c)
Most-unstable long-wave mode; (b,d) most-unstable short-wave mode. Eigenfunctions in
panels c and d are evaluated at k=0.264. Chebyshev polynomials with Np=120 were
used.

most-unstable eigenmode, which is always a long-wave mode, whereas the right column
represents the second-most-unstable eigenmode, which is always a stable short-wave mode
(with a Tollmien-Schlichting type eigenfunction in the gas phase). In figures 3.2 and 3.3,
we have varied Re2 in order to reproduce the two gas-induced effects observed with our
WRIBL calculations in panel 2.11d: the suppression of the long-wave Kapitza instability
(figure 3.2), and the build-up to absolute instability (figure 3.3). In both cases, short-wave
instability modes play no role.

Finally, figure 3.4 represents OS calculations for the falling liquid film and pressure-
driven water-air flow represented in figures 2.12 and 2.14. Once again, only the long-wave
eigenmode of the Kapitza instability is unstable.

In summary, we may conclude that our long-wave WRIBL models are adequate for pre-
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Figure 3.4: Long- and short-wave linear stability modes for the vertical and horizontal
configurations in panels 2.12 and 2.14. Assignments as in figure 3.2. Crosses: vertically
falling liquid film. Ka=509.5 (DMSO-water and air II in table 2.1), φ=90◦, H⋆=1.5 mm,
Re1=15.07, Re2=-54.46; circles: horizontal pressure-driven two-fluid plane Poiseuille flow.
Ka=3592.3 (water I and air III in table 2.1), φ=0◦, H⋆=0.39 mm, Re1=5.8, h0=1/3.
Eigenfunctions in panels c, d were obtained at k=0.94 (crosses) and k=0.27 (circles).
Chebyshev polynomials (3.14) of degree Np=80 (crosses) and Np=120 (circles) were used.

dicting all instability modes that are relevant for the liquid-gas flows studied in chapters
5 to 8. Short-wave instability modes play no role, because Tollmien-Schlichting eigen-
modes set in at large values of Re1 and |Re2|, which lie outside the range of applicability
of our models anyhow (see section 2.3). Nonetheless, even though we consider only low
to moderate |Re2| in our work (except for chapter 9), the effect of the gas flow is still
significant, as a result of the strong confinement levels studied. This is expressed in the
eigenfunction profiles of panels 3.2c, 3.3c and 3.4c, where, except for the aerostatic case
(open circles in panel 3.3c), the eigenfunctions of the long-wave instability mode evidence
very large perturbations in the gas. Interestingly, their shape is similar to that of the
(stable) short-wave eigenmodes (3.2c, 3.3c and 3.4c).
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In the case of falling liquid films sheared by a turbulent gas flow (section 1.4 and
chapter 9), which we are studying in ongoing work, it remains to be verified whether
short-wave instability modes play a role. For this, the Chebyshev collocation approach
must be extended to account for turbulence in the gas (Nàraigh et al., 2011). Nonetheless,
we will show in chapter 9 that our long-wave WRIBL model accurately captures the effect
of a counter-current turbulent gas flow on the shape and amplitude of nonlinear surface
waves versus experiments.

3.2 Annular liquid films in cylindrical tubes

The full governing equations for the cylindrical configuration (figure 1.3) are written in
section 4.1.2. Using the scales for the gravity-driven scenario (1.38) defined in section 1.2,
i.e. L=R⋆ and Uk=q⋆k/π/R⋆2, the primary flow is given by:

uk0 = akr
2 + bk ln(r) + ck, (3.20)

in terms of the core radius d0 and pressure derivative ∂xp20, which intervene via the
coefficients ak, bk, and ck:

a1 = 2Ξ
C1

∆1
, b1 = 4d20

C2

∆1
, c1 = −a1, (3.21)

a2 = −2
C3

∆2
, b2 = 0, c2 =

1

d20
− 1

2
d20 a2, (3.22)

where we have substituted:

Ξ =
∂x⋆p⋆1 − ρ1g
∂x⋆p⋆2 − ρ2g

=
∂xp2 − Fr−1Π−1ρ Π−2u

∂xp2 − Fr−1
, (3.23)

C1 =
(
ΠρΠ

2
u − 1

)
, C2 = (Ξ− 1) (Πρ − 1) , C3 = C2 − ΞC1, (3.24)

∆1 =
(
d20 − 1

){
ΞC1

(
d20 − 1

)
+ 2d20C2

}
− 4C2d

4
0 ln(d0), (3.25)

∆2 = d40C3 + 2Πµ (C2 − C3) d
2
0

(
d20 − 1

)
− 4ΠµC2 d

4
0 ln(d0). (3.26)

Above, and in the remainder of this section, we have made use of Re2=Re1ΠρΠuΠ
−1
µ to

simplify expressions.
Next, we introduce the Stokes stream functions Φ (fluid 1) and Ψ (fluid 2):

u1 =
1

r
∂rΦ, v1 = −

1

r
∂xΦ, (3.27a)

u2 =
1

r
∂rΨ, v2 = −

1

r
∂xΨ, (3.27b)
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and apply the same steps to obtain the linearized governing equations as for the planar
configuration in section 3.1, only that the core radius d is used instead of the film thickness
h:

d = d0 + d′ = d0 + d̂ exp {ik(x− ct)} . (3.28)

We thus obtain the Orr-Sommerfeld equations for axisymmetric core-annular flow through
a cylindrical tube:

φiv − 2r−1φ′′′ + 3r−2φ′′ − 2k2r∂r
[
r−1φ′

]
+ k4φ =

iRe1k
{
(c− u10)

(
k2φ− r∂r

[
r−1φ′

])
− φr∂r

[
r−1u′10

] }
,

(3.29a)

ψiv − 2r−1ψ′′′ + 3r−2ψ′′ − 2k2r∂r
[
r−1ψ′

]
+ k4ψ =

iRe2k
{(

Π−1u c− u10
) (
k2ψ − r∂r

[
r−1ψ′

])
− ψr∂r

[
r−1u′10

] }
,

(3.29b)

and the associated boundary, kinematic, and dynamic coupling conditions:

r = 1 : φ = φ′ = 0, (3.29c)

r = 0 : ψ = ψ′ = 0, (3.29d)

r = d0 : φ′ − Πuψ
′ =

φ

c̃
(Πuu

′
20 − u′10) , (3.29e)

r = d0 : φ = Πuψ, (3.29f)

r = d0 : φ′′ − d−10 φ′ + k2φ− φ′Ω = ΠµΠu

{
ψ′′ − d−10 ψ′ + k2ψ

}
−Πuψ

′Ω, (3.29g)

r = d0 : − φ′′′ + φ′′d−10 − φ′d−20 + k2
(
3φ′ − 2φd−10

)
(3.29h)

+ ΠuΠµ

{
ψ′′′ − ψ′′d−10 + ψ′d−20 − k2

(
3ψ′ − 2ψd−10

)}
(3.29i)

− ikRe1 {c̃φ′ + u′10φ}+ ikRe1ΠρΠu {c̃ψ′ + u′20Πuψ} (3.29j)

=
iRe1We

c̃
φ
{
k3 − kd−20

}
,

where primes denote differentiation w.r.t. r, and where we have introduced c̃ = c− u10|d0
and Ω=(u′′10|d0−ΠµΠu u

′′
20|d0)/(u′10|d0−Πu u

′
20|d0). Compared to the planar configuration

(3.7h), the sign of the We k3 term in the normal coupling condition (3.29j) has switched,
because the radial coordinate points toward the liquid phase, and a new −We k term
appears due to the azimuthal curvature.

The eigenvalue problem (3.29) is solved via numerical continuation using Auto07P,
starting from the analytical solution ci=0, cr=cr0, φ=φ0, and ψ=ψ0 in the long-wave
limit ω=k=0. The algebraic relations for cr0, φ=φ0, and ψ=ψ0 are obtained by solving
limk→0 {(3.29)} using the ansatz functions:

φ = L0 + L1 r
2 + L2 r

4 + L3 r
2 ln(r), (3.30)

ψ = G0 +G1 r
2 +G2 r

4 +G3 r
2 ln(r), (3.31)
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subject to the additional gauge condition:

∫ 1

0

φ dr = 1. (3.32)

Our calculations with Auto07P allow tracking only long-wave instability modes. In
contrast to the planar configuration, we have not checked explicitly for short wave modes.
Such modes can generally arise in core-annular flows (Preziosi et al., 1989), but usually
not in liquid/gas systems, unless the magnitude of Re1 and/or Re2 is large. In all our
computations for the cylindrical configuration, |Re1| and |Re2| were much smaller than
in our computations for the planar configuration. For the latter case, we have shown
via calculations with the Chebyshev collocation method that long-wave instability modes
dominate (see section 3.1).

Short-wave instability modes in core-annular flows are most relevant when the core
fluid is denser and more viscous (Chen et al., 1990), e.g. in liquid/liquid systems, although
regimes dominated by long-wave modes can be found even there. Applying our WRIBL
models to such regimes is an enticing route for future work.

We conclude with a technical remark. For the center line velocity u|r=0=limr→0 {ψ′/r}
to remain finite, limr→0 {ψ′} must converge toward zero at the same rate as limr→0 {r−1}.
This is not necessarily satisfied in a numerical calculation, where ψ(r) is approximated,
and this lead to convergence problems in our calculations with Auto07P. We remedied
this by formulating the boundary conditions of the OS problem at r=r0, where r0 was
chosen very small, typically r0/R=10−4.

Our OS calculations using the approaches outlined in this chapter, have allowed us
to identify the validity range of the WRIBL models developed in sections 1.1 and 1.2.
Within this validity range, which we have determined in section 2.3, linear predictions
of our WRIBL models, such as growth rate dispersion curves, are accurate. Further, we
have made sure that short-wave instability modes, which cannot be captured by our long-
wave WRIBL models, play no role in these regimes. Moreover, our experience has shown
that nonlinear predictions are usually accurate when linear predictions are, and this is
confirmed by our validation with DNS, which will be discussed in the next section.



Chapter 4

Direct numerical simulation

For most of the problems studied in this work, we have performed direct numerical sim-
ulations (DNS) based on the full Navier-Stokes equations. On the one hand, these DNS
were used as benchmarks (see section 2.3) to validate the WRIBL models developed in
sections 1.1 to 1.3. On the other hand, DNS were used to investigate physical effects
that were not accounted for in our models, such as three-dimensional falling liquid films
(section 5.2), heat transfer in falling liquid films flowing on corrugated substrates (section
6.3), or liquid films spreading around micro-particles (section 8.2).

Our DNS were performed with three Navier-Stokes solvers based on the finite-volume
discretization method (Patankar, 1980). The first solver, Gerris (Popinet, 2009), was
used for most of our simulations, in particular those involving interfacial instabilities,
owing to its excellent precision in representing the effect of surface tension forces. The
second, the interFOAM solver of the OpenFOAM package (Rusche, 2002), was used for
two particular cases where Gerris could not be employed, large-scale simulations of 3-
dimensional falling liquid films on a supercomputer (section 5.2) and spreading droplets
interacting with microparticles (section 8.2). We have also performed a few simulations
with the solver Basilisk Popinet (2015), which is the successor of Gerris and relies on
similar numerical methods. We will not discuss this solver in detail.

We will start in section 4.1 by casting the continuum mathematical formulation for the
problems studied. Then, in section 4.2, we will introduce the main numerical approaches
used for our two-phase simulations, i.e. the volume of fluid (VOF) and continuum surface
force (CSF) methods. Finally, in section 4.3, we will validate the two codes Gerris and
interFOAM based on representative benchmark simulations.

4.1 Continuum formulation

4.1.1 Liquid films in planar geometries

The flows represented in figures 4.1 and 4.2 are governed by the full Navier-Stokes and
continuity equations, written here in 3 dimensions using Einstein notation (i, j = 1, 2, 3

93
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Figure 4.1: Setup of our 2-dimensional DNS of strongly-confined liquid films on an open
domain with inlet/outlet conditions, using the finite volume solver Gerris (Popinet,
2009). The profile function f(x) allows applying a corrugation to the lower wall (Dietze,
2019), and θ designates a passive scalar transported by the convection-diffusion equation
(4.1j).

corresponding to coordinates x, y, z and velocity components u, v, w):

Xk ∂tui + uj ∂xj
ui = −∂xi

p+
1

Rek
∂xjxj

ui +
X2

k

Fr2
(1− δi3) [δi1 sin(φ)− δi2 cos(φ)] , (4.1a)

∂xj
uj = 0, (4.1b)

where δij denotes the Kronecker symbol and where we have omitted the phase index k on
the field variables ui and p. We use the scaling defined in (1.1) with ǫ=1 and recall that
X1=1 (fluid 1) and X2=Π−1u (fluid 2). The inter-phase kinematic coupling conditions and
stress balances at y=h(x, z, t) are:

u1 = Πuu2, v1 = Πuv2 = ∂th + u1 ∂xh+ w1 ∂zh, w1 = Πuw2, (4.1c)

p1 +
[
S1
ij · nj

]
· ni = ΠρΠ

2
u p2 +ΠµΠu

[
S2
ij · nj

]
· ni +WeC, (4.1d)

[
S1
ij · nj

]
· τi = ΠµΠu

[
S2
ij · nj

]
· τi, (4.1e)

[
S1
ij · nj

]
· ti = ΠµΠu

[
S2
ij · nj

]
· ti, (4.1f)

where Sk
ij=

1
2

(
∂xj

ui + ∂xi
uj
)
denotes the rate of strain tensor (Whitaker, 1968), τ , t, n

span the orthonormal surface coordinate system:

τ = [1, ∂xh, 0]
(
1 + ǫ2∂xh

2
)−1/2

, t = [0, ∂zh, 1]
(
1 + ǫ2∂zh

2
)−1/2

, (4.1g)

n = [−∂xh, 1,−∂zh]
(
1 + ∂xh

2 + ∂zh
2
)−1/2

, (4.1h)

and C is the full surface curvature:

C = ∂xi
ni =

2 ∂xh∂zh∂xzh− ∂xxh (1 + ∂zh
2)− ∂zzh (1 + ∂xh

2)

(1 + ∂xh2 + ∂zh2)
3/2

. (4.1i)
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Figure 4.2: Setup of our 3-dimensional DNS (Dietze et al., 2014) of a vertical liquid film
falling in a quiescent gas (section 5.2), using the interFOAM solver of the OpenFOAM pack-
age (Rusche, 2002). Periodicity and symmetry are imposed in streamwise and spanwise
directions. The domain spans one streamwise wavelength Λ and half of a spanwise wave-
length Λz (half of the depicted box). (a) 3-dimensional view; (b) initial condition in the
z=0 and x = Λx/2 planes. Contours correspond to the streamwise velocity component
u(x, y, z, t = 0).

In section 6.3, we will consider the liquid-controlled transfer of a passive scalar ϑk, e.g.
temperature or mass fraction, between a gas and a falling liquid film. In that limit, the
gas is assumed ideally-mixed and the transfer problem reduces to solving the liquid-side
convection-diffusion equation:

∂tθ + uj∂xj
θ =

1

Pe
∂xjxj

θ, (4.1j)

subject to a Dirichlet condition at the film surface:

θ|y=h = 1, (4.1k)

where Pe=U1L/α1 denotes the Péclet number, containing the diffusivity α, and where
θ=(ϑ1 − ϑ01)/(ϑ|y=h − ϑ01) is the normalized liquid-side scalar ϑ1 based on its inlet and

interfacial values ϑ01 and ϑ|y=h, which are both fixed.
We distinguish two sets of boundary conditions at the upper and lower boundaries:

(i) In our 2-dimensional DNS of strongly confined liquid films (figure 4.1), we use:

u1|y=f = v1|y=f = u2|y=H = v2|y=H = 0, [(∂y − ∂xf∂x) θ]y=f = 0, (4.2)

where f(x)=η(x, t)-h(x, t) defines a corrugation profile for the lower wall (section
6.3).
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(ii) In our DNS of liquid films falling in a quiescent atmosphere (e.g. the 3-dimensional
case in figure 4.2), we use:

u1|y=0 = v1|y=0 = w1|y=0 = ∂yu2|y=H = ∂yv2|y=H = ∂yw2|y=H = 0, (4.3)

so that the gas is virtually unconfined by the upper boundary y=H .

In terms of streamwise boundary conditions, we distinguish:

(i) Periodic DNS on a domain spanning the streamwise wavelength Λ, where we impose
periodicity on the velocity field:

uk|x=0 = uk|x=Λ , vk|x=0 = vk|x=Λ , wk|x=0 = wk|x=Λ , (4.4)

while allowing for a non-zero pressure drop ∆p2, through an additional source term
Γk on the RHS of the x-component of (4.1a):

Γk =
∆pk
Λ

, ∆p1 = ΠρΠ
2
u∆p2. (4.5)

In our 3-dimensional DNS (figure 4.2), additional spanwise symmetry conditions are
imposed at z=0 and z=Λz/2:

∂zuk = ∂zvk = wk = ∂zpk = 0, (4.6)

whereby we have simulated only half of the domain depicted in panel 4.2a.

(ii) Open-domain DNS according to figure 4.1 with inlet/outlet conditions on an ex-
tended domain of length L. At the liquid inlet x=0, we impose parabolic velocity
profiles corresponding to Poiseuille flow in both phases:

u1 = 6
q̄1
h0

[1 + F1(t)]
(
ξ − ξ2

)
, ξ = y − f |x=0 , (4.7)

u2 = 6
q̄2

H − h0
[1 + F2(t)]

(
ξ − ξ2

)
, ξ =

y − h0
H − h0

, (4.8)

where q̄1 and q̄2 are the nominal flow rates, 0 ≤ ξ ≤ 1 denotes the relative position
within the liquid and gas, and h0=η|x=0+ f |x=0 is the inlet film height. Further, at
x=0:

vk = 0, ∂xpk = 0, θ = 0. (4.9)

The liquid inlet flow rate q1=
∫ h0

f |x=0
u1|x=0 dy is perturbed in time through the func-

tion F1(t), intervening in (4.7). This function is used to excite surface waves, either
through sinusoidal monochromatic forcing:

F1(t) = ǫ1 sin(2π f t), (4.10)
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where f is the wave frequency and ǫ1 the perturbation amplitude, or through “ran-
dom” noise, mimicked through a Fourier series (Chang et al., 1996a):

F1(t) = ǫ1

N∑

k=1

sin(2π k∆f t+ ϕrand), ∆f = 2 fc/N, (4.11)

where N=1000, fc designates the linear cut-off frequency of the Kapitza instability,
and ϕrand is a random phase shift.

The gas flow rate q2=
∫ H

h0
u2|x=0 dy at x=0 is kept constant in most of our DNS,

i.e. F2(t)=0 in (4.7). However, in some cases of monochromatically forced surface
waves, we require a constant total flow rate qtot=q1+q2, and thus the time variation
of q1 needs to be compensated by a time variation of q2:

F2(t) = ǫ2 sin(2π f t), ǫ2 = ǫ1
q̄1
q̄2

H − h0
h0

. (4.12)

At the end of the computational domain, x = L, homogeneous Neumann conditions
are imposed for the velocities and the passive scalar θ:

∂xuk = ∂xvk = ∂xθ = 0, (4.13)

whereas the pressure is fixed by a Dirichlet condition:

u1 > 0 : pk = 0 (4.14)

u1 ≤ 0 :




p1 = −1

2
(u2 + v2)

p2 = 0
(4.15)

where p1 is set depending on the sign of the liquid velocity u1 (Dietze & Ruyer-Quil,
2013), which may change due to flow reversal underneath the troughs of the precur-
sory capillary ripples typically forming in falling liquid films (Malamataris & Balakotaiah,
2008; Dietze et al., 2008). When u1 < 0, the value of p1 is reduced below its usual
value p1=0 by an increment corresponding to the local instantaneous dynamic pres-
sure. This ensures that the flow reversal zones are advected out of the domain.
Otherwise, they would be blocked at the domain outlet and continuingly suck liquid
into the domain.

4.1.2 Liquid films in cylindrical geometries

The flow in figure 1.3 is governed by the full Navier-Stokes and continuity equations in
cylindrical coordinates, written here in two dimensions (axial and radial coordinates and
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components are denoted by x, u and r, v), assuming axisymmetry about the tube axis
r=0:

Xk∂tuk + uk ∂xuk + vk ∂ruk = −∂xpk +
1

Rek

{
∂xxuk +

1

r
∂r (r∂ruk)

}
+
X2

k

Fr2
, (4.16a)

Xk ∂tvk + vk ∂rvk + uk ∂xvk = −∂rpk +
1

Rek

{
∂xxvk + ∂r

[
1

r
∂r(rvk)

]}
, (4.16b)

0 =
1

r
∂r (rvk) + ∂xuk, (4.16c)

where we have used the scaling introduced in (1.38) andX1=1 andX2=Π−1u . The coupling
conditions at the film surface r=d(x, t) take the same form as for the planar configuration
(see equations 4.1c to 4.1f), only that the third dimension is dropped and h is replaced
by d in the kinematic condition:

v1 = Πuv2 = ∂td+ u1∂xv1. (4.17)

The stress tensor is again given by Sk
ij=

1
2

(
∂xj

ui + ∂xi
uj
)
, using Einstein notation (i,j=1

and i,j=2 correspond to the axial and radial dimensions), and the orthonormal surface
coordinate system τ , n, and surface curvature C take the form:

τ = [1, ∂xd]
(
1 + ǫ2∂xd

2
)−1/2

, n = [−∂xd, 1]
(
1 + ∂xd

2
)−1/2

, (4.18)

C = ∇ · n =
1 + ∂xd

2 − d∂xxd
d (1 + ∂xd2)

3/2
, (4.19)

where ∇=[∂x, r
−1 + ∂r] again denotes the nabla operator in cylindrical coordinates. The

radial boundary conditions are:

u1|r=R = v1|r=R = ∂ru2|r=0 = v2|y=0 = 0. (4.20)

All our DNS of the cylindrical configuration where performed with Gerris on a domain
spanning the wavelength Λ, using periodic boundary conditions in axial direction:

uk|x=0 = uk|x=Λ , vk|x=0 = vk|x=Λ , (4.21)

and, as in the planar configuration, we add the additional source term Γk (4.5) to the
RHS of (4.16a), to apply a non-zero pressure drop. Simulations were started from the
initial condition:

d(x, t = 0) = d̄ [1 + ǫI sin(2πx/Λ)] , u1(x, r, t = 0) = u10|d0=d(x,t=0) , (4.22)

u2 = v1 = v2 = 0, (4.23)

In these simulations, there are 3 control parameters, i.e. Λ, M , and the liquid volume V1:

V1 = πΛ

{
R2 − 1

2
d̄2
(
2 + ǫ2I

)}
. (4.24)

Thus, the values of the Reynolds numbers Rek are outcomes.
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4.1.3 Drops spreading on rigid surfaces

In section 8.2, we will discuss numerical simulations that reproduce the experimental
configuration in figure 8.7, which was studied at Tokyo University of Science in the group
of Ichiro Ueno. In this configuration, a liquid drop of silicone oil spreads on an otherwise
smooth horizontal substrate and comes into contact with an isolated micro-particle, which
leads to an acceleration of the spreading rate.

Versus the simulations discussed in sections 4.1.1 and 4.1.2, there is one additional
ingredient here, i.e. the presence of a contact line at the front of the spreading droplet,
which moves onto and past the particle (figure 8.8). We account for this through an appro-
priate boundary condition at solid boundaries that come into contact with the liquid-gas
interface. There, we prescribe the macroscopic contact angle β between the liquid-gas in-
terface and the wall surface, according to the Cox-Voinov relation (Snoeijer & Andreotti,
2013):

β3 = β3
0 + 9Ca ln

(
c L⋆

e

L⋆
i

)
, (4.25)

where β0 denotes the static contact angle, Ca=U⋆
CLµ1/σ denotes the Capillary number,

containing the local instantaneous contact line velocity UCL, c=10 is a non-universal
constant, L⋆

e=R
⋆
0 is an external length scale, which we set to the volume-equivalent drop

radius R⋆
0, and L

⋆
i=100 µm is an internal length scale. The contact angle β according to

(4.25) is enforced through a condition on the normal vector n of the orthonormal surface
coordinate system (4.1g):

n · nw = cos (β) , (4.26)

where nw designates the normal unit vector of the orthonormal wall coordinate sys-
tem. Further, we apply adherence and no-penetration conditions for the velocity at solid
boundaries:

u · nw = u · τw
1 = u · τw

2 = 0, (4.27)

where u denotes the velocity vector, and τw
1 and τw

2 denote the tangential unit vectors
of the orthonormal wall coordinate system.

In a continuum context, the adherence condition (4.27) implies that the contact line
cannot move freely. This problem can be circumvented by applying a Navier slip condition
for the tangential velocity components (Sui et al., 2014; Gründing et al., 2020). However,
in simulations based on the volume of fluid method, the displacement of the contact line
(via the liquid volume fraction φ) is governed by the tangential liquid velocity in the wall-
adjacent contact cell ucc, which is non-zero due to finite spatial discretization (see section
4.2). Thus, the contact line is free to move and ucc is a good approximation for UCL. This
is in line with the derivation of Tanner (1979), who also assumed wall adherence.

Most of our contact line simulations reported in section 8.2 were performed at Tokyo
University of Science, using the interFOAM solver, and my role was only a supervising
one. The exact set-up of these simulations, including boundary conditions, is reported in
Nakamura et al. (2020b,a). In addition, we have performed two simulations using Gerris.
The first (figure 4.11), represents an axisymmetric liquid drop spreading on a smooth plane
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substrate. This simulation was used to validate our representation of moving contact
lines. The second (figure 8.10), represents a two-dimensional drop spreading toward and
climbing up a vertical wall. This is a benchmark to study how the contact line moves
from a substrate onto a particle. Further details of these simulations are given at the
appropriate places.

4.2 VOF and CSF methods

Both employed codes, Gerris and interFOAM, rely on the volume of fluid (VOF) approach
(Hirt & Nichols, 1981) and the continuum surface force (CSF) method (Brackbill et al.,
1992). We outline these methods for the planar 2-dimensional example in figure 4.1, based
on equations (4.1). We focus first on their implementation in Gerris, before noting the
differences in interFOAM. Extension to 2-dimensional axisymmetric and 3-dimensional
Cartesian geometries is straightforward.

The Navier-Stokes equations are solved for an effective single-fluid defined on the
entire computational domain, along with the purely-convective conservation equation for
the liquid volume fraction φ, while enforcing a divergence-free velocity field:

ρ̄ ∂tui + ρ̄ uj∂xj
ui = −∂xi

p+ ρ̄ gi + µ̄ ∂xjxj
ui + F ′′′σ i, (4.28)

∂tφ+ ui ∂xi
φ = 0, (4.29)

∂xj
uj = 0, (4.30)

where all quantities are dimensional (here and throughout this section), and the hydro-
dynamical properties of the single-fluid are computed from the pure-phase properties
through a geometrically-weighted average:

ρ̄ = φ ρl + (1− φ) ρg, µ̄ = φµl + (1− φ)µg. (4.31)

Equation (4.29) is discretized based on a piecewise linear reconstruction of the interface
(Youngs, 1982), which relies on the values of φ in the computational cell itself and its im-
mediate neighbours. The source term F ′′′σ i in equation (4.28) accounts for the contribution
of capillary forces in the normal coupling condition (4.1d):

F ′′′σ i = σ κ̂ δsn̂i, (4.32)

where κ̂ and n̂i denote (dimensional) numerical estimates of the interfacial curvature
C (4.1i) and normal vector n (4.1g), while the Dirac distribution function δs restricts
treatment to the liquid-gas interface. The term δsn̂i is computed from the gradient of the
φ field:

δsn̂i = ∂̂xi
φ, (4.33)

where the discrete approximation ∂̂xi
of the differential operator is chosen to be compatible

with that of the pressure gradient in (4.28), ensuring that the inter-phase pressure jump
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is exactly recovered in the static limit (Renardy & Renardy, 2002; Francois et al., 2006).
The interface curvature κ̂ is computed from the height function ĥ, a numerical estimate
of the film height h obtained from the integral

∫
φ dy over a column of computational

cells (Rudman, 1997):

κ̂ = −∂̂xxĥ
{
1 + ∂̂xĥ

2
}−3/2

, (4.34)

where the spatial derivatives are discretized appropriately (Popinet, 2009).
The transport and inter-phase transfer of a passive scalar ϑ is computed through the

single-fluid convection-diffusion equation:

ρ̄ ∂tϑ+ ρ̄ uj ∂xj
ϑ = ∂xj

(ᾱ ∂xj
ϑ), (4.35)

where we construct the single-fluid diffusivity ᾱ as follows:

ᾱ−1 =





α−11 , y < ĥ− ∆x

2

φα−11 + (1− φ)α−12 , ĥ− ∆x

2
≤ y ≤ ĥ+ ∆x

2

α−12 , y > ĥ+ ∆x

2

, (4.36)

where ∆x is the (dimensional) height of a cell containing the interface. This leads to a
sharp representation of scalar transport (panel 4.3c), even though the volume fraction field
φ itself is not sharp. The middle relation in (4.36) constitutes a harmonic average and
ensures that the diffusional resistance of interfacial cells is physically consistent (Patankar,
1980). For example, in the limit α2 →∞, which is the one we are interested in (α2/α1 >
103 in our DNS), ᾱ−1 correctly reduces to the sole liquid contribution, whereas geometric
averaging would yield a diffusional resistance of zero. See figure 4.3 for a comparison of
ᾱ fields obtained by geometric (panel 4.3a) and harmonic (panel 4.3b) averaging. Our
approach allows an accurate prediction of scalar transfer through the film surface (see
figure 4.9 in section 4.3) while remaining within the VOF framework. Albert et al. (2014)
used a different approach by approximating the scalar profile near the interface with an
analytical solution.

In the case of liquid films flowing over corrugated substrates (section 6.3), the cor-
rugation profile f(x) (figure 4.1) is represented through an embedded solid boundary
(panel 4.4a) at which the boundary conditions are directly applied through interpolation
(Calhoun, 1999).

The Gerris solver discretizes the computational domain into a Cartesian quadtree
grid, which can be adaptively-refined based on user-defined solution variables. The (di-
mensional) cell size at a given refinement level RL is:

∆⋆
x =

L⋆

2RL
, (4.37)

where L⋆ is the length scale of the DNS (usually the domain height). In our simulations,
we have systematically refined the grid around the liquid-gas interface, and within the
bulk phases based on the vorticity. The maximal refinement level RLFS at the liquid-gas
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(a) (b) (c)

Figure 4.3: Geometric versus harmonic averaging of the single-fluid diffusivity ᾱ in (4.35)
for simulating inter-phase scalar transfer based on the VOF approach, using the finite-
volume solver Gerris (Popinet, 2009). (a) Geometrically averaged diffusivity: ᾱ=φα1 +
(φ − 1)α2. Blue corresponds to α1 and red to α2; (b) Harmonically averaged diffusivity:
ᾱ=α1α2 (φα2 + (φ− 1)α1)

−1; (c) field of the passive scalar θ in the vicinity of the liquid-
gas interface, as obtained with harmonic averaging (Dietze, 2019).

interface was usually larger by one unit than RL in the bulk (RL=RLFS − 1), except
in our scalar transfer computations at large Pe (section 6.3), where a very fine uniform
grid was imposed within the entire liquid phase (RL=RLFS). In that case, the grid in
the vicinity of the corrugated wall was additionally refined (RL=RLFS + 2), in order to
accurately capture the shape of the corrugations (panel 4.4a). We will use the interface
refinement level RLFS to characterize the grid resolution of our DNS. In terms of time
discretization, Gerris employs a fractional-step projection method (Chorin, 1968) that
leads to a formally second-order accurate discretisation (Popinet, 2009). The time step
∆t is dynamically adapted so that CFL=u∗∆t/∆ ≤ 0.8 in each cell (u∗ denotes the
magnitude of the dimensional velocity in a given cell). Results of grid dependence analyses
are presented in section 4.3.

In the case of contact line simulations (section 8.2) with Gerris, the contact angle β
(4.25) is imposed by orienting the liquid-gas interface in the contact cell (see panel 4.4b),
according to the condition (4.26) on the interface normal n. Syntactically, this is achieved
by using the boundary condition type BcAngle. In 2-dimensional simulations, (4.26) is
unambiguous, but in a 3-dimensional setting, the interface segment in the contact cell can
be oriented in many ways without violating (4.26). In that case, n is oriented according
to (Afkhami & Bussmann, 2009):

n =
n

|n| , n =
[
1, |np| tan (β)−1 , swCL

]T
, (4.38)

np = [1, 0, swCL]
T , swCL = ∇ · τw

2

(
rCL · τw

1

)
, (4.39)

where np is the projection of n onto the solid surface, rCL denotes the position vector of
the contact line, and swCL is the slope of the contact line in the solid-surface coordinate
system (τw1 , τ

w
2 ), which is evaluated at the old time step. In the 2-dimensional limit,



4.2 VOF and CSF methods 103

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 58  58.5  59  59.5  60

x⋆ (mm)

y
⋆
(m

m
)

(b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1.5  1.55  1.6  1.65  1.7  1.75  1.8  1.85  1.9  1.95

y
⋆
(m

m
)

r⋆ (mm)

Contact cell

β(UCL)

Figure 4.4: Examples of our DNS with Gerris using the VOF and CSF methods on
an adaptively refined quadtree grid. (a) Falling liquid film (liquid-gas interface in blue)
flowing over a sinusoidal corrugation represented by an immersed boundary (red line).
Parameters as in panel 6.16d; (b) Axisymmetric silicone-oil drop spreading on a smooth
substrate with β (UCL) according to (4.25) and β0=1◦. Parameters as in figure 4.11.

swCL=0 and (4.38) collapses to:

n =
n

|n| , n =
[
1, tan (β)−1

]T
. (4.40)

We use the tangential cell-centred fluid velocity within the contact cell ucc:

ucc = ±
{
(τw

1 · ucc)
2 + (τw

2 · ucc)
2}1/2 , (4.41)

as the contact line velocity in the Cox-Voinov relation (4.25), i.e. UCL=ucc, whereby the
sign of ucc depends on whether the contact line is advancing or receding.

When the grid resolution is coarse, ucc is quite large, notwithstanding the adherence
condition at the wall (4.27). Thus, the contact line slips freely. By contrast, in the limit
of very fine grids, ucc tends to zero. This causes the dynamic part in (4.25) to drop,
which is physically consistent, as the static contact angle β0 should be recovered in that
limit. Secondly, it imposes a pinning condition on the contact line in the contact cell. In
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that case, we have observed that the contact line in our simulations moves in a stick-slip
motion (at the scale of the grid resolution), whereby its macroscopic speed UCL agrees
well with the theoretical spreading rate (figure 4.11). During a pinning sequence, the
liquid-gas interface around the pinning point (assuming it has not attained equilibrium)
evolves such as to produce a strong positive curvature there. This causes a large pressure
minimum, which increasingly sucks liquid toward the contact cell, thus increasing ucc and
eventually forcing the contact line to slip by one increment.

Implementation of the VOF and CSF methods in the interFOAM solver differs in
two main respects. Firstly, the advection equation (4.29) for φ is discretized without
accounting for the orientation of the liquid-gas interface in interfacial cells. To mitigate
the creation of flotsam due to numerical diffusion of φ (Prosperetti & Tryggvason, 2007),
an ad hoc compression velocity U c, which is directed normal to and toward the interface,
is applied by augmenting the advection equation (4.29) as follows:

∂tφ+ ui ∂xi
φ+ ∂xi

{U c
i φ (1− φ)} = 0. (4.42)

Secondly, the curvature of the liquid-gas interface κ̂ is not computed based on the numer-
ically integrated surface height (4.34), but through:

κ̂ = ∂̂xi
n̂i, n̂i =

∂̂xi
φ

[
∂̂xi
φ ∂̂xj

φ
]1

2

. (4.43)

In the case of contact line simulations (section 8.2), (4.26) is recast as a boundary
condition on the wall-normal gradient of the volume fraction ∂̂xi

φ n̂w
i , by introducing the

approximated interface normal n̂i (4.43). This condition is applied in all wall-adjacent cells
with intermediate volume fractions (0<φ<1), which results in a less sharp representation
of the contact line dynamics compared to Gerris. Finally, the velocity dependence of the
contact angle β is prescribed via a hard-coded internal function:

β = β0 + (βa − βr) tanh
(
ucc
uβ

)
. (4.44)

In our simulations, the parameters βa, βr, and uβ were fitted in order to emulate (4.25)
in the studied velocity range.

In all our simulations with interFOAM, a fixed grid was used. Regions of the computa-
tional domain containing the liquid phase and the liquid-gas interface were resolved with
a better resolution than regions that always contain only gas. We will quantify the grid
resolution in the finer region based on the minimum spatial increment ∆⋆

y

∣∣
min

normal to

the main flow direction. Te increment in flow direction always satisfies ∆⋆
x|min ≥ ∆⋆

y

∣∣
min

.
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Figure 4.5: Benchmark DNS of a vertically falling liquid film, according to the experiments
in panels 16b and 19b of Dietze et al. (2009): φ=90◦, Re1=15, Ka=509.5 (DMSO-water in
table 2.1). The gas phase is quiescent and has no significant effect. Symbols: experimental
data; solid (red) lines: DNS with Gerris using RLFS=9 based on L⋆=1.49 mm (4.37);
dot-dot-dashed: DNS with interFOAM using ∆⋆

y

∣∣
min

=10 µm; dashed: WRIBL model
(1.27). (a,c) Large-amplitude solitary waves: f ⋆=16 Hz; (b,d) high-frequency shallow
waves: f ⋆=20 Hz. Dot-dashed lines in panels a,b mark y-position of velocity time-traces
in panels c,d.

4.3 Validation

We have performed several benchmark DNS to validate the employed Navier-Stokes
solvers, Gerris and interFOAM, against experiments from the literature and analytical
solutions.

We start with the case of a vertically falling liquid film consisting of a 83% by weight
aqueous solution of dimethylsulfoxide (DMSO, see table 2.1) flowing in quiescent ambient
air, according to the experiments of Dietze et al. (2009). In that reference, 2-dimensional
surface waves were excited by way of coherent inlet forcing. Figure 4.5 compares numer-
ical data obtained from our periodic DNS using Gerris (Dietze, 2016) and interFOAM

(Dietze et al., 2014) with the experimental data for two different forcing frequencies. In
addition, the dot-dashed lines represent TWS obtained with our WRIBL model (1.27).
All numerical computations accurately capture the wave amplitude, the number of cap-
illary waves, and the occurrence of flow reversal zones underneath the capillary troughs.

The second benchmark concerns a vertically falling water film flowing in quiescent
air, according to the experiments of Park & Nosoko (2003), where a series of immersed
needles was used, in addition to temporal inlet forcing, to excite regular 3-dimensional
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Figure 4.6: Benchmark DNS using interFOAM of a vertically-falling water film based on
experiments by Park & Nosoko (2003): φ=90◦, Re1 = 59.3, f ⋆=17 Hz, Ka=3923.2 (water
III in table 2.1). The ambient air is quiescent. (a) Experimental shadowgraph from
panel 7d of Park & Nosoko (2003) reproduced here with permission from John Wiley &
Sons, Inc; (b) snapshots of periodic DNS for successive periods during the evolution of a
3-dimensional surface wave: Λ⋆

z=25 mm; W ⋆=Λ⋆
z/2=10 mm; ∆⋆

y

∣∣
min

=10 µm.

surface waves of prescribed lateral wavelength Λz and frequency f . Figure 4.6 compares
our DNS data, obtained from a periodic large-scale DNS1 using interFOAM (Dietze et al.,
2014), with the experimental data for a representative case. The simulation reproduces all
main features of the 3-dimensional wave structure, consisting of horseshoe-shaped solitary
waves preceded by several capillary ripples.

The third benchmark concerns a liquid film of silicone oil falling over an inclined
wall with a sinusoidal corrugation, according to the experiments of Wierschem et al.
(2010). Figure 4.7 compares streamline plots obtained from our periodic DNS using
Gerris (Dietze, 2019) with experimental photographs showing tracer particle pathlines.
The film is stable for both Re1 values considered and thus the flow is steady. Thus,
pathlines and streamlines should coincide. Our DNS accurately reproduce the size and
position of the separation vortices forming in the corrugation troughs.

The fourth benchmark concerns an upward pressure-driven core-annular flow of oil
(fluid 2) and water (fluid 1) through a vertical cylindrical tube, according to the ex-
periment in panel 6b of Bai et al. (1996) and the corresponding DNS in figure 4 of

1The simulation was run on the supercomputer JUROPA (grant number HAC27) at Forschungszen-
trum Jülich.
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Figure 4.7: Benchmark DNS with Gerris of a liquid film falling over an inclined sinusoidal
corrugation of wavelength Λ⋆

C=10 mm and amplitude ĥ⋆C=1 mm (panel 4.1), according
to the experiments in panels 3b and 3d of Wierschem et al. (2010): φ=8◦, Ka=36.3
(silicone oil I in table 2.1). The gas phase is quiescent and has no significant effect.
(a,b) experimental data; (b,d) periodic DNS with RLFS=9 based on L⋆=10 mm (4.37);
(a,c) Re1=16.10, h̄/ΛC=0.244; (b,d) Re1=47.95, h̄/ΛC=0.297.

Kouris & Tsamopoulos (2001). We have reproduced this experiment with our own tran-
sient periodic DNS using Gerris, where we have set the wavelength Λ⋆=12.25 mm and
the water volume V1/(πR

2Λ)=0.3932 according to the experiment, and tuned the normal-
ized pressure dropM to match the experimental target value for the oil Reynolds number
Re2=-0.714. Our simulation reproduces correctly the shape of the so-called bamboo waves
forming on the water-oil interface (figure 4.8). However, there is a 30% error in the com-
puted water Reynolds number Re1. An error of this magnitude was also observed by
Kouris & Tsamopoulos (2001), when comparing their DNS with the experiment. These
authors attributed the error to an ambiguity in the surface tension values reported in
different accounts of the experiments of Bai et al. (1996).

The fifth benchmark concerns the transport of a passive scalar in a hydrodynamically
developed stable falling liquid film (figure 4.9), in the limit of a passive gas (Πµ=Πρ=0).
In this limit, the liquid streamwise velocity profile is given by:

u0 =
Re1

Fr2
h20

{
y

h0
− 1

2

y2

h20

}
, (4.45)

where the index 0 refers to the primary flow. Further, we consider scalar transfer across
the film surface by applying the boundary conditions in (4.1k) and (4.2), and focus on
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Figure 4.8: Benchmark simulation of bamboo waves in an upward pressure-driven liq-
uid/liquid core-annular flow through a vertical cylindrical tube: R⋆=4.8 mm, Πµ=601,
Πρ=0.91, Ka=1212.5 (water/oil in table 2.1), V1/(πR

2Λ)=0.3932. (a) Experiment from
panel 6b in Bai et al. (1996): Re1=-219.9, Re2=-0.714; (b) periodic DNS using Gerris:
Λ⋆=12.25 mm, M=1.04, Re1=-153.7, Re2=-0.746.

the limit of large Pe, where the interfacial boundary layer is thin (panel 4.9a). In this
limit, the local rate of convection Ḣ(x) of the scalar within the liquid can be obtained
analytically from penetration theory (Higbie, 1935):

Ḣ(x) =

∫ h

0

u(y) θ(x, y) dy, Ḣ =

(
6

π

)1/2 ( x
Pe

)1/2
. (4.46)

Panel 4.9b compares this analytical result with our open-domain DNS using Gerris

(Dietze, 2019) for three resolution variants. For all three cases, there is a region near
the inlet, where the boundary layer is under-resolved by the employed grid. However, the
length of this inevitable2 blind zone decreases drastically with increasing spatial resolu-
tion and the subsequent growth of the boundary layer is accurately captured by all three
DNS. Panel 4.9c represents the streamwise profile of the boundary layer thickness hBL:

hBL = 3.6
[ x
Pe

]1/2
, (4.47)

which is fixed by the θ=0.01 isoline in the scalar field θ(x, y):

θ = 1− erf

{
h0 − y

2

( x
Pe

)−1/2}
. (4.48)

2The thickness of the boundary layer tends to zero as x→ 0.
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Figure 4.9: Benchmark DNS of scalar transfer to a steady hydrodynamically-developed
falling liquid film: φ=90◦, Re1=15, Pe=4590, Ka=509.5 (DMSO-water in table 2.1). The
gas phase is quiescent and has no significant effect. (a) Contours of the transported scalar
θ (blue: θ=0; red: θ=1); (b) rate of convection Ḣ(x) of θ within the liquid (4.46). Symbols:
analytical solution (4.46) from penetration theory (Higbie, 1935); solid lines: DNS with
coarse (RL=6, crosses), reference (RL=7, open circles), and fine (RL=8, diamonds) grid
based on L⋆=1.59 mm (4.37); (c) solid line: boundary layer thickness hBL (4.47); plus
signs: vertices of the reference grid (RL=7) at selected x-positions.

In the same graph, we have represented via plus signs the wall-normal spatial resolution
for the reference grid (RLFS=8, open circles in panel 4.9b) at selected x-positions. This
reference grid was used in the scalar transport investigations presented in section 6.3. The
grid dependence analysis in figure 4.10 shows that it resolves all relevant features of the
flow field and passive-scalar field within a nonlinear wavy falling liquid film flowing on a
smooth substrate.

The final benchmark concerns an axisymmetric drop of silicone oil spreading on a
smooth substrate with a static contact angle β0=1◦. Conditions correspond to the exper-
iment from figure 8.7, only that there is no micro-particle here. We use the axisymmetric
version of Gerris, impose the macroscopic contact angle β according to (4.25), and start
the simulation from a hemispherical-drop initial condition (see panel 4.11b). The grid,
which is represented in panel 4.4b, is substantially refined near the contact line (RLmax=9
based on L⋆=5 mm). As a result, the dynamic contribution in (4.25), where we have used
UCL=ucc, is small and the contact line moves from cell to cell in a stick-slip motion (at
the scale of the grid resolution). During this intermittent motion, the contact angle also
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Figure 4.10: Grid dependence analysis using Gerris. Scalar transfer to a wavy falling
liquid film in contact with a strongly-confined counter-current gas flow (panel 4.1): φ=90◦,
Re1=15, Re2=-57, Pe=4590, Ka=509.5 (DMSO-water and air I in table 2.1). Streamlines
(panels a, c) and Contours of the transported scalar θ (panels b, d). (a,b) Reference grid:
RLFS=7; (c,d) fine grid: RLFS=8. Refinement level RL is based on L⋆=1.6 mm (4.37).
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Figure 4.11: Benchmark DNS using Gerris. Axisymmetric liquid drop of silicone oil
spreading on an oleophilic substrate: β0=1◦, V1=1.8 µl, R⋆

0=7.5 µm, Bo=2.6·10−5 (silicone
oil II in table 2.1). Dynamic contact angle β prescribed according to (4.25) with c=10,
L⋆
e=R

⋆
0, and L

⋆
i=100 µm. Adaptive grid refinement with RLmax=9 based on L⋆=5 mm

(see panel 4.4b). (a) Time trace of the radial contact line position rCL in a double
logarithmic plot. The drop spreads at the rate of t1/10 in accordance with the capillary
spreading regime (Tanner, 1979; Cazabat & Stuart, 1986); (b) snapshots of drop profiles
at selected time points. Thick blue curves correspond to initial and final states.
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varies, its minimum reaching β=3◦, which is a bit larger than β0.
Nonetheless, the obtained macroscopic contact line velocity UCL agrees well with the

appropriate theoretical spreading rate. This is shown in panel 4.11a, which represents the
time evolution of the radial contact line position rCL. Following an early stage of rapid
growth, where the initial condition plays an important role, the drop radius reaches a
regime where it evolves at the rate of t1/10. This corresponds to the analytical predic-
tion of Tanner (1979) for the axisymmetric 3-dimensional problem and the experimental
observations of Cazabat & Stuart (1986) in the capillary regime.

The Navier-Stokes solvers introduced in this chapter, in particular Gerris, allow a
very accurate description of the interfacial dynamics occurring in the two-phase flows
studied in this work. This has allowed us to determine the validity of our WRIBL models
from sections 1.1 to 1.3 for the studied regimes (section 2.3), and to elucidate the physics
of flows involving phenomena that are not accounted for in these models (sections 5.2,
6.3, and 8.2).





Chapter 5

Falling liquid films in a quiescent
atmosphere

Falling liquid films have been continuingly investigated1 since the seminal work of Wilhelm
Nusselt on the condensation of steam (Nusselt, 1916) and his later paper on predicting
heat transfer in falling film coolers (Nusselt, 1923), where he derived the velocity profile
and thickness of an unperturbed falling film flowing on a plane in a passive atmosphere,
i.e. for the configuration in panel 1.2a in the passive-gas limit Πµ=Πρ=0:

uNu = 3

{
y − 1

2
y2
}
, hNu = 1. (5.1)

In equation (5.1), which is often designated as Nusselt solution (subscript “Nu”),
we have scaled lengths with L=h⋆Nu=( 3 q⋆ν

g sin(φ)
)1/3 instead of L=H⋆ and velocities with

U=q⋆/h⋆Nu=h
⋆2
Nug sin(φ)/3/ν. This is more appropriate when the gas is considered to be

virtually unconfined and quiescent, in which case it does not significantly affect the liquid
film and H⋆ does not enter the problem. We make this assumption and use the associated
new scaling throughout this chapter. For the same reasons, we have dropped the phase
index k here and throughout this chapter.

The limiting case underlying (5.1) is mainly of academic interest, as in most industrial
applications the gas flow does play an important role, e.g. because it is strongly confined,
and we will discuss these in chapters 6 and 7. Also, in applications where the gas is
quiescent, the geometry is usually not planar and/or other effects such as phase change
come into play. This is the case for tube-bank condensers/evaporators used e.g. in absorp-
tion chillers (Killion & Garimella, 2004), closed-circuit cooling towers (Xie et al., 2019),
or for milk inspissation (Åkesjö et al., 2018), where the liquid film flows over a series of
horizontal tubes placed one above the other, or vertical tubes placed side by side.

Nonetheless, many studies have focused on the planar quiescent-gas configuration
considered in this chapter, as it already displays a very rich dynamics and associated
phenomena of heat/mass transfer. Most of the state of the art is summarized in several

1Typing the search term “falling liquid film” in Google Scholar yields over 250,000 results.
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Figure 5.1: Liquid film falling down a vertical wall in a quiescent atmosphere. (a) Two-
dimensional WRIBL computation (based on (1.27) with Πµ=Πρ=0) of the experiment
in panel 42d of Kapitza & Kapitza (1965): Ka=530.5 (alcohol I in table 2.1), Re1=6.09,
inlet noise according to (2.38) with ǫ1=0 and ǫ2=10−4; (b) blown-up view of a solitary
wave from panel a, showing precursory capillary ripples; (c) experimental snapshot of a
3-dimensional horseshoe wave reproduced from Alekseenko et al. (2007a).

review articles (Chang, 1994; Craster & Matar, 2009) and monographs (Alekseenko et al.,
1994; Chang & Demekhin, 2002; Dietze, 2010; Kalliadasis et al., 2012).

Here, we focus on a brief discussion of the main physics of surface waves, which are
arguably the most important feature of falling liquid films. Such waves were first reported
by Kapitza (1948)2, who observed them experimentally through shadowgraphy. Later,
Brooke Benjamin (1957) and Yih (1963) demonstrated via (temporal) linear stability
analysis that waves result from a long-wave instability of the primary flat-film flow (5.1),
giving rise to a supercritical Hopf bifurcation (panel 2.5a). The instability is purely
convective (Brevdo et al., 1999) and subject to Squire’s theorem (Yih, 1955), i.e. two-
dimensional perturbations are the most unstable versus three-dimensional ones. As we
have reported in section 2.1.1, the neutral stability bound is given by Re=q⋆/ν=5

6
cot(φ).

In a typical experiment (Nosoko et al., 1996), the Kapitza instability produces 2-
dimensional surface waves of the linearly most-amplified frequency fmax near the liquid
inlet, which subsequently grow (spatially) and saturate nonlinearly under the stabiliz-

2See Kapitza & Kapitza (1965) for a translation from Russian.
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ing effect of surface tension (Gjevik, 1970; Pumir et al., 1983). The resulting travelling
waves, with f ≈ fmax, are subject to a 2-dimensional subharmonic secondary instability
(Liu & Gollub, 1993), leading to spatial amplitude modulations (figure 2.6) and wave co-
alescence, which eventually gives rise to a cascaded coarsening dynamics (Chang et al.,
1996b) producing large-amplitude solitary waves that travel on a flat residual film (panel
5.1a). At the same time, 3-dimensional secondary instability induces spanwise de-
formations of the wave fronts (Liu et al., 1995; Kofman et al., 2014; Demekhin et al.,
2007a), which eventually leads to independently-travelling horseshoe-shaped solitary
waves (Petviashvili & Tsvelodub, 1978; Alekseenko et al., 2005; Demekhin et al., 2007b),
the final state of the film (panel 5.1c).

In the current work, we have conducted two studies that complete this physical picture:

(i) The nonlinear evolution of Kapitza waves is accompanied by the formation of pre-
cursory capillary ripples travelling in front of the main wave humps (panel 5.1b).
These generate extreme capillary pressure gradients (Dietze et al., 2008) that can
reverse the flow even in vertical falling films (Salamon et al., 1994; Miyara, 1999;
Malamataris et al., 2002; Tihon et al., 2006; Malamataris & Balakotaiah, 2008;
Dietze et al., 2009), and they play an important role in the interaction between
successive large waves (Malamataris et al., 2002; Pradas et al., 2013).

In Dietze (2016), we have elucidated the mechanism by which these capillary ripples
form, and how it is achieved that they may travel in group with the much larger
main wave humps. These results are discussed in section 5.1.

(ii) Three-dimensional surface waves are known to dramatically increase heat and
mass transfer in falling liquid films (Alekseenko et al., 1994; Kunugi & Kino, 2005;
Demekhin et al., 2007a). Also, the film’s (3-dimensional) waviness plays an impor-
tant role in the transition to turbulence, shifting its onset to significantly lower
Re1 values compared to single-phase plane Poiseuille flow (Ishigai et al., 1972;
Adomeit & Renz, 2000).

In Dietze et al. (2014), we have elucidated some of the underlying mechanisms via
high-performance DNS of 3-dimensional falling liquid films. These simulations re-
veal how surface waves shape and interact with the flow field. Results are discussed
in section 5.2.

5.1 On the origin of precursory capillary ripples

Precursory capillary ripples are a nonlinear consequence of the Kapitza instability and,
for a given wavelength Λ, arise when Re is sufficiently greater than Recrit(Λ). Closer
to criticality (Re & Recrit), saturated nonlinear Kapitza waves remain single-peaked, yet
they already contain the basic ingredients for forming capillary ripples. We thus start by
sketching the nonlinear evolution of single-peaked Kapitza waves (see figures 5.2, 5.3 and
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Figure 5.2: Kinematic waves evolving from a sinusoidal initial perturbation h|t=0=1 +
0.1 sin(2πx/Λ) (dashed profiles). Numerical solution of (5.2) in the limit Re1=0, 1/Bo=0,
using periodic boundary conditions: Λ=100, h⋆Nu=0.1 mm. The wave moves from left to
right. (a) Film height h; (b) film surface curvature ∂xxh. Filled blue and open red circles
mark loci of hmin and {∂xxh}max, respectively.

5.4). We do this based on the well-known Benney equation (Benney, 1966; Gjevik, 1970),
which is appropriate in that limit3:

∂th = − 3h2 ∂xh
︸ ︷︷ ︸

gravity

− 3

5
Re
{
12 h5 (∂xh)

2 + 2 h6 ∂xxh
}

︸ ︷︷ ︸
inertia

− h2

Bo
{3 ∂xh∂xxxh+ h∂xxxxh}

︸ ︷︷ ︸
capillarity

. (5.2)

The new scaling used in this chapter gives Re=h⋆3Nug sin(φ)/3/ν
2 and the Bond number

Bo=3/We/Re=ρgh⋆2Nu/σ, and RHS terms in (5.2) represent the effects of gravity, inertia,
and surface tension. This evolution equation for h is obtained from asymptotic expansion
around the primary flow (up to order ǫ1), and implies the following relation for the flow
rate q:

q = h3
[
1 +

6

5
Reh3∂xh+

1

Bo
∂xxxh

]
. (5.3)

3See figure 22e in Dietze (2016) for a validation.
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Figure 5.3: Dynamic wave on a vertically-falling liquid film evolving from a sinusoidal
initial perturbation h|t=0=1+0.1 sin(2πx/Λ) (dashed line). (a) Numerical solution of (5.2)
in the limit 1/Bo=0, using periodic boundary conditions: Λ=100, h⋆Nu=0.1 mm, Re=3.27.
Wave profiles at different times growing from left to right; (b) growth mechanism of the
Kapitza instability: inertia-induced flow rate imbalance across the wave crest.

Further, in the case of travelling waves (superscript ∞), the celerity c∞ex at the wave
extrema (x=xex, ∂xh|x=xex

=0) can be expressed as:

c∞ex =
dxex
dt

∣∣∣∣
dh=0

= − ∂th
∂xh

= ∂hq

= 3h2 +
6

5
Reh6

∂xxxh

∂xxh
+

1

Bo

{
3h2∂xxxh + h3

∂xxxxxh

∂xxh

}
,

(5.4)

where we have made use of the continuity equation (1.28a).
In the limit of inertialess flow and no surface tension (Re=1/Bo=0), only gravity and

viscous diffusion are active, producing kinematic waves that neither grow nor decay from
their initial amplitude (figure 5.2). Nonetheless, their shape is distorted by gravity, which
causes wave crests to travel faster than wave troughs (through the 3h2 term in (5.4)),
leading to a steepening of the wave front and an elongation of the wave back (panel
5.2a). In the process, the magnitude of the curvature at the crests (∂xxh<0) and troughs
(∂xxh>0) increases (panel 5.2b), and, importantly, reaches a maximum positive value
within the wave front (open red circles in panels 5.2a and 5.2b). This will turn out to be
a key ingredient for the formation of capillary waves.

The growth of Kapitza waves is caused by inertia, as evidenced by adding this effect in
our computation (Re=3.27), while maintaining 1/Bo → 0 (panel 5.3a). Focusing on the
wave extrema (∂xh=0), where the growth rate4 dh/dt reduces to ∂th, we see that it is the
surface curvature ∂xxh, through the inertial term −(6/5)Reh6∂xxh in (5.2), that decides
over growth or decay, causing h to increase at wave crests and decrease at wave troughs.

4The precise definition of a growth rate is h−1dh/dt. However, we will sometimes refer to dh/dt as
growth rate.
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Figure 5.4: Saturating wave on a vertically-falling liquid film evolving from a sinusoidal ini-
tial perturbation h|t=0=1+0.01 sin(2πx/Λ) (dashed line in panel a). Numerical solution of
(5.2) using periodic boundary conditions: Λ=100, h⋆Nu=0.1 mm, Re=3.27, Bo=1.36 ·10−3.
(a) Wave profiles at different times growing from left to right; (b) time evolution of the
dominant terms b3=−(6/5)Reh6∂xxh (solid lines) and b5=−(h3/Bo)∂xxxxh (dashed lines)
in (5.2) evaluated at the wave crest (lines without symbols) and wave trough (symbols);
(c) corresponding plots of the dominant celerity contributions c1=3h2 (solid lines) and
c4=(h3/Bo)∂xxxxxh/∂xxh (dashed lines) in (5.4).

The underlying growth mechanism is illustrated in panel 5.3b, where we consider the flow
rate q (5.3) on either side of a wave crest. On the upstream side (x=xu), where h is in
the process of decreasing due to the passage of the wave (∂th<0), inertia causes q to lag
slightly above its inertialess limit (q|xu

>h3). The opposite holds on the downstream side
(q|xu

<h3), resulting in a flow rate imbalance across the wave crest (q|xu
>q|xd

) that causes
the latter to grow. The mechanism is inverted at the wave troughs, where ∂xxh>0, causing
them to deepen, and this mechanism will turn out to be responsible for the inception of
capillary waves within the wave front (figure 5.5).

In a real liquid film, the inertia-induced growth of Kapitza waves is eventually checked
by the effect of capillarity (1/Bo 6= 0), which grows in weight as the wave shape increas-
ingly distorts under the effect of gravity (figure 5.4). Panel 5.4b shows this by comparing
the time evolution of the growth rate contributions owing to inertia b3=−(6/5)Reh6∂xxh
(solid lines) and capillarity b5=−(h3/Bo)∂xxxxh (dashed lines) at the wave crest (lines
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Figure 5.5: Inception of the first capillary trough within the front of the main wave.
DNS with Gerris using periodic boundary conditions. vertically-falling liquid film:
Ka=509.5 (DMSO-water in table 2.1), Re=10.87, h⋆Nu=0.300 mm, Λ=69.33, h|t=0=1 +
0.4 sin(2πx/Λ). Film height profiles over the time span t ∈ [2.27, 12.32] shifted vertically
to produce a spatio-temporal plot. Crosses: locus of {hxx}max; asterisks: original global
minimum of the wave; filled circles: first capillary trough. The minimal film height is
resolved with approx. 25 grid cells.

without symbols) and wave trough (symbols), respectively. Capillarity is also responsible
for compensating the initial gravity-induced celerity mismatch between wave hump and
wave trough (panel 5.4c), slowing down the former and speeding up the latter through
the term c4=(h3/Bo)∂xxxxxh/∂xxh in (5.4). Here again, it is the gravity-induced distor-
tion of the interface due to the compaction of the wave hump and trough, that produces
the effect, and this mechanism will turn out to control also the speed of capillary ripples
(figure 5.7).

Figure 5.5 demonstrates the formation of capillary ripples, which occur at Re outside
the range of the Benney equation (5.2). Thus, we have performed a periodic DNS with
Gerris of a vertically-falling liquid film at Re=10.87. The first capillary trough (filled
circles) is seen to form within the main wave front, close to the point of maximal ∂xxh
(crosses), as the front increasingly steepens. This in turn generates a capillary hump
enclosed between the new capillary trough (filled circles) and the original global wave
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Figure 5.6: Inertia-induced inception of the first capillary trough within the main wave
front. Periodic WRIBL computation based on (1.27) in the passive-gas limit (Πµ=Πρ=0).
Parameters correspond to figure 5.5. (a,b) Film surface profiles at two characteristic times;
(b) corresponding profiles of the growth rate contributions Ti according to (5.8). Solid:
total growth rate h−1dh/dt; dashed blue: capillary term Tσ; dot-dashed red: inertial term
Tρ; dot-dot-dashed green: gravity term Tg.

minimum (asterisks), which changes to a local minimum. The mechanism underlying
the generation of capillary ripples is identified by evaluating the relative growth rate
contributions of inertia, capillarity, and streamwise viscous diffusion in relation to viscous
drag. For this, we deconstruct the flow rate q through integration of (1.4a):

q = Re

h∫

0

y∫

0

h∫

y

−du
dt
dy3

︸ ︷︷ ︸
qρ

+Re

h∫

0

y∫

0

h∫

y

−∂xpdy3

︸ ︷︷ ︸
qσ

+3

h∫

0

y∫

0

h∫

y

dy3

︸ ︷︷ ︸
qg

+

h∫

0

y∫

0

h∫

y

∂xxudy
3

︸ ︷︷ ︸
qµ

, (5.5)

where ∂xp is obtained by integrating (1.4b) subject to (1.6a). Then, we apply the kine-
matic condition (1.9b) to obtain the growth rate h−1dh/dt:

1

h

dh

dt
=

1

h
∂th+

1

h
u|h ∂xh, (5.6)

∂th = −∂xq = −∂xqρ − ∂xqσ − ∂xqg − ∂xqµ. (5.7)

A reasonable estimate of the different terms in (5.5) can be obtained from our WRIBL
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Figure 5.7: A compression-based capillary mechanism speeds up the capillary ripples and
slows down the main hump, until a phase-locked travelling state is reached. Parameters
as in figure 5.6. (a) Time traces of capillary (solid lines with symbols) and gravity-based
(discontinuous lines) celerity contributions cσ and cg according to (5.9). Red dot-dashed
line and solid line with open symbols: first capillary trough; blue dot-dot-dashed line and
solid line with filled symbols: main wave crest; (b) snapshots of wave profiles (shifted so
that wave maxima align) at times corresponding to symbols in panel a.

model (1.27) in the passive-gas limit (Πµ=Πρ=0) based on the leading-order5 velocity
profile û (1.17), which yields u|h = 3

2
q
h
, and thus:

1

h

dh

dt
= Tρ + Tσ + Tg + Tµ, Ti =

3

2

qi
h2
∂xh−

1

h
∂xqi, i = ρ, σ, g, µ. (5.8)

Figure 5.6 represents profiles of the different growth rate contributions Ti in (5.8)
for two representative time points during the formation of the first capillary ripple, as
obtained from a periodic WRIBL computation with parameters according to our DNS in
figure 5.5.

Based on panels 5.6a and 5.6b, we may conclude that inertia is responsible for gen-
erating the first capillary trough within the main wave front, i.e. through the negative
growth rate contribution Tρ (dot-dot-dashed red lines), which is large in the vicinity of
the ∂xxh maximum (crosses). Once a capillary trough has formed (filled circle in panel
5.6b), a local maximum of negative ∂xxh and positive Tρ develops slightly further down-
stream, and this generates the first capillary hump. In turn, this will initiate the next
capillary trough and so on and so forth. The final number of capillary ripples is fixed by
the condition that they must connect smoothly to the back of the next main wave, and
travel at the same speed.

5See Dietze (2016) for a reconstruction based on velocity data from the DNS in panel 5.5. We
have checked that our WRIBL predictions are in qualitative agreement with the DNS, but the O(ǫ0)
approximation û remains coarse even within the context of our second-order model. Thus, quantitative
agreement cannot be expected. Nonetheless, we elect to use our WRIBL data here, because they yield
very smooth profiles for the complicated terms in (5.5) and (5.9).
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Figure 5.8: Capillary ripples within saturated TWS constructed with Auto07P (2.19).
Effect of the Reynolds number Re. Other parameters according to figure 5.5. (a) Wave
profiles for Re=5,10,20,30, and 40 (two solutions); (b) wave number kr of the first capillary
wave related to the linear cut-off wave number krC(h) for h0=hmin(Re). Capillary waves
are much shorter than the linear cut-off wavelength of the Kapitza instability. Symbols
in panel b mark the two solutions at Re=40 from panel a.

By contrast, capillarity, through the growth rate contribution Tσ represented with
dashed blue lines in panels 5.6a and 5.6b, counteracts deformations of the film surface. It
is ultimately responsible for saturating the growth of the main wave and capillary ripples.
Its weight grows with increasing distortion of the interface, as the main wave grows and
the wave profile is increasingly compressed, due to the gravity-induced celerity discrepancy
between wave maxima and minima (discussed in panel 5.2a). By compression, we mean
that wave maxima and minima move closer to one another and their curvatures increase
(panel 5.7b).

This compression-based capillary mechanism not only saturates the wave amplitude,
but also speeds up the capillary ripples and slows down the main hump, so that a phase-
locked travelling state is eventually reached. This is shown in panel 5.7a, where we have
plotted time traces of the capillary contribution cσ (solid lines with symbols) and the
gravity-induced contribution cg (discontinuous lines) to the extremal celerity c∞ex:

c∞ex = cρ + cσ + cg + cµ, ci = lim
x→xex

{
∂xqi
∂xh

}
=
∂xxqi
∂xxh

∣∣∣∣
x=xex

, (5.9)

evaluated at the main wave crest (blue dot-dot-dashed line and solid line with filled
symbols) and capillary trough (red dot-dashed line and solid line with open symbols).
Symbols in panel 5.7a correspond to the wave profile snapshots represented in panel 5.7b.
Comparing the solid and discontinuous curves in panel 5.7a for the two extrema, we see
that cσ substantially increases the speed of the capillary wave versus cg, whereas it reduces
that of the main wave hump6.

6Inertia and streamwise viscous diffusion slow down the capillary trough and speed up the main hump.
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As a result, the wave reaches a TWS, where precursory capillary ripples travel in
phase with the main wave hump. The degree of compression of the capillary ripples is
dictated by the final speed of the TWS, which is controlled by the amplitude of the main
wave hump. In turn, this dictates the number of precursory ripples, as the degree of
compression of the first ripple fixes how many ripples are required to relax the interface
toward the next main hump. Thus, the greater the main hump, the greater the number of
capillary ripples. This is shown in panel 5.8a, representing TWS obtained with Auto07P

based on (2.19) for different values of Re, all other parameters corresponding to figure
5.5.

When the Kapitza number Ka is small, streamwise viscous diffusion, which af-
fects the speed and growth of capillary waves in a similar fashion to capillarity, be-
comes increasingly important. This reduces the amplitude of the fully-developed ripples
(Ruyer-Quil & Manneville, 2000) while maintaining very large curvature variations there
(Dietze, 2016).

Precursory capillary ripples are a nonlinear phenomenon, i.e. they are kept alive by
an energy transfer from the fast-moving main hump that continuingly compresses them.
This is evidenced by the fact that their wavelength is much shorter than the linear cut-off
wavelength of the Kapitza instability7. We show this in panel 5.8b, where we have plotted,
for the range of TWS in panel 5.8a, the actual wave number kr of the first capillary wave
compared to the linear cut-off wave number krC based on the corresponding minimal film
height, i.e. h0=hmin(Re). According to this, capillary ripples are more than 3 times shorter
than the linear cut-off wavelength of the Kapitza instability. Thus, they could not exist
in a purely linear sense.

Impact of the work and relation to the current state of the art Our paper
Dietze (2016) has been cited 16 times according to Web of Science.

Our finding, that the wavelength of capillary ripples is much shorter than the linear
cut-off wavelength of the Kapitza instability (panel 5.8b), contradicts the conjecture of
Chang (1994), who suggested that the two wavelengths should roughly correspond. Thus,
capillary ripples in falling liquid films are linearly stable. This changes the physical
interpretation of these ripples, as they require an active energy transfer from the main
wave in order to exist. This is comparable to capillary wakes of objects travelling on liquid
surfaces (Raphaël & de Gennes, 1996; Moisy & Rabaud, 2014). In some sense, one could
compare the problem to the energy cascade in turbulence, where energy is also transferred
from large structures to small dissipative structures. Further, the mechanism we have
identified, which links the speed of the main wave humps to the number of capillary
ripples, allows to explain why capillary ripples are reduced in number when subjecting
the liquid film to a counter-current gas flow (Trifonov, 2010; Dietze & Ruyer-Quil, 2013;
Kofman et al., 2017), as the latter slows down the main wave.

Pfennig (2018) has cited our work in suggesting that the formation of capillary ripples

7Which is determined by the competition between the stabilizing effects of surface tension and stream-
wise viscous diffusion versus the destabilizing effect of inertia.
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on gravity-driven liquid films may have a more fundamental analogue at molecular level,
as a result of Lyapunov instability, gravity, and elasticity. Zhou & Prosperetti (2020b)
have confirmed the DNS in figure 22 of our paper Dietze (2016), and Wang et al. (2020)
have used our conclusions to formulate a physical argument for the threshold of flow
reversal in falling liquid films.

Zhou & Prosperetti (2020a) have revisited our work by performing DNS of capillary
ripples in falling liquid films for a large range of operating conditions encountered in the
literature, and by comparing these with linear stability predictions. Importantly, their
results confirm our finding that capillary ripples are linearly stable, i.e. the growth rate
−ki of linear waves with the same wave number kr is negative for all studied conditions.
Unfortunately, the authors did not acknowledge this agreement in their paper. Instead,
they write:

“Reference [23] describes a detailed study of capillary waves focusing on the mechanism
of their formation and their speed, wavelength, and attenuation. The author argues that
these small capillary waves are quite different from conventional capillary waves and owe
their formation and characteristics to inherently nonlinear phenomena. By an analysis of
wave patterns computed by the present authors and others from the literature, the present
paper shows that nonlinear effects, while present, are not the determining factor. A linear
approximation is adequate to satisfactorily account for these small ripples, which actually
bear a strong similarity to linear viscocapillary waves on a horizontal liquid film of finite
depth.”

We disagree with this statement. As capillary ripples are linearly stable, they cannot
attain nor maintain a finite amplitude without non-linearity. Thus, in our view, it is
conceptually wrong to say that nonlinear effects are not the determining factor. The very
existence of capillary ripples depends on it. The authors base their argument on a careful
comparison of capillary wave trains from nonlinear computations with linear stability
predictions. In particular, they fit the film height evolution for a linear wave train:

h = h̄+ A exp(−k̂i x) cos(k̂r x), (5.10)

to their DNS data using a least-squares fit, and compare the values of k̂r and k̂i with their
counterparts kr and ki obtained from spatial linear stability analysis at h0=h̄ and c=cDNS,
where cDNS denotes the nonlinear wave speed from the DNS. The authors conclude from
their data that k̂r and k̂i agree well with kr and ki.

No actual comparison of the linear wave profile from (5.10) with a DNS profile was
shown in Zhou & Prosperetti (2020a). Thus, we have plotted our own comparison in
figure 5.9. The thick solid red curve in panel 5.9a represents the nonlinear TWS at
Re=40 from panel 5.8a (solid red line there). The thin solid black curve corresponds to
the linear wave train according to (5.10), where we have fitted h̄=2.9 and A=1.6 to the
first capillary hump of the nonlinear TWS, and set k̂r=kr and −k̂i=−ki according to the
wave number kr and growth rate −ki of a linear wave travelling at speed c=cTWS on a
film of thickness h0=h̄, where cTWS is the wave speed of the nonlinear TWS. Panel 5.9b
shows how kr is obtained from linear stability analysis. Its value kr=0.376 is more than
three times greater than the cutoff wave number of the Kapitza instability.
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Figure 5.9: Linear approximation of capillary ripples following Zhou & Prosperetti
(2020a): Ka=509.5, φ=90◦. (a) Wave profiles for conditions corresponding to panel
5.8a: Re=40. Thick solid red: nonlinear TWS; thin solid black: linear approximation
according to equation (10) in Zhou & Prosperetti (2020a): h=h̄+A exp(−ki x) cos(kr x),
where kr and ki are obtained from linear stability analysis at h0=h̄ and c=cTWS (panel b),
and A=1.6 and h̄=2.9 were fitted to the first capillary hump of the TWS; dashed black:
h=h̄; (b) linear wave speed from spatial stability analysis: h0=2.9.

Comparing the two capillary wave trains in panel 5.9a, it seems exaggerated to claim
that a “linear approximation is adequate to satisfactorily account for these small ripples”.
Although the first nonlinear capillary hump is approximated quite well by the linear
wave number kr, the error is 12% nonetheless, and this accumulates to a phase shift of
roughly half a wavelength by the fifth capillary ripple between the thick solid red and
thin solid black curves8. Also, the linear spatial growth rate −ki does not predict the
amplitude reduction of the capillary ripples, which seems to be in contradiction with the
claim of Zhou & Prosperetti (2020a) regarding their figure 7b. However, we believe that
no such agreement should be expected. The individual capillary ripples represented by
the red curve in panel 5.9a are part of a TWS, and, thus, each one of them maintains
a constant amplitude while propagating downstream, whereas a linear argument would
imply a spatial attenuation. This, once again, underlines the importance of nonlinear
effects.

Of course, because the amplitude of capillary ripples is rather small, a linear approxi-
mation should give a reasonable estimate of their wave number kr for a known (nonlinear)
wave speed. Also, a linear argument can explain, in principle, why capillary ripples speed
up while being compressed. This effect results from the ascending branch of the celerity
curve of panel 5.9b, as has been pointed out (Dietze, 2016). However, this argument
cannot explain why ripples maintain a finite amplitude in a TWS although being linearly
stable. For this, non-linearity needs to be taken into account. Consider slightly reducing
the amplitude of a capillary ripple within a TWS, while maintaining kr constant. This

8Accounting for the smaller value of h̄ for the second to fourth capillary ripple would further increase
the error.
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would reduce streamwise variations in surface curvature and weaken the effect of surface
tension, which we have shown to be responsible for speeding up the capillary ripples (panel
5.7a). As a result, the capillary through would slow down w.r.t. to the main wave hump,
thus re-initiating the compression mechanism responsible for the growth and speed-up of
capillary ripples in the first place9. Denner et al. (2018) have pointed out that this is qual-
itatively different from the behaviour of classical capillary waves in viscous fluids, which
travel slower, the greater the initial amplitude is (Denner, 2016; Denner et al., 2017).

Zhou & Prosperetti (2020a) also introduced a DNS-based thought experiment, where
a surface wave was allowed to grow in the absence of surface tension, after which surface
tension was suddenly activated. Capillary ripples were seen to form only after that event.
The authors concluded from his:

“This simulation shows that it is the initial surface distortion caused by the instability
of the primary flow that, through the action of surface tension, generates the entire train
of capillary ripples. Thus, it appears that not only the dynamics, but the very formation
of the ripples are entirely dependent on the action of surface tension and its interaction
with inertia and viscosity.”

This statement is misleading. Surface tension in a planar film flow is always stabilizing,
i.e. it tends to suppress surface deformations. It cannot be the driving mechanism at the
origin of the capillary ripples. As we have shown in figure 5.6, inertia, via its destabilizing
role in the Kapitza instability, causes the formation of the first capillary trough within
the wave front against the resistance of surface tension. Thus, it is wrong to claim that
“the entire train of capillary ripples” is generated “through the action of surface tension”.
Nonetheless, surface tension plays an important role in the Kapitza instability. As we have
shown in figure 5.4, it is the (stabilizing) counterweight to inertia, causing the saturation
of surface waves, and reducing the celerity discrepancy between wave humps and wave
troughs. This effect, which is responsible for steepening the leading wave front, may
explain why capillary ripples occur only after activating surface tension in the numerical
thought experiment of Zhou & Prosperetti (2020a). Before that, the steepening of the
wave front must be so rapid that it drowns out the efforts of inertia to form the first
capillary wave trough there.

To the thought experiment of Zhou & Prosperetti (2020a) we may oppose our low-
Re computation in figure 5.4, where inertia is weak and surface tension is strong, but
capillary ripples do not form. From these two through experiments, we may conclude
that both inertia and surface tension are relevant for the formation of capillary ripples,
the first effect being direct (according to figure 5.6, inertia causes ∂th<0 at the origin
of the first capillary trough within the main wave front) and the second being indirect
(surface tension slows down the steepening of the wave front).

Given that the claims made by Zhou & Prosperetti (2020a) question some of our
conclusions from Dietze (2016), I would have preferred to have been given a chance to
respond to their findings before publication of their paper, especially as these claims turn

9By contrast, such a feedback loop does not exist in the linear argument, as the linear speed of the
ripples would remain constant at constant kr.
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out to be questionable.

5.2 Three-dimensional falling liquid films

In Dietze et al. (2014), we have performed DNS of three-dimensional vertically-falling liq-
uid films on the supercomputer JUROPA, using the interFOAM solver (Rusche, 2002) of
the OpenFOAM package (version 2.0.1). Three-dimensional solitary waves were simulated
in a box-shaped domain spanning one streamwise wavelength Λx in x-direction and half a
spanwise wavelength Λz in z-direction (see figure 4.2 in section 4.1.1). Figure 5.10 shows
snapshots of the film surface for the four cases simulated, which correspond to three work-
ing liquids, water, water-DMSO, and silicone oil, spanning a wide range of the Kapitza
number Ka, and flow conditions from different experimental works (Park & Nosoko, 2003;
Dietze et al., 2009; Rohlfs et al., 2012a).

Most of the liquid is concentrated into large horseshoe-shaped main wave humps,
consisting of a protruding and a trailing portion, which are separated by a thin residual
film covered by capillary ripples that espouse the shape of the main wave front. In panels
5.10a, 5.10b, and 5.10c, these ripples produce an interference pattern in the region between
the protruding humps. The greater Ka, the more intricate the interference pattern and
the greater the amplitude of the ripples. For the silicone oil film (panel 5.10d), where
Ka=17.8 is the lowest, only a single small-amplitude capillary ripple is observed, owing
to the increased relevance of streamwise viscous diffusion (see section 5.1).

The three-dimensional wave structure is associated with a pronounced segregation
of the flow field, which we characterize through the local Reynolds and inverse Weber
numbers based on the local film height h and streamwise liquid flow rate qx:

R̂e =
ρ |q⋆x|
µ

, Ŵe
−1

=
ρ q⋆2x
σ h⋆

, q⋆x =

∫ h⋆

0

u⋆ dy⋆. (5.11)

Panel 5.11a represents contours of Ŵe
−1

(right) and the corresponding film height h(x, t)

(left) for the water film in panel 5.10b. The contours of Ŵe
−1
, which relates inertia to

capillarity, demarcate an inertia-dominated region within the main humps, where Ŵe
−1

is large, and a visco-capillary region10 in the residual film, where Ŵe
−1

is small. In the
inertia-dominated region, the maximal local Reynolds number reaches R̂e=300, which is
more than five times greater than the nominal value Re=59.3.

Although the flow in our simulations is still fully laminar, this observation sheds some
light on the transition to turbulence in falling liquid films. Based on dye experiments
in such flows, Ishigai et al. (1972) reported onsets of wave-induced turbulence for Re ≥
2.2Ka3/10 (Re=26.3 for water), wall-induced turbulence for Re ≥ 75, and fully turbulent
flow dominated by turbulence production at the wall for Re ≥ 400 (Brauer, 1956). These
thresholds are much lower than the critical value for the transition of single phase channel

10Viscous diffusion comes into play when Ka is small, e.g. in panel 5.10d.
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Figure 5.10: Three-dimensional solitary waves on a vertically-falling liquid film in quies-
cent, unconfined air. DNS on the supercomputer JUROPA using the interFOAM solver of
the OpenFOAM package (see section 4.2). (a,b) Conditions according to experiments in fig-
ures 7c/7d of Park & Nosoko (2003): water (Ka=3923), Re=40.8/59.3, f ⋆=19.1 Hz/17.0
Hz, Λ⋆

x=20 mm/25 mm, Λ⋆
z=20 mm; (c) according to two-dimensional experiments of

Dietze et al. (2009) with additional Λ⋆
z=20.7 mm: water-DMSO (Ka=509.5), Re=15.0,

f ⋆=16 Hz, Λ⋆
x=20.7 mm; (d) according to experiments in Rohlfs et al. (2012a): silicone

oil (Ka=17.8), Re=6.2, f ⋆=16.6 Hz, Λ⋆
x=22 mm, Λ⋆

z=30 mm.

flow Re=675 (Pope, 2000), where we have constructed Re with the mean velocity and half
the channel height H⋆/2. Our observations suggest that this discrepancy may result from
the fact that the flow conditions (characterized through R̂e) within the large wave humps
can be significantly closer to turbulence than the overall value of Re suggests. This view
is also supported by the experiments of Adomeit & Renz (2000), who observed turbulent
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Figure 5.11: Segregation of the flow within a three-dimensional falling water film. Pa-
rameters according to panel 5.10b. (a) Contours of the film height h(x, z) (left) and the

local inverse Weber number (5.11) We−1 (right; from white to black Ŵ e
−1 ∈ [0, 1.7]); (b)

contours of the streamwise and spanwise wall-shear stress components τ ⋆wx=−µ ∂y⋆u⋆|y⋆=0

(left; τ ⋆wx ∈ [−7.7, 13.9] Pa) and τ ⋆wz=−µ ∂y⋆w⋆|y⋆=0 (right; τ ⋆wz ∈ [−8, 3.8] Pa).

spots within the main wave humps (for Re=72 and Ka=1042).
In the visco-capillary region, the flow pattern is mainly governed by the film surface

shape through the effect of curvature-induced capillary pressure gradients (see figures
15 and 20 in Dietze et al. (2014) for details). Panel 5.11b represents contours of the
streamwise (left) and spanwise (right) wall shear stress components τwx and τwz, which
we confront with the corresponding film thickness contours in panel 5.11a. Solid lines
in panel 5.11b correspond to τwx=0 (left) and τwz=0 (right), and thus mark changes in
flow direction. In the visco-capillary region, the flow direction is dictated by the film
surface curvature, i.e. from the capillary humps to the capillary troughs. This produces
several zones of upward flow underneath the capillary troughs, similar to the capillary
flow separation observed in two-dimensional falling liquid films (Dietze et al., 2008).

By contrast, in the inertia-dominated region, e.g. in the trailing portion of the main
hump, sign changes in τwz occur even in the absence of corresponding changes in surface
curvature (panel 5.11b). Panel 5.12a represents a cross-sectional view of the velocity
field in the y-z plane for the water film in panel 5.11b, evidencing a cellular pattern of
vortical structures filling the entire film height. These initially form at the wall as a result
of capillary pressure gradients, but, as they grow, increasingly interact with the inertia-
dominated mean flow, resulting in an increasing misalignment with the passing surface
wave. Supplemental movies Case1 DNS TH.avi and Case2 DNS TH.avi from Dietze et al.
(2014) show this process in action. It may be related to the wave-induced turbulence
observed by Ishigai et al. (1972) at very low Re.

In the leading portion of the main wave hump (top view in panel 5.12b), large-
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Figure 5.12: Cross-sectional views of the velocity field within the main wave hump of
panel 5.11a. (a) Front view of y-z cross section at x/L=0.31 (trailing hump), evidencing
vortical structures misaligned with the film surface shape. White solid lines mark u=c; (b)
top view of velocity field in a x-z cross section moving with wave speed c at y⋆=0.2 mm
(dashed red box in panel 5.11a), evidencing large-scale moving-frame vortices carrying
wall-normal vorticity. Gray-scale contours indicate the third velocity component.

scale vortical structures carrying wall-normal vorticity are observed in the wave-fixed
x-z reference frame. These moving-frame vortices intensify lateral mixing within the liq-
uid film, and thus further increase the wave-induced intensification of scalar transport
w.r.t. two-dimensional falling liquid films (section 6.3), where a two-dimensional moving-
frame vortex (see panel 4.10a) is already observed in the main hump (Miyara, 2001;
Alekseenko et al., 2007b).

The inertia-dominated and visco-capillary regions interact and this can produce self-
sustained oscillatory states, where the wave front varies between a distinctly three-
dimensional horseshoe shape (panel 5.13a) and a more two-dimensional structure (panel
5.13b). This is shown in figure 5.13 for the water-DMSO film in panel 5.10c, where oscil-
lations are most regular (larger-amplitude oscillations, discussed in Dietze et al. (2014),
are observed for water films). Panel 5.13c represents time traces of the streamwise and
spanwise surface deformation energies Ex and Ez (Joo & Davis, 1992; Scheid et al., 2008):
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Figure 5.13: Self-sustained oscillations displaying a time-periodic transition between
three- and two-dimensional wave fronts. Computations with the three-dimensional
WRIBL model of Scheid et al. (2006) for parameters corresponding to the DMSO-water
film in panel 5.10c. The computational domain spans two wavelengths in both dimen-
sions. (a) Snapshot of a three-dimensional wave front: ft=4.6; (b) more two-dimensional
wave front: ft=15.5; (c) time trace of the streamwise and spanwise surface deformation
energies Ex (symbols) and Ez (solid line without symbols), according to (5.12), normal-

ized with the mean wave height ¯̄h=1
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where Nx and Nz denote the number of discrete grid points at which h is evaluated. The



132 5 Falling liquid films in a quiescent atmosphere

(a)

y 
(m

m
)

−1−0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.10
  0

0.1

0.2

0.3

0.4

0.5

0.6

z/W

y
⋆
(m

m
)

(b)

−1−0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.10
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

∂
z
p/
‖∂

z
p‖
∞

z/W

Figure 5.14: Spanwise drainage from the leading main hump toward the capillary trough.
Parameters according to water film in panel 5.10a. (a) Velocity vectors within a y-z cross
section passing through the leading main hump; (b) profiles of the normalized spanwise
wall pressure gradient. Solid line without symbols corresponds to panel a.

Ex and Ez time traces evidence a periodic exchange between three- and two-dimensional
interfacial deformations.

The underlying mechanism relies on a spanwise capillary pressure gradient forming
as the leading portion of the main hump protrudes into the residual film, as has been
invoked by Georgantaki et al. (2011) to explain the stabilization of curved wave fronts
in laterally confined films. This gradient is unopposed by gravity and sucks liquid from
the inner region of the protruding main humps toward the outlining capillary trough (see
figure 5.14). As a result, the amplitude and celerity of the protruding hump is reduced,
upon which the trailing portion of the main wave hump catches up once again. The
draining mechanism relies on the large spanwise curvature gradient between the capillary
trough and the protruding main hump, and is particularly effective when one or several
capillary ridges dock onto the main humps, as seen in panels 5.10a, 5.10b, and 5.10c.
Once the main wave front has retracted toward a two-dimensional shape, the draining
mechanism subsides and the three-dimensional inertial mode of the Kapitza instability
(Kofman et al., 2014) restores the horseshoe-shaped wave structure.

The interaction between capillary ripples and main wave humps, has also been reported
to produce oscillatory states in two-dimensional falling liquid films (Pradas et al., 2011,
2012, 2013). It requires sufficiently strong capillary effects and breaks down for the
low Ka silicone oil film in panel 5.10d. In that case, the leading humps continue to
protrude and eventually break the spanwise connectivity of the main wave front, upon
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which they repeatedly overtake the original trailing portions (see supplemental movie
Case4 WRIBL.avi from Dietze et al. (2014)). This has been observed experimentally in a
spatially developing water film (Alekseenko et al., 2012).

Impact of the work and relation to the current state of the art Our paper
Dietze et al. (2014) has been cited 27 times according to Web of Science.

Our observation, that solitary waves can increase the local Reynolds number R̂e up to
fivefold, and our conjecture that this may explain the very early transition to turbulence
in falling liquid films (see discussion of panel 5.11a), have motivated Mukhopadhyay et al.
(2017) to develop a transitional WRIBL model, where turbulence is accounted for via an
eddy viscosity based on R̂e. This model accurately predicts experimental roll waves in
turbulent open-channel flows (Brock, 1970).

Kharlamov et al. (2015) have confirmed experimentally the oscillatory states we have
uncovered in figure 5.13. Their figures 17 and 18, which are based on film thickness
measurements through laser-induced fluorescence, clearly show the alternating protrusion
(our panel 5.13a) and retraction (our panel 5.13b) of the leading humps.

Guzanov et al. (2018) have experimentally identified wavy rivulets forming on an
isothermal falling liquid film, which seem to correspond to the wave regime observed
in our periodic simulation of the silicone-oil film (panel 5.10d). As shown in the supple-
mentary movie Case4 WRIBL.avi of Dietze et al. (2014), the long-time evolution for this
case exhibits leading humps that disconnect from the rest of the wave front and overtake
its trailing portions.

Feldmann et al. (2020) have suggested that the three-dimensional surface waves stud-
ied here may play a role in the de-wetting of falling liquid films.

Transverse mixing generated by the moving-frame vortices in panel 5.12b may ex-
plain the significant intensification of heat and mass transfer in three-dimensional falling
liquid films (Alekseenko et al., 1994). Kvon et al. (2016) and A. et al. (2022) have con-
firmed these vortices (and the lateral drainage of liquid toward the capillary trough) via
depth-resolved particle tracking velocimetry with a light-field camera. Interestingly, the
fluorescent dye used in these experiments makes visible plume-shaped flow structures in
the trailing main hump.
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On the Kapitza instability and the generation of
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We revisit the classical problem of a liquid film falling along a vertical wall due
to the action of gravity, i.e. the Kapitza paradigm (Kapitza, Zh. Eksp. Teor. Fiz.,
vol. 18, 1948, pp. 3–28). The free surface of such a flow is typically deformed into
a train of solitary pulses that consists of large asymmetric wave humps preceded
by small precursory ripples, designated as ‘capillary waves’. We set out to answer
four fundamental questions. (i) By what mechanism do the precursory ripples form?
(ii) How can they travel at the same celerity as the large-amplitude main humps?
(iii) Why are they designated as ‘capillary waves’? (iv) What determines their
wavelength and number and why do they attenuate in space? Asymptotic expansion
as well as direct numerical simulations and calculations with a low-dimensional
integral boundary-layer model have yielded the following conclusions. (i) Precursory
ripples form due to an inertia-based mechanism at the foot of the leading front of
the main humps, where the local free-surface curvature is large. (ii) The celerity of
capillary waves is matched to that of the large humps due to the action of surface
tension, which speeds up the former and slows down the latter. (iii) They are justly
designated as ‘capillary waves’ because their wavelength is systematically shorter than
the visco-capillary cutoff wavelength of the Kapitza instability. Due to a nonlinear
effect, namely that their celerity decreases with decreasing amplitude, they nonetheless
attain/maintain a finite amplitude because of being continuously compressed by the
pursuing large humps. (iv) The number and degree of compression of capillary waves
is governed by the amplitude of the main wave humps as well as the Kapitza number.
Large-amplitude main humps travel fast and strongly compress the capillary waves in
order for these to speed up sufficiently. Also, the more pronounced the first capillary
wave becomes, the more (spatially attenuating) capillary waves are needed to allow
a smooth transition to the back of the next main hump. These effects are amplified
by decreasing the Kapitza number, whereby, at very small values, streamwise viscous
diffusion increasingly attenuates the amplitude of the capillary waves.

Key words: capillary waves, thin films

1. Introduction
We consider a Newtonian viscous liquid film flowing down a vertical wall due

to the action of gravity in a two-dimensional setting. As shown in figure 1 and
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Full numerical simulations of the Navier–Stokes equations for four cases of vertically
falling liquid films with three-dimensional surface waves have been performed.
Flow conditions are based on several previous experimental studies where the
streamwise and spanwise wavelengths were imposed, which we exploit by simulating
periodic wave segments. The considered flows are laminar but approach conditions
at which intermittent wave-induced turbulence has been observed elsewhere. Working
liquids range from water to silicone oil and cover a large interval of the Kapitza
number (Ka = 18–3923), which relates capillary to viscous forces. Simulations were
performed on a supercomputer, using a finite-volume code and the volume of fluid
and continuum surface force methods to account for the multiphase nature of the
flow. Our results show that surface waves, consisting of large horseshoe-shaped wave
humps concentrating most of the liquid and preceded by capillary ripples on a thin
residual film, segregate the flow field into two regions: an inertia-dominated one in
the large humps, where the local Reynolds number is up to five times larger than
its mean value, and a visco-capillary region, where capillary and/or viscous forces
dominate. In the inertial region, an intricate structure of different-scale vortices arises,
which is more complicated than film thickness variations there suggest. Conversely,
the flow in the visco-capillary region of large-Ka fluids is entirely governed by the
local free-surface curvature through the action of capillary forces, which impose
the pressure distribution in the liquid film. This results in flow separation zones
underneath the capillary troughs and a spanwise cellular flow pattern in the region
of capillary wave interference. In some cases, capillary waves bridge the large
horseshoe humps in the spanwise direction, coupling the two aforementioned regions
and leading the flow to oscillate between three- and two-dimensional wave patterns.
This persists over long times, as we show by simulations with the low-dimensional
model of Scheid et al. (J. Fluid Mech., vol. 562, 2006, pp. 183–222) after satisfactory
comparison with our direct simulations at short times. The governing mechanism is
connected to the bridging capillary waves, which drain liquid from the horseshoe
humps, decreasing their amplitude and wave speed and causing them to retract in
the streamwise direction. Overall, it is observed that spanwise flow structures (not
accounted for in two-dimensional investigations) are particularly complex due to the
absence of gravity in this direction.

Key words: interfacial flows (free surface), thin films
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Chapter 6

Falling liquid films in narrow
channels

Falling liquid films intervene in many applications involving inter-phase heat and mass
transfer (Alekseenko et al., 1994; Azzopardi et al., 2011), where they are often subject
to a strongly-confined counter-current gas flow. For example, structured packings in
rectification columns for cryogenic air separation are typically designed to minimize the
spacing between individual corrugated sheets (of the order of several millimetres) which
form the small channels where the liquid and gas are put into contact (Fair & Bravo,
1990). Even stronger confinement levels are encountered in falling film micro-reactors
(Lapkin & Anastas, 2018), where the channel height H⋆<1 mm (Zhang et al., 2009).

A lower bound for H⋆ is dictated by the onset of flooding, which can manifest itself
either through an obstruction of the channel by the liquid film (Vlachos et al., 2001), a gas-
induced reversal of surface waves (Tseluiko & Kalliadasis, 2011), liquid arrest (Trifonov,
2010), or the disintegration of the liquid film into droplets (Zapke & Kröger, 2000). Sur-
face waves travelling on the liquid film, and in particular their interaction with the gas
flow, play an important role in triggering such events (panel 6.1a). On the other hand,
surface waves are beneficial for heat and mass transfer (Miyara, 1999; Albert et al., 2014),
allowing to increase inter-phase transfer rates by more than 100% (Yoshimura et al., 1996;
Rastaturin et al., 2006).

Structuring the bounding wall allows to act on the wavy falling liquid film (panel
6.1c). For example, structured packings in rectification columns typically consist of sheets
that are corrugated at different levels (Valluri et al. (2005)). Large-scale corrugations
force the falling liquid film to meander through the packing, thus increasing its residence
time (while modulating its inclination). Additional small-scale texturing (panel 6.1b),
with amplitudes of the order of 100 µm (Trifonov, 2011), is said to promote turbulence.
Although liquid flow rates in industrial devices are usually far removed from turbulent
conditions, texturing is known to modify the stability and waviness of falling liquid films
(Aksel & Schörner, 2018).

The above observations reveal a research challenge: find optimal wave regimes that
maximize scalar transfer while avoiding flooding, and we have addressed this by studying
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Figure 6.1: Planar falling liquid films in narrow (corrugated) channels subject to a counter-
current gas flow. (a) Wave-induced flooding of the channel, adapted from Vlachos et al.
(2001); (b) effect of wall corrugations on hydrodynamics and mixing within the liquid film,
adapted from Dietze (2019); (c) sketch of a corrugated sheet from a structured packing,
adapted from Valluri et al. (2005).

the two model problems represented in panel 1.2a and figure 4.1, i.e. a planar falling
liquid film in contact with a counter-current gas flow within a planar possibly corrugated
channel. These can be considered as elementary prototypes for the applications discussed
above. Thereby, we have focused on strong confinement levels1, i.e. channel heights that
are only several times greater than the mean film thickness (H/h̄ ≤5).

Such conditions, where the gas Reynolds number remains moderate (|Re2| ≤200), are
ideal for deploying our planar WRIBL model (1.27), allowing high-fidelity predictions at
low computational cost. From a physical perspective, the limit of strong confinement
promotes the pressure coupling (1.6a) between the liquid and gas, entailing several new
phenomena. Our work has uncovered four novel phenomena that have extended the state
of the art in the following ways:

• Linear stability analysis of falling liquid films subject to a counter-current gas had
mainly focused on weak confinement levels, where turbulent conditions are required

1In ongoing work (chapter 9), we have used our hybrid WRIBL model of section 1.4 to study falling
liquid films sheared by a turbulent counter-current gas flow within moderately confined channels.
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for the gas effect to be significant. In that case, the maximum growth rate increases
with increasing gas velocity (Alekseenko et al., 2009), while the cut-off wave num-
ber diminishes or varies non-monotonically (Vellingiri et al., 2015; Trifonov, 2017a).
Moreover, increasing the gas velocity can lead to a convective/absolute/upward-
convective transition of the primary instability (Vellingiri et al., 2015). These ob-
servations suggest a mainly destabilizing effect of the gas flow.

However, Tilley et al. (1994a) pointed out the possibility of suppressing the long-
wave interfacial instability in falling liquid films by strongly confining the gas phase,
and suggested a stabilizing mechanism due to the tangential gas shear stress exerted
at the film surface. But, the authors concluded for the studied parameter range that
this stabilizing effect is weak for water-air systems.

In Lavalle et al. (2019), we have revisited the problem over a wider parameter range
(low inclination angles) and found that the Kapitza instability can indeed be sup-
pressed for this fluid combination, e.g. a water film of h⋆0=0.5 mm thickness inclined
at φ=3◦ is fully stabilized by placing a confining plate at a distance H⋆=1 mm
above the quiescent gas. Moreover, the stabilization is stronger when the gas flows
counter-currently and increases with increasing gas velocity. These results and the
underlying mechanisms are discussed in section 6.1.

• Although the relevance of surface waves for the flooding of narrow channels has
been established beyond doubt (Vlachos et al., 2001; Drosos et al., 2006), their pre-
cise role in this catastrophic event was still largely unclear at the start of this
work. Different effects of the gas flow on the nature of individual waves had been
elucidated, such as wave amplification (Trifonov, 2010; Kofman et al., 2017), wave
reversal (Njifenju, 2010; Tseluiko & Kalliadasis, 2011), and flow reversal in the wave
crests (Trifonov, 2010). But, how these effects unfold in a spatially evolving film and
by what routes they bring about flooding (wave coalescence, secondary instabilities,
or the loss of travelling wave solutions), remained unclear. As falling-film heat and
mass exchangers are known to work best near the flooding limit, answering this
question is important from a practical perspective.

In Dietze & Ruyer-Quil (2013) and Lavalle et al. (2020), we have uncovered three
possible routes to flooding in vertically-falling liquid films. In the case of a noise-
driven wave evolution, flooding is caused by coalescence events that lead to large
waves obstructing the channel, and it can be suppressed by applying coherent inlet
forcing. In the second case, flooding arises due to a loss of stability of TWS, which
leads to spontaneous wave reversal in a spatio-temporal calculation. In the third
case, when the liquid volume and not the flow rate is imposed, the gas can produce
negative flooding by locally thinning the film up to the point of spinodal de-wetting.
At lower gas velocities, catastrophic events are avoided, and secondary instability
of TWS produces self sustained amplitude modulations that promote mixing within
the liquid film. Consequently, the gas Reynolds number Re2 can be used to tailor
optimal waves that maximize heat and mass transfer while avoiding flooding. This
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parameter also controls the occurrence of wave-induced vortical structures in the
gas (Nave, 2004), which our WRIBL model accurately predicts. Our results are
discussed in section 6.2.1.

• The gas-induced linear stabilization we have observed in weakly-inclined falling
liquid films (Lavalle et al., 2019) suggests the possibility of wavy regimes with a
reduced flooding risk, i.e. where both the linear growth rate and the nonlinear wave
amplitude decrease with increasing counter-current gas flow rate. Several investiga-
tions in the literature have reported evidence suggesting the possibility of nonlinear
stabilization. Samanta (2014) showed that applying a constant adverse tangential
shear stress to the free-surface of a weakly inclined falling liquid film can drasti-
cally reduce the amplitude of nonlinear surface waves, although the assumption
of a constant shear stress is not applicable in our strongly-confined configuration.
Also, Trifonov (2020) demonstrated that the interfacial fluid velocity, mean film
height, and inter-phase friction coefficient may vary non-monotonically with increas-
ing counter-current gas velocity, although the wave amplitude in his simulations still
increased monotonically.

In Lavalle et al. (2021), we have identified regimes where linear and nonlinear ef-
fects are either simultaneously stabilizing, simultaneously destabilizing, opposed
with a linear/nonlinear stabilization/destabilization, or vice versa. In the first case,
TWS resist secondary instabilities and exhibit a peculiar elongated shape with a flat
top. In the latter case, the gas flow triggers secondary instabilities that alter the
structure of a spatially-evolving wave train in two ways: (i) a coarsening dynamics
via slip-streaming waves, (ii) a refining dynamics via wave spitting events. The
slip-streaming waves decrease in amplitude as they speed up toward their leading
neighbours, in contrast to the usual coarsening dynamics observed in a quiescent
atmosphere (Chang et al., 1996b). The wave splitting events reduce the wave am-
plitude and thus lower the flooding risk. Our results are discussed in section 6.2.2.

• Wall corrugations are a constructive means to act on the wavy liquid film,
through several hydrodynamic effects, such as suppression of the Kapitza insta-
bility (Trifonov, 2014; Schörner et al., 2016), resonant states, where the film surface
espouses the shape of the corrugation (Bontozoglou & Papapolymerou, 1997, 1998;
Dávalos-Orozco, 2007; Heining et al., 2009), wave regularization (Oron & Heining,
2008) and wave selection from a noise-sustained wave evolution (Cao et al., 2013),
wave amplitude modulations (Trifonov, 2007b, 2017b), and increased mixing within
the liquid (Trifonov, 2011). Their potential for intensifying scalar transfer is very
high, but only very few studies have considered this effect (Gaskell et al., 2006;
Haroun et al., 2010; Kohrt et al., 2011), and none of them have discussed the role
of surface waves.

In Dietze (2019), we have performed DNS of inter-phase scalar transfer in falling
liquid films flowing over wall corrugations, in the presence of a counter-current gas
(figure 4.1). We find that sinusoidal corrugations typically used in structured pack-
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ings (Trifonov, 2007a), significantly intensify transfer in the high Péclet number
limit (30% reduction of the required transfer surface). The same degree of in-
tensification can be achieved through localized semicircular bumps, albeit through
another mechanism. In both cases, corrugations intensify the surface renewal mech-
anism (Yoshimura et al., 1996; Roberts & Chang, 2000) linked to the moving-frame
vortex observed in large-amplitude solitary waves (figure 4.10). However, localized
bumps can also trigger flooding events when the gas velocity is increased. Our
results are discussed in section 6.3.

6.1 Gas-induced suppression of Kapitza instability

We focus on the case of a water film falling along the lower wall of an inclined channel of
height H⋆ in contact with air2. Panel 6.2a shows how the neutral stability curve of the
Kapitza instability is affected (versus the passive-gas threshold Re1=

5
6
cot(φ)) by increas-

ingly confining the gas, while maintaining an aerostatic pressure gradient, i.e. M=sin(φ).
We observe a 40% increase in the critical Re1 for the strongest confinement level (H⋆=1.7
mm) and an experimentally measurable3 stabilization for H⋆=5 mm. Thus, for a given
liquid flow rate, the Kapitza instability can be fully suppressed simply by confining the
gas. Panel 6.2c demonstrates such a scenario via dispersion curves of the linear spatial
growth rate −ki, as obtained from Orr-Sommerfeld (OS) calculations (solid curves) and
our WRIBL model (1.27) (symbols).

Another way to suppress the instability is by applying a counter-current gas flow and
increasing its flow rate at constant gap height H , which is shown in panel 6.2d. However,
this effect is highly sensitive to the inclination angle φ, which is quite low in panels 6.2a,
6.2c, and 6.2d. Panel 6.2b demonstrates this by representing neutral stability curves in
terms of Re1 and Re2 for different φ. We see that a stabilization with increasing |Re2|
(red curves) occurs when φ is small, whereas a destabilization (blue curves) occurs when
φ is large.

The stabilization observed at low inclination angles suggests, counter-intuitively, that
the risk of wave-induced flooding can reduced by strongly confining and shearing the
falling liquid film, at least from a linear perspective. We will see in section 6.2 that the
nonlinear wave dynamics may or may not conform with this conclusion.

The mechanism of the gas-induced stabilization of the Kapitza instability must em-
anate either from the viscous stresses (3.7g) or the pressure (3.7h) exerted by the gas at
the film surface y=h. We untangle these two effects in figure 6.3. Panels 6.3a and 6.3c
represent growth rate dispersion curves from OS calculations for two cases, one where the
counter-current gas is stabilizing (panel 6.3a) and another were it is destabilizing (panel
6.3c). Solid curves correspond to the full problem, while red dashed (Πµ=0) and blue
dot-dashed (Πρ=0) curves correspond to the limits where the gaseous viscous stresses

2In Lavalle et al. (2019), we have also considered other liquids.
3Experimental data represented by symbols in panel 6.2a were measured by Yiqin Li and Sophie

Mergui. We thank Sophie Mergui for providing these data.
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Figure 6.2: Suppression of the Kapitza instability in a confined falling liquid film. Spa-
tial linear stability predictions from OS (lines) and WRIBL (filled symbols) calculations
compared with experiments (open symbols). Water film in contact with air: Ka=3406.9
(water II/air IV in table 2.1). (a) Cut-off frequency fc in the case of an aerostatic pressure
dropM=sin(φ): φ=1.69◦, H⋆=1.7, 2, 2.5, 5.1, and 18 mm (from right to left); (b) neutral
stability bound in the case of a counter-current gas flow: H⋆=2.5 mm, φ=1.5, 2, 2.5, 3,
3.5, 4.5, and 10 (from red dashed to blue dot-dashed curve via solid curves); (c,d) growth
rate dispersion curves: φ=3◦, Re1=23.9. (c) M=sin(φ), H⋆=1.1, 2, 3, 4, and 5 mm (from
bottom to top); (d) H⋆=2.5 mm, Re2=-150, -100, -50, -20, and 4.5 (from bottom to top).

and gas pressure have been deactivated, either entirely in (3.2) and (3.7) (dashed and
dot-dashed curves without symbols) or only in (3.7) (curves with symbols). In the latter
case, only the linear perturbations of the interfacial gas stresses are neglected, while in
the former case, the gas stresses are neglected entirely, i.e. also in the primary flow (3.2).

Based on panel 6.3a, perturbations of the interfacial viscous stresses are the dominant
mechanism causing the gas-induced suppression of the Kapitza instability (compare red
filled circles with solid black line). More precisely, it is the perturbation of the tangential



6.1 Gas-induced suppression of Kapitza instability 143

(a)

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0  0.1  0.2  0.3  0.4  0.5  0.6

−
k
i

kr

(b)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.2  0.4  0.6  0.8  1
-300

-200

-100

 0

 100

 200

 300

x/Λ

ℜ
{h
′ ,
T
′ 2
}

ℜ
{P
′ 2
}

(c)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

−
k
i

kr

(d)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.2  0.4  0.6  0.8  1
-300

-200

-100

 0

 100

 200

 300

x/Λ

ℜ
{h
′ ,
T
′ 2
}

ℜ
{P
′ 2
}

Figure 6.3: Stabilizing (a,b) versus destabilizing (c,d) effect of a counter-current gas flow:
φ=3◦, water film from figure 6.2. (a) H⋆=2.5 mm, Re1=23.9, Re2=-150. Growth rate
dispersion curves from OS calculations according to full problem (solid) and different lim-
its. Red dashed: Πµ=0 in (3.7) and (3.2); blue dot-dashed: Πρ=0 in (3.7) and (3.2); filled
circles: Πµ=0 in (3.7); open circles: Πρ=0 in (3.7); (b) corresponding linear perturbations
of film height h′ (3.6) (solid), gas shear stress T ′2 (6.1) (red-dashed), and gas pressure P ′2
(6.2) (dot-dashed blue): kr=0.2; (c) H⋆=4 mm, Re1=17. Dispersion curves from full OS
problem for Re2=-10 (dot-dot-dashed) and Re2=-150 (solid). Other curves correspond to
Πµ=0 and Πρ=0 limits for Re2=-150; (d) corresponding linear perturbations kr=0.2.

stress that is decisive (normal viscous stresses are negligible), whereas the gas pressure
perturbation plays no role (blue open circles all but collapse with the solid black curve).
Using notations from chapter 3 and following (3.5), we construct these perturbations by
decomposing the interfacial tangential gas shear stress T2 and gas pressure P2:

T2 = ΠµΠu

[
S2
ij

∣∣
s=0
· nj

]
· τi = T20 + T ′2(x, t) = T20 + T̂2 exp {ik(x− ct)} , (6.1)

P2 = p2|s=0 = P20 + P ′2(x, t) = P20 + P̂2 exp {ik(x− ct)} , (6.2)

where the complex perturbation amplitudes T̂2 and P̂2 can be expressed in terms of the
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stream function amplitudes φ and ψ and their derivatives:

T̂2 =
∣∣∣T̂2
∣∣∣ exp (iβT ) = k2ψ +

1

d20

(
ψ′′ + φ

u′′20
c̃

)
, (6.3)

P̂2 =
∣∣∣P̂2

∣∣∣ exp (iβP ) = −i
ψ′′′

k

1

Re2d30
(6.4)

+
1

d0

{
ψ′
(
i kRe−12 + c− u20

)
+ ψ u′20

}
− φ

c̃

cos (ϕ)

Fr2
.

We are interested in confronting the phase shifts βT and βP of the perturbations T ′2 and
P ′2 with that of the film height perturbation h′=ĥ exp {ik(x− ct)} (3.6), which we obtain
by reformulating ĥ based on the kinematic condition (1.9b):

ĥ =
∣∣∣ĥ
∣∣∣ exp (iβh) =

φ

c̃
exp {ik (x− c t)} . (6.5)

Panel 6.3b represents the three linear perturbations h′, T ′2, and P
′
2 (non-dimensionalized

with the natural scales (1.36)) for the water film in panel 6.3a. We focus on T ′2, which is
responsible for the suppression of the Kapitza instability. Its profile (red filled circles) is
shifted by half a wavelength w.r.t. the film height perturbation h′ (solid black curve), so
that the gas shear stress is more negative at a wave hump (where the gas cross-section is
narrower) than at a wave trough (where the gas cross section is wider). As a result, the
inertia-based instability mechanism discussed in figure 5.3b, which relies on a flow rate
imbalance across wave extrema, is weakened.

To demonstrate this, we expand the liquid flow rate q1 up to order ǫ in the long-wave
limit (assuming O(Ka)=1/ǫ2), following the approach for the Benney equation (5.2):

q1 =
(
sin(φ)− ǫ cos(φ)∂xh+ ǫ3Ka ∂xxxh

)
+Πµ

1

2
h2T2 −Πρ

1

3
h3∂xP2 (6.6)

+ ǫ

{
2

15
sin2 (φ)h6∂xh+Πµ

[
− 5

24
h4∂tT2 + sin (φ)

(
2

15
h5T2∂xh+

7

240
h6∂xT2

)]

+Πρ

[
2

15
h5∂xtP2 + sin (φ)

(
− 4

15
h6∂xh∂xP2 −

8

315
h7∂xxP2

)]

− 3

40
Π2

µh
5T2∂xT2 + Π2

ρ

[
2

15
h6∂xh∂xP2 +

8

315
h7∂xP2∂xxP2

]

+ ΠµΠρ

[
− 2

15
h5∂xhT2∂xP2 −

7

240
h6∂xT2∂xP2 +

13

360
h6T2∂xxP2

]}
,

where we have employed the natural scales (1.36) for non-dimensionalization, and the
effect of the gas is accounted for through T2 and P2. Terms within the accolades are
all inertia-related. Recalling that the growth rate at a wave extremum is ∂th=-∂xq1, the
only term in (6.6) representing a stabilizing effect at the wave extrema (where ∂xh=0) is



6.1 Gas-induced suppression of Kapitza instability 145

7
240

sin (φ)h6∂xT2. Its linear growth rate contribution − 7
240

sin (φ)h60∂xxT
′
2 varies according

to the T ′2 profile in panel 6.3b, i.e. it is negative at the wave hump and positive at the
wave trough. The strength of this term scales with sin (φ), whereas the driving term
of the Kapitza instability 2

15
sin2 (φ)h6∂xh scales with sin2 (φ). This explains why the

suppression of the Kapitza instability occurs at low inclination angles (panel 6.2b). In
short, stabilization occurs due to the tangential gas shear stress T2 attenuating the liquid
flow rate imbalance between wave humps and wave troughs, and this weakens the inertia-
induced growth mechanism of the Kapitza instability.

In the destabilizing scenario of panel 6.3c, the stabilizing effect of T ′2 is not as strong
because of the weaker relative confinement h0/H (we have demonstrated the role of H in

panel 2.11d), which leads to a lower perturbation amplitude
∣∣∣T̂2
∣∣∣ versus |h′| (filled circles

in panel 6.3c). In this case, the effect of T2 on the primary flow dominates, which is desta-
bilizing (compare dashed red line and filed circles). Increasing T20 (through increasing
|Re2|), increases the film height h0 and this favours the inertia-based driving mechanism
of the Kapitza instability.

The effect of the gas pressure P2 is always stabilizing according to panels 6.3a and
6.3c (compare dot-dashed blue with solid black curves). Its linear perturbation in panels
6.3b and 6.3d is positively curved at wave maxima (∂xxP

′
2<0), which translates into a

slight stabilization through the growth rate contribution 1
3
Πρh

3
0∂xxP

′
2. However, the role

of P ′2 is negligible in comparison to variations in the capillary pressure jump (open circles
collapse with solid black curves). The effect of the primary flow contribution ∂xP20>0 is
stabilizing on the one hand, as it counteracts the inertia-based driving mechanism through
the growth rate contribution − 4

15
sin (φ)h60∂xxh

′∂xP20. On the other hand, h0 increases
with increasing ∂xP20, which tends to destabilize the film, but this effect is weaker than
for T20

4.

Impact of the work and relation to the current state of the art Our paper
Lavalle et al. (2019) has been cited 10 times according to Web of Science.

In particular, Trifonov (2020), using temporal stability analysis, and Kushnir et al.
(2021), using a spatial formulation, have confirmed our main finding that the Kapitza
instability can be suppressed by strongly confining the gas. In the first work, it was
further shown that no stabilization occurs for co-current gas flow. In the second work,
stabilization was observed also for a recirculating gas, i.e. when the net gas flow rate
q20=0. In that case, the gas moves downward near the film surface and upward near
the upper bounding wall. Kushnir et al. (2021) also confirmed the decisive role of the
inclination angle observed in panel 6.2b.

Although the Gaster transformation (2.4) (Gaster, 1962) holds for the flow conditions
considered here, the spatial stability formulation used by Kushnir et al. (2021) is more
appropriate than the temporal formulation used in Lavalle et al. (2019). This is why we
have redone our calculations for the current work (figures 6.2 and 6.3) with our spatial OS
stability code (section 3). Our conclusions from Lavalle et al. (2019) remain unaltered.

4In the inertialess limit of (6.6), compare 1

2
Πµh

2

0
T20 and − 1

3
Πρh

3

0
∂xP20.
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Importantly, Kushnir et al. (2021) and Barmak et al. (2021) found that short-wave
instability modes do not exist for conditions where the long-wave Kapitza instability is
suppressed due to the gas effect. We have confirmed this for our configuration in section
3.1 (see figure 3.2). This means that falling liquid films can be fully stabilized in strongly
confined geometries, which may be very useful in the design of real systems such as
micro-reactors Lapkin & Anastas (2018) or micro-gap evaporators (Kabov et al., 2011).

Mohamed et al. (2021) have extended our work by taking into account evaporation
in a falling liquid film sheared by a counter-current gas flow. The authors confirm our
observation that the Kapitza instability can be fully suppressed due to the shear stress
imposed by the counter-current gas flow. However, they find that the added effect of
evaporation can facilitate the transition from convective to absolute instability. In a real
system, this would lead to a dry-out of the heating surface.

6.2 Nonlinear waves and secondary instabilities

We focus now on how a counter-current gas flow affects the nonlinear dynamics of a wavy
falling liquid film flowing through a strongly-confined channel (panel 1.2a). In section
6.2.2, we will focus on inclined channels (φ<90◦), where the gas can stabilize linearly the
liquid film (as discussed in section 6.1). In the next section, 6.2.1, we will treat the vertical
configuration, where this effect is negligible. In both cases, we will consider a single fluid
combination defined in table 2.1, i.e. a DMSO-water solution as liquid and air II as gas.
The gas flow is characterized either via the Reynolds number Re2, which is based on the
signed nominal flow rate q⋆

2
(1.2) and thus negative in the counter-current configuration,

or through the normalized pressure dropM (1.35), where the gas is entrained by the liquid
film and Re2>0. Typically, we will vary the gas flow from the aerostatic limit M=sin(φ)
to a counter-current state with Re2<0.

6.2.1 Vertically-falling liquid films

Figure 6.4 represents the nonlinear response of TWS to an increasingly strong counter-
current gas flow, at imposed Re1 and frequency f . We consider the two channel heights
H⋆=1 mm and H⋆=1.5 mm from panel 2.11c, where the linear response of the falling
liquid film was plotted. In figure 6.4, we confront two types of nonlinear waves. Linearly-
most amplified waves (blue curves), where f=fmax (2.24), and low-frequency solitary
waves (red and black curves), where f<fmax.

For the larger channel, H⋆=1.5 mm (panel 6.4a), the wave height hmax is amplified
under increasingly negative Re2 for both wave types, at least up to an upper limit hmax ≈
0.75. For Re2 values beyond this maximum, which is reached only by the f ⋆=16 Hz solitary
waves (black solid line with circle), the linear and nonlinear responses are opposed, i.e.
hmax is damped with increasing counter-current gas flow rate, whereas the linear growth
rate −ki is amplified (figure 2.11). In the rest of the parameter range, the linear and
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Figure 6.4: Superconfined falling liquid film in contact with a counter-current gas flow:
φ=90◦, Re1=15, Ka=509.5. Nonlinear TWS obtained from WRIBL model (1.27). Open
symbols mark linear limit of absolute instability (AI). Diamonds: most-amplified waves
f=fmax (2.24); open circles: f ⋆=16 Hz<fmax; squares: f ⋆=8.7 Hz. (a) H⋆=1.5 mm.
Wave height hmax. Dashed: Πρ=0 in (1.6a); dot-dashed: Πµ=0 in (1.6a) and (1.6b); filled
circles: DNS; (b) TWS profiles from panel a: f ⋆=16 Hz; M=1, Re2=-174, -217, and -218;
(c) wave celerity c for TWS from panel a; (d) H⋆=1.0 mm. Asterisk (Re2=-13.5) and
cross (Re2=-78) mark onsets of oscillatory (OI) and catastrophic instabilities (CI). Red
arrows mark TWS represented in panels 6.5a, 6.5b, and 6.5c.

nonlinear responses are concordant and imply a gas-induced wave amplification. 5

Panel 6.4b represents several profiles of the solitary TWS at f ⋆=16 Hz. The Re2 values
for the different profiles correspond to the filled circles in panel 6.4a, which represent data
from periodic DNS with the interFOAM solver (§4.2). The wave profiles show that the
increase in wave height hmax is accompanied by a one-by-one suppression of precursory
capillary ripples (Trifonov, 2010; Kofman et al., 2017). The cause for this is a drop in the

5Curves in panels 6.4a, 6.4c, and 6.4d are truncated at the linear absolute instability (AI) limit (marked
by open symbols), where the concept of TWS breaks down.
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Figure 6.5: Stable and unstable TWS from panel 6.4d: H⋆=1 mm, f ⋆=16 Hz. (a) Re2=-
1: stable TWS; (b) Re2=-16: TWS subject to oscillatory instability (panel 6.6a); (c)
Re2=−80: TWS subject to catastrophic instability (figure 6.8); (d) Solution from panel
b in different limits. Solid black line: full WRIBL model (1.27); dot-dashed red: Πρ=0 in
(1.6a); dashed blue: Πµ=0 in (1.6b) and (1.6a).

wave celerity (panel 6.4c) under the effect of the increasingly strong counter-current gas
flow. We have demonstrated in section 5.1 that slower solitary waves carry less precursory
ripples.

The dashed and dot-dashed TWS curves in panels 6.4a and 6.4c pertain to the limits
Πρ=0 and Πµ=0 in the inter-phase coupling conditions (1.6a) and (1.6b). These curves
show that the nonlinear amplification and deceleration of TWS is caused by the gas
pressure (deactivated via Πρ=0) and not by the interfacial gaseous viscous stresses (deac-
tivated via Πµ=0). Moreover, the linear absolute instability (AI) threshold is suppressed
in the Πρ=0 limit.

For the narrower channel, H⋆=1 mm (panel 6.4d), an inversion of the hmax versus Re2
trend (from wave amplification to wave damping) occurs for all wave types, well before
reaching the AI limit. For the f ⋆=16 Hz solitary waves (red curve with open circle), hmax

is damped almost as soon as Re2<0. Based on this, it seems that the flooding risk can
be reduced by increasing the counter-current gas flow rate. However, TWS can become
prone to potentially dangerous secondary instabilities.

We demonstrate this based on the three TWS in panels 6.5a, 6.5b, and 6.5c, which lie
on the red curve with circles (f ⋆=16 Hz) in panel 6.4d, at the Re2 values marked by red
arrows there. The first TWS (panel 6.5a) lies on the periodically-stable solution branch
in panel 6.4d (to the right of the cross). In that case, the TWS remains unaltered in a
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Figure 6.6: Oscillatory instability of TWS from panel 6.4d: H⋆=1 mm, Re1=15, f ⋆
TWS=16

Hz. (a,b) Transient periodic computations started from TWS at Re2=-1 (stable) and
Re2=-16 (oscillatory instability). Black lines: time traces of local film thickness; red
lines: time traces of wave height; (c,d) open-domain computations with coherent inlet
forcing at f=fTWS, for Re2=-19 (panel c) and Re2=-25 (panel d). Black lines: snapshots
of the film profile; red lines: paths of the wave maxima as the oscillating wave humps
move through the domain; green line: DNS with Gerris on a shorter domain.

transient periodic computation6 (panel 6.6a).

Conversely, the TWS at Re2=-16 (panel 6.5b) lies on the solution branch associated
with an oscillatory secondary instability (OI), i.e. between the cross and asterisk in panel
6.4d. In a periodic transient computation (panel 6.6b), this instability produces a regular
temporal modulation of the wave height hmax, which translates into a spatial modulation
in an open-domain computation with coherent inlet forcing (2.38) at the TWS frequency
f=fTWS (panel 6.6c). Our WRIBL model captures this oscillation in good agreement
with our own DNS using Gerris (green line in panel 6.6c). In panel 6.6c, the wave height
modulation contains a single Fourier mode with a frequency about three times greater

6Performed with the periodic code introduced in §2.2.2, which allows using a TWS as initial condition.
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Figure 6.7: Enhanced mixing due to the oscillatory instability from panel 6.6c. DNS with
Gerris: φ=90◦, H⋆=1 mm, ReTWS

1 =15, ReTWS
2 =-19, f ⋆=16 Hz, Pe=4590. Contour maps

of the passive scalar θ (4.1j). (a) tf=62.3; (b) tf=62.7; (c) tf=63.0; (d) tf=63.3.

than fTWS. Upon increasing the counter-current gas flow rate, this mode is enriched by
additional modes, but remains periodic (panel 6.6d).

The cause of the oscillatory instability seems to be the pressure coupling between the
gas flow and the liquid film, and not the viscous coupling. This is supported by panel 6.5d,
which compares the TWS from panel 6.5b with the limits Πρ=0 (dot-dashed red line) and
Πµ=0 (dashed blue line), which deactivate the gas pressure (Πρ=0) and gaseous viscous
stresses (Πµ=0) in the inter-phase coupling conditions (1.6a) and (1.6b). In particular,
we see that the wave amplitude in panel 6.5d is unaffected by the gaseous viscous stresses.

The wave crest modulation caused by the oscillatory instability (panel 6.6c) periodi-
cally rearranges the flow field within the wave-fixed reference frame, which is characterized
by several vortices in the wave hump (panel 6.5b). Such vortices are known to intensify
inter-phase scalar transfer (Yoshimura et al., 1996). However, as we will show in section
6.3, this wave-induced intensification mechanism saturates after a certain travelling dis-
tance. A way to re-initiate it is to perturb the wave humps through wall corrugations
(panel 6.1b). The observed oscillatory instability represents an alternative way to achieve
this, requiring minimal energy input and no costly constructive measures. Moreover, the
gas flow rate provides a convenient control parameter to tune the oscillations. Figure 6.7,
which represents results of our DNS from panel 6.6c, where we have additionally solved
for the transport of a passive scalar θ (4.1j), demonstrates that the oscillatory instability
enhances mixing within the wave hump. In particular, the scalar plume originating at the
wave front is prevented from destroying the scalar free-surface layer at the wave back, as
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Figure 6.8: Wave reversal and liquid arrest due to catastrophic instability of TWS in
panel 6.5c: ReTWS

1 =15, f ⋆
TWS=16 Hz, ReTWS

2 =-80; (a) spatio-temporal map of film height
h. Waves initially propagate downward (left profile), but are rearranged into an upward
travelling train (right profile) under the effect of the counter-current gas flow; (b) time
traces of normalized wave-averaged liquid flow rate q̄⋆1/ν1 (6.7). Dashed red: ReTWS

2 =-80;
solid blue: ReTWS

2 =-16 (oscillatory instability from panel 6.6b).

the result of a folding mechanism that is repeated at each wave hump oscillation7.

When the counter-current gas flow rate is increased further (left of asterisk in panel
6.4d), TWS become unstable to a catastrophic secondary instability. This is the case for
the TWS in panel 6.5c. As evidenced by the transient periodic computation in figure 6.8,
the catastrophic instability produces a wave reversal, upon which an upward-travelling
train of surface waves is established (panel 6.8a). Moreover, the normalized wave-averaged
liquid flow rate q̄⋆1/ν1, where q̄

⋆
1 is defined as:

q̄⋆1 =
1

Λ⋆

∫ Λ⋆

0

q⋆1 dx
⋆, (6.7)

becomes negative at that time (panel 6.8b), indicating a liquid arrest, which is one of the
features often associated with flooding. In a spatially-evolving film, an upward-travelling
wave carrying liquid upstream will eventually collide with the inlet condition and cause a
breakdown of the flow8. By contrast, in the case of the oscillatory instability (blue line in
panel 6.8b), q⋆1 is modulated only slightly and remains close to the (positive) TWS value
q̄⋆1/ν1=ReTWS

1 =15.

For the larger channel, H⋆=1.5 mm (panel 6.4a), TWS also become periodically un-
stable beyond a certain Re2. However, this threshold (Re2 ≈ −240) lies outside the
parameter range where our WRIBL model yields quantitative predictions (see §2.3.1).

7See also second supplementary movie in Lavalle et al. (2020).
8See first supplementary movie in Lavalle et al. (2020).
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Figure 6.9: Intermittent flooding due to noise-driven wave coalescence and wave destruc-
tion in a gas-sheared vertically-falling liquid film: Ka=509.5, H⋆=1.5 mm, Re1=15, Re2=-
100. Open-domain computation applying noisy inlet perturbation (2.38) with fc=3.6,
ǫ1=0, and ǫ2=0.0002. (a) Space-time plot of the film height h (grey scales from 0 to 1),
showing wave coalescence. Rectangle and vertical line highlight ranges of panels b, c, and
d combined; (b) snapshot of the full wave profile: t=105.6; (c) wave coalescence event
forming an obstructing wave (t=82.5, 82.8, 83.1, 83.2); (d) destruction of the obstructing
wave by the counter-current gas flow (t=83.2, 83.5, 83.7, 83.9).

Nonetheless, in the case of the most-amplified waves (f=fmax), TWS are also suscepti-
ble to the subharmonic secondary instability (panel 5.1a) observed in unconfined films
(Liu & Gollub (1993)), and this can trigger a different type of flooding scenario at much
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Figure 6.10: Flooding suppression through coherent inlet forcing. Parameters as in figure
6.9. (a) Open-domain computation based on panel 6.9b with additional coherent inlet
forcing (2.38): f ⋆=16 Hz, ǫ1=0.05, fc=3.6, ǫ2=0.0002; (b) linear spatial growth rate from
OS (dashed) and WRIBL (solid) calculations. Red vertical line marks forcing frequency
f ; (b) time traces of normalized liquid inlet flow rate q⋆1|x⋆=0/ν1. Black solid: actual
perturbation (2.38); red dashed: zero noise (ǫ2=0); blue solid: pure noise (ǫ1=0).

lower |Re2| (where TWS are periodically stable).

We demonstrate this in figure 6.9 via an open-domain computation based on the
parameters in panel 6.4a for f ⋆=fmax and Re2=-100, where we have applied a noisy
inlet perturbation (2.38), with ǫ1=0, ǫ2=0.0002, and fc=3.6 (panel 6.10b). As a result
of this noisy forcing, the linearly most-amplified waves (f=fmax) emerge near the liquid
inlet (panels 6.9a and 6.9b). Subsequently, the subharmonic instability leads to wave
coalesce events further downstream (panel 6.9c), which produce waves of much larger
amplitude that locally obstruct the channel. These obstructing waves cannot resist the
counter-current gas flow and are subsequently destroyed (pane 6.9d), only to re-emerge
due to renewed coalescence. This sequence is repeated many times, as evidenced by the
oscillations in the spatio-temporal diagram (panel 6.9a).

The intermittent flooding observed in figure 6.9 can be suppressed by forcing solitary
waves through coherent inlet forcing. Solitary waves are not prone to the subharmonic
instability, which requires direct wave interactions9. We demonstrate this based on the
open-domain computation in panel 6.10a, where we have used the same settings as in panel

9Although, we will see in section 6.2.2 that the gas flow can convey long-range interactions even
between solitary waves, which can lead to a different kind of secondary instability of periodically-stable
TWS.
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Figure 6.11: Extreme film thinning caused by a counter-current gas flow. TWS from
panel 6.4d at fixed liquid volume V1 and wavelength Λ: φ=90◦, H⋆=1 mm, Ka=509.5,
Λ=46.8H , V1=0.31ΛH . (a) Wave profiles under an increasingly strong counter-current
gas flow. From top to bottom: Re2=-39.2, -78.6, -128.2, and -196.4; (b) minimal film
height hmin. Red and blue crosses correspond to first and last profiles in panel a.

6.9b, and added a coherent inlet forcing with f ⋆=16 Hz<f ⋆
max (panel 6.10b) and ǫ1=0.05

to the inlet noise ǫ2=0.0002. Panel 6.10c represents the time-trace of the normalized noisy
liquid inlet flow rate q⋆1|x=0/ν1 resulting from this forcing. We conclude from panel 6.10a
that the additional coherent inlet forcing leads to a very regular train of waves that stay
well clear of obstructing the channel.

Our computations in panels 6.6, 6.8, and 6.9 were performed at fixed total flow rate
qtot, but the observed instabilities persist also for an imposed gas pressure drop ∆p2 (1.34).
For example, the open-domain computation in figure 23 of Dietze & Ruyer-Quil (2013),
displaying the same sequence of events as figure 6.9, was performed at fixed M=34.4
(1.35).

Another feature that can be associated with flooding in narrow channels is the forma-
tion of dry patches within the wavy falling liquid film under the effect of a counter-current
gas flow10. Figure 6.11 demonstrates, for parameters corresponding to panel 6.4d, that
the residual film of TWS at fixed wavelength Λ and liquid hold-up V1/Λ/H can thin
extremely under the effect of a counter-current gas flow (panel 6.11a). In fact, the mini-
mal film thickness hmin diverges with increasingly negative Re2, suggesting that spinodal
dewetting (Bonn, 2009) may well be achieved in an experiment11. A situation of fixed
hold-up may be encountered when the gas flow is suddenly increased or in the case of
very viscous fluids, such as mucus films in pulmonary airways (section 7.2).

At low values of |Re2|, neither the amplitude nor the celerity of TWS in panel 6.4a
is meaningfully affected by the gas flow, especially for the weaker confinement, H⋆=1.5
mm. However, surface waves can significantly affect the flow field in the gas, in particular

10Personal communication from Sophie Mergui on her experiments in inclined channels.
11See Oron (2003) and Oron (2000) on how to account for long-range van der Waals forces in long-wave

models of thin liquid films.
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Figure 6.12: Wave-induced vortical structures in the gas. Vertically-falling liquid film
in contact with a weak co-current gas flow: Ka=509.5, H⋆=1.5 mm, Re1=15, Re2=19,
f ⋆=16 Hz. Streamlines in the wave-fixed reference frame. Numerical computations with
periodic boundary conditions. (a) temporally converged solution of transient DNS with
Gerris: h̄=0.199, M=-0.84; (b) TWS from WRIBL model (1.27): h̄=0.198, M=-0.75.

in the wave-fixed reference frame. This is shown in figure 6.12 for the f ⋆=16 Hz solitary
TWS from panel 6.4a under a weak co-current gas flow at Re2=19. We see a twin gas
vortex that is connected to the moving-frame liquid vortex in the wave hump. Several
other gas vortices are observed in the region of the precursory capillary ripples, and these
force the gas flow to meander through the channel. The Prandtl and Schmidt numbers
are usually quite small in gases, and thus the vortical structures in figure 6.12 will not
meaningfully affect scalar transport there, which is diffusion limited. However, they may
affect the distribution of small non-Brownian particles, such as bacteria or viruses.

Impact of the work and relation to the current state of the art Our papers
Dietze & Ruyer-Quil (2013) and Lavalle et al. (2020) have been cited 45 and 4 times,
respectively, according to Web of Science.

Most of these citations refer to Dietze & Ruyer-Quil (2013) as a seminal work on
strongly-confined two-phase film flows:

Vellingiri et al. (2015); Markides et al. (2016); Schmidt et al. (2016);
Saleh & Ormiston (2017); Pasquier et al. (2017); Miao et al. (2017); Dandekar et al.
(2018); Lavalle et al. (2015, 2017, 2018); Denner et al. (2018); Mendez et al. (2019);
Tsvelodub & Bocharov (2017, 2018, 2020); Tsvelodub et al. (2021); Samanta
(2013, 2020); Feldmann et al. (2020); Pillai et al. (2021); Mohamed et al. (2021);
Vakilipour et al. (2021).

Some of the nonlinear phenomena reported in the current section were confirmed exper-
imentally by Kofman et al. (2017), albeit for much weaker confinement levels. Firstly,
the one-by-one suppression of precursory capillary ripples caused by a counter-current
gas flow of increasing flow rate (panel 6.4b), as well as the role of the wave speed in this
phenomenon (panel 6.4c). And, secondly, the destruction of large-amplitude waves in the
face of a strong counter-current gas flow (panel 6.9d).
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Vakilipour et al. (2021) have confirmed the vortex street reported in figure 6.12 with
their own DNS, using a new code based on the Arbitrary Lagrangian-Eulerian (ALE)
method for interface tracking.

As we have considered very strong confinement levels here, experiments are quite
difficult and require microfluidic set-ups. Nonetheless, experimental studies have shown
that falling liquid films can be realized at such small scales (Zhang et al., 2009). En-
hancing mixing in low Reynolds number flows is a long-standing challenge. In flexible
micro-channels, it has been shown that soft-wall turbulence, which sets in at much lower
values of Re1 than hard-wall turbulence, can be a solution (Kumaran, 2021). The wave
modulations produced by the oscillatory instability reported in panel 6.6c, should they
be confirmed experimentally, may be an alternative means to achieve this.

6.2.2 Inclined falling liquid films

We now consider weakly-inclined falling liquid films subject to a strongly-confined counter-
current gas flow. Figure 6.13 confronts the linear and nonlinear responses of such a wavy
liquid film for parameters corresponding to figure 6.4, only that the film is now inclined
(φ=10◦) and that the channel height is now varied in the range 1.22 mm≤ H⋆ ≤ 2.35 mm.
Panels 6.13a and 6.13c pertain to the linearly most-amplified waves and panels 6.13b and
6.13d pertain to low-frequency solitary waves at fixed wave number k⋆r=

2
9
k̃⋆r=46.68 m−1,

where k̃r denotes the most-amplified wave number for a passive atmosphere (Πµ=Πρ=0).
Panels 6.13a and 6.13b represent the linear spatial growth rates and panels 6.13c and
6.13d represent the normalized maximum and minimum film heights of nonlinear TWS.

For the two strongest confinements, H⋆=1.22 mm (open squares) and H⋆=1.69 mm
(pentagons), the counter-current gas flow stabilizes the wavy liquid film, both in terms of
the linear growth rate, which reaches zero when the Kapitza instability is fully suppressed
(S), and the amplitude of nonlinear waves. These regimes can be considered safe in terms
of flooding. In the case of low-frequency solitary waves (panel 6.4d), TWS exhibit a
peculiar shape with an elongated flat wave hump (panel 6.14b). These solutions resist
periodic secondary instabilities, which are associated with dot-dashed line segments in
panels 6.13c and 6.13d. The flattening of the wave hump is caused by the gas pressure
and not gaseous viscous stresses, as shown in panel 6.14d, where TWS in the limits Πρ=0
(dot-dot-dashed) and Πµ=0 (dashed) are compared to the full solution (solid).

For intermediate confinements, H⋆=1.78 mm (crosses) and H⋆=1.88 mm (asterisks),
the linear growth rates in panels 6.13a and 6.13b vary non-monotonically, first decreasing
and then increasing with increasing gas velocity magnitude, until the AI limit is reached.
By contrast, nonlinear TWS of the most amplified frequency (panel 6.13c) exhibit the
opposite trend, and thus linear predictions can be misleading. These TWS undergo a
period-halving bifurcation (PH) as |Re2| is increased, after which they are fully sup-
pressed by a nonlinear mechanism, i.e. when the hmin and hmax branches meet. The PH
bifurcations are associated with the redistribution of liquid between main wave humps
and capillary ripples (panel 6.14a). The nonlinear suppression of waves in panel 6.4c,
which also occurs for the stronger confinements, occurs well before the linear AI and S
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Figure 6.13: Linear (panels a, b) versus nonlinear (panels c, d) dynamics of an inclined
falling liquid film subject to a strongly confined counter-current gas flow: Ka=509.5
(DMSO-water and air II in table 2.1), φ=10◦, Re1=15. Open squares: H⋆=1.22 mm,
pentagons: H⋆=1.69 mm, crosses: H⋆=1.78 mm, asterisks: H⋆=1.88 mm, diamonds:
H⋆=2.07 mm, filled squares: H⋆=2.35 mm. Dashed: OS, solid: WRIBL. (a) Maximum
spatial growth rate; (b) spatial growth rate at fixed wave number: k⋆r=46.68 m−1; (c)
TWS corresponding to panel a; (d) TWS corresponding to panel b. Dot-dot-dashed:
Πρ=0 in (1.6a), dashed: Πµ=0 in (1.6a) and (1.6b). Dot-dashed segments in panels c
and d correspond to periodically unstable TWS, and “PH”, “AI”, and “S” denote period-
halving bifurcations, absolute instability, and full stabilization.

limits in panel 6.13a. By contrast, solitary TWS (panel 6.13d) at strong and intermedi-
ate confinements are bounded by the linear AI and S limits in panel 6.13b and follow a
monotonous stabilizing trend.

For the weakest confinements, H⋆=2.07 mm (diamonds) and H⋆=2.35 mm (filled
squares), the linear growth rates in panels 6.13a and 6.13b increase monotonously with
|Re2|, whereas the nonlinear wave amplitudes in panels 6.4c and 6.4d first increase and
then decrease. Except for the solitary waves at H⋆=2.07 mm, TWS are bounded by the
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Figure 6.14: TWS from figure 6.13. (a) Approaching one of the PH bifurcations in
panel 6.13c: H⋆=1.78 mm. Thick: Re2=-37, blue: Re2=-88; (b) flat-top solitary wave
from panel 6.13d: H⋆=1.22 mm, Re2=-7. Streamlines in the wall-fixed reference frame;
(c) suppression of capillary ripples in linearly most-amplified TWS from panel 6.13c:
H⋆=2.35 mm. Thick: Re2=-79, blue: Re2=-348; (d) TWS from panel b in different
limits. Solid: full WRIBL model (1.27), dot-dot-dashed: Πρ=0 in (1.6a), dashed: Πµ=0
in (1.6a) and (1.6b); symbols: DNS using Basilisk.

AI limits in panels 6.4a and 6.4b. However, TWS become unstable w.r.t. secondary insta-
bilities (dot-dashed line segments) before that, i.e. roughly at the point of maximum wave
amplitude. For the most-amplified waves, this point is associated with the suppression of
capillary ripples under the effect of the gas (panel 6.14c), similar to what was observed
in panel 6.4b.

In contrast to the vertical configuration (figure 6.8), the periodic secondary instability
modes corresponding to the dot-dashed line segments in panel 6.13c are not directly
associated with catastrophic events. Nonetheless, they are similar to the subharmonic
instability observed for liquid films falling in a quiescent atmosphere (Liu & Gollub, 1993),
which leads to coalesce events that may trigger flooding in very long channels (figure 6.9).
However, we have not observed such flooding events in our open-domain computations 12.

By contrast, for the solitary TWS at H⋆=2.35 mm in panel 6.13d (filled square), we
have identified two novel secondary instability modes that strongly alter the configuration
of wave trains in a spatially-evolving falling liquid film. These instabilities are discussed
based on panels 6.15a and 6.15c, which represent open-domain computations correspond-

12See supplementary movie 1 in Lavalle et al. (2021).
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Figure 6.15: Slip streaming (panels a, b) and wave splitting (panels c, d) in solitary wave
trains. WRIBL computations on an open domain of length L=31.4ΛTWS using coherent
inlet forcing (2.38), with f=fTWS, ǫ1=0.3, and ǫ2=0. Parameters based on TWS in panel
6.13d: H⋆=2.35 mm. Space-time plots of film height h (panels a, c), and wave profile
snapshots (panels b, d). Green dashed lines: TWS celerity. (a,b) Reg=-145, fTWS=0.20;
(c,d) Reg=-149, fTWS=0.19. Red symbols: primary/secondary wave maxima.

ing to the open circles in panel 6.13d. In these computations, we have applied coherent
inlet forcing at the TWS frequency f=fTWS.

The first instability mode occurs at a lower |Re2|, where the TWS is periodically stable
(lower open circle in panel 6.13d). Thus, this instability mode requires wave interactions.
Such interactions occur in the form of individual wave humps that slipstream toward their
leading neighbours while their amplitude decreases (panels 6.15a and 6.15b). This dynam-
ics is very different from the interactions of solitary waves observed in unconfined falling
liquid films (Chang et al., 1996c; Pradas et al., 2013), where larger-amplitude waves usu-
ally approach smaller-amplitude waves travelling in front. If the leading large-amplitude
wave within the grey region of panel 6.15b would not collapse under the effect of in-
creased exposure to the gas (thus preventing coalescence), the slip-streaming instability
found here could be viewed as an inverted form of the coarsening dynamics (Chang et al.,
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1996c) discussed w.r.t. panel 5.1a.
The second instability mode (panels 6.15c and 6.15d) is intrinsic, i.e. the correspond-

ing TWS is periodically unstable (upper open circle in panel 6.13d). This instability is
characterized by wave splitting events that refine the wavy film surface into a train of
shorter, smaller-amplitude waves (panel 6.15d). In that case, the flooding risk is reduced.

Impact of the work and relation to the current state of the art Our paper
Lavalle et al. (2021) was published only recently and has not been cited. Nonetheless,
recent experiments of Sophie Mergui have confirmed the slipstreaming phenomenon ob-
served in panel 6.15a, albeit for much weaker confinement (H⋆=13 mm). The slipstream-
ing phenomenon, which tends to coarsen the waviness of the film, and the wave destruction
phenomenon (panel 6.15d), which tends to refine the waviness, imply that the gas flow
rate may represent an effective parameter for controlling the ultimate waviness of the
film. This property, which results from a cascade of instabilities.

Our computations have also shown that extreme confinement levels are not necessarily
dangerous in terms of flooding. We have identified several safe wavy regimes (panels 6.14b
and 6.15d), allowing to exploit the transfer intensification provided by surface waves while
avoiding flooding. Such regimes are very sensitive to the confinement level (panel 6.13)
and thus our computations may help to identify optimal conditions for experimentalists.

6.3 Scalar transfer and wall corrugations

We investigate the effect of wall corrugations on inter-phase scalar transfer between a
wavy vertically-falling liquid film and a strongly-confined counter-current gas flow (Dietze,
2019). Results are based on DNS with Gerris according to the set-up represented in figure
4.1, where we have fixed H⋆=1.5 mm. We focus on the fluid combination used in section
6.2, DMSO-water and air II in table 2.1. We fix the liquid Reynolds number at Re1=15
and concentrate on convection-dominated scalar transport, considering two values for the
liquid Péclet number Pe=RePr=U1L/α1: Pe=4590, representative of mass transport, and
Pe=459, based on the thermal diffusivity of the liquid.

We distinguish three types of wall geometries: a flat wall for reference (6.8), a si-
nusoidal corrugation (6.9) typically found in structured packings (Fair & Bravo, 1990;
Trifonov, 2007a), and isolated semicircular bumps (6.10), which are the two-dimensional
analogue of the hemispherical corrugations studied in Veremieiev et al. (2015). The three
corrugations are defined through the profile function f(x) (see figure 4.1):

f(x) = 0, (6.8)

f(x) = −ĥC cos (2πx/ΛC) , (6.9)

f(x) =




[R2

C − (x− xm)2]1/2 ∀ x ∈ [xm − RC, xm +RC]

0 ∀ x /∈ [xm − RC, xm +RC]
, (6.10)
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where xm = kΛC define the centres of the semicircular bumps k = 1, . . . , 5.
The corrugation amplitude ĥC, bump radius RC, and wavelength ΛC are given in

figures 6.16 and 6.17, which provide an overview of our simulations. For both variants of
the sinusoidal corrugation (panels 6.16d and 6.16e), Λ⋆

C (=1.2 mm, 2.4 mm) is smaller than
the cut-off wavelength of the Kapitza instability Λ⋆

c=4.8 mm (Λc=3.2) for the flat-wall
reference case (panel 6.16b).

Figure 6.16 corresponds to the case of solitary waves generated through coherent inlet
forcing at frequency f ⋆=16 Hz (4.10), whereas figure 6.17 corresponds to the case of
noise-driven waves (4.11). Except for panel 6.17a, where Pe=459, all panels correspond
to the larger Péclet number Pe=4590. For the lower Pe value, the scalar free-surface layer
grows very rapidly, limiting the effect of the corrugations (Dietze, 2019). Thus, we will
focus on the large Pe case, as well as solitary waves (figure 6.16), where the scalar transfer
intensification is greatest.

Panel 6.16a represents the reference case of a flat film in contact with a quiescent gas,
where the scalar convection rate in the liquid Ḣ(x):

Ḣ(x, t) =

∫ η(x,t)

f(x)

u(x, y, t) θ(x, y, t) dy, (6.11)

can be obtained analytically in the limits Pe → ∞ (Higbie, 1935) and x → 0 (Brauer,
1971):

Pe→∞ : Ḣ(x) =

(
6

π

)1/2 ( x
Pe

)1/2
, (6.12)

x→∞ : Ḣ(x) = 1− exp

(
−x Sh

Pe

)
. (6.13)

This reference case will be used to gauge the transfer intensification produced by surface
waves (panel 6.16b) and various corrugations (panels 6.16c to 6.16e). We do this based
on panels 6.18a and 6.18b, which represent profiles of the time-averaged scalar convection

rate ¯̇H(x):

¯̇H(x) =
1

t2 − t1

∫ t2

t1

Ḣdt, (6.14)

for all cases in figure 6.16. The steeper the increase in ¯̇H(x), the greater the rate of scalar
transfer to the liquid film, and the shorter the transfer length required to reach a desired
scalar content in the liquid.

Comparing the dashed blue line with the dot-dashed black line in panel 6.18a, shows
that solitary waves alone (without any wall corrugations) greatly intensify inter-phase
scalar transfer. This is well known and attributed to the so-called surface renewal mech-
anism (Yoshimura et al., 1996), resulting from the presence of a moving-frame vortex
within the large wave humps (see figure 4.10). This vortex is represented with white
streamlines in panel 6.16b. The salient feature of this mechanism is the flow from the
front stagnation point to the back stagnation point of the vortex, which short-circuits the
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Figure 6.18: Intensification of inter-phase scalar transfer in a wavy falling liquid film due
to wall corrugations. Parameters according to figure 6.16. Profiles of the time-averaged

convection rate ¯̇H(x) (6.14) of the scalar θ (4.1j) within the liquid film, as obtained from
DNS with Gerris. Dot-dashed lines and diamonds: flat-film reference case (panel 6.16a).
Data from penetration theory (6.12) (symbols) and DNS (dot-dashed lines); dashed blue
lines: wavy film on flat wall (panel 6.16b); solid red: wall corrugations. (a) Sinusoidal
corrugations. Plus signs: ΛC=1.2 mm (panel 6.16c); asterisks: ΛC=2.4 mm (panel 6.16d);
(b) semicircular bumps (numbered 1-4) with RC=0.3 mm (panel 6.16e).

wave hump. This leads to the extraction of a scalar plume at the wave front and a com-
pression of the scalar free-surface layer at the wave back. The latter effect greatly reduces
the thickness of the scalar layer leading into the residual film, in between successive wave
humps, which represents most of the transfer surface. However, this mechanism breaks
down, once the scalar plume originating from the wave front has reached the wave back,
i.e. roughly at x/L=0.4 in panel 6.16b. This coincides with a break in the slope of the
¯̇H(x) profile in panel 6.18a (blue dashed line there).

The oscillatory secondary instability discussed in figure 6.7 is one way of extending the
effect of the surface renewal mechanism, i.e. by preventing the scalar plume forming at the
wave front from reaching the wave back. Wall corrugations are another way to counteract
or avert the breakdown of this mechanism. In the case of the sinusoidal corrugations
(figure 6.19), wave humps moving over the successive corrugation minima and maxima
are modulated in their wave celerity. This causes the front stagnation point in the wave-
fixed reference frame to move back and forth between the thin region of the film and the
wave hump. As a result, a thin scalar plume (marked by arrows) is repeatedly extruded
from the free-surface layer in the thin-film portion (panel 6.19c) and then pushed back to
the wave hump (panel 6.19d), creating a sabre-tooth contour pattern there. Each of these
rapid extrusion events represents a direct convection-related transport intensification,
and this leads to a significant increase in inter-phase scalar transfer versus the flat-wall
reference case. Comparing the red curves marked by plus signs and asterisks in panel
6.18a (sinusoidal corrugations with Λ⋆

C=1.2 mm and 2.4 mm), with the dashed blue line
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Figure 6.19: Repeated extrusion of plumes from the scalar free-surface layer within the
front of a wave hump passing over a sinusoidal wall corrugation. Conditions according to
panel 6.16d. (a) tf=60.88; (b) tf=60.91. White curves represent streamlines in the wall-
fixed reference frame; (c) tf=60.95. White curves represent streamlines in the wave-fixed
reference frame; (d) tf=61.05. Arrows identify the same plume in all panels.

(flat wall), we see that the transfer length for reaching a scalar convection rate of ¯̇H=0.7
(green line) is reduced by 30 % for the long sinusoidal corrugation (asterisks).

In the case of the semicircular bumps (panel 6.16e), the surface renewal mechanism
is re-initiated every time a wave hump moves over a corrugation bump, during which the
moving-frame vortex is disrupted and the liquid is redistributed within the wave. After
every interaction between a wave hump and a corrugation bump, a new scalar plume
forms at the wave front, pushing fresh unsaturated liquid toward the wave back, thus
reinvigorating the compression of the scalar free-surface layer there (panel 6.16d).

Figure 6.20 illustrates how fresh liquid is supplied to a wave hump while moving over
a corrugation bump. When the first precursory capillary trough reaches the bump (panel
6.20b), the progression of the wave hump is briefly halted, until it is lifted over the bump
by the separation vortex forming at the capillary trough. During this process, fresh liquid
from the wall region is pumped into the wave front, thus forming a large unsaturated
region there (panel 6.20c). Once the wave front has moved over the bump, a new scalar
plume forms in this region.

According to the Ḣ(x) profiles in panel 6.18b, the transfer intensification caused by
the bump-shaped corrugations (compare solid red and dashed blue curves) is comparable
to that of the sinusoidal corrugations in panel 6.18a. However, it is discrete in nature, i.e.
the bumps (marked by arrows in panel 6.18b) repeatedly reinitialize the surface renewal
mechanism every time it has reached saturation, as evidenced by regular spikes in the

Ḣ(x) profile (red solid line).
The bumps not only provide the same transfer intensification as the sinusoidal corru-

gations, they also entail a lesser increase of the gas pressure drop, as reported in table
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Figure 6.20: Redistribution of liquid within a wave hump moving over a bump (panels a,
b), and subsequent extrusion of a new scalar plume (arrows) within the bulk of fresh liquid
formed near the wave front (panels c, d). Conditions according to panel 6.16e. White
curves represent streamlines in the wall-fixed reference frame, evidencing a separation
vortex at the first capillary trough, which causes a liquid redistribution as it moves over
the bump. (a) tf=61.10; (b) tf=61.20; (c) tf=61.30; (d) tf=61.42.

2 of Dietze (2019). However, when the velocity of the counter-current gas flow is in-
creased, bumps can trigger flooding events. This is shown in figure 6.21, representing a
DNS where Re2 was varied according to four plateaus Re2=-14.25, -57, -114, and -142.5.
Upon reaching the last plateau, Re2=-142.5, flooding is triggered at the third corrugation
bump (panel 6.21a) as a wave hump is moving over it. The flooding event entails wave
breaking and droplet formation from liquid ligaments (Fuster & Rossi, 2021) and triggers
a cascade of flooding events at the other bumps13. Just before the surface wave obstructs
the channel, a vortex street forms upstream of it, as a result of the strong contraction
and expansion to which the gas flow is subjected (panel 6.21b). This conforms with
observations that falling-film heat/mass exchangers work best near the flooding limit.

Impact of the work and relation to the current state of the art Our paper
Dietze (2019) has been cited 13 times according to Web of Science.

Zhou & Prosperetti (2020b) have extended our work by performing long-time DNS of
mass transport within solitary travelling waves on flat substrates at very high Schmidt
number values, up to Sc=2000 (compared to our maximum value Sc=306). The au-
thors employed a numerical method based on a fixed solution for the velocity field in the
wave-fixed reference frame. The authors provide supplementary movies that confirm the
breakdown of the surface renewal mechanism, which we have found in panels 6.16b and
6.18, when the scalar plume forming in the moving-frame vortex reaches the wave back.

13Supplementary movie 4 in Dietze (2019).
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Figure 6.21: Flooding triggered by bumps upon increasing the counter-current gas flow
rate. Simulation from panel 6.16e with additional stepwise variation of Re2 according to
four plateaus: Re2=-14.25, -57, -114, and -142.5. (a) Snapshots of the film surface during
a flooding event for Re2=-142.5 at the third bump in panel 6.16e. Successive cascaded
flooding events are triggered at the other bumps (supplementary movie 4 in Dietze (2019));
(b) streamlines in the wall-fixed reference frame just before the wave hump obstructs the
channel.

These movies also make clear that the actual merging of the scalar plume with the scalar
free-surface layer at the wave back is a diffusional effect. Indeed, in the limit Pe → ∞,
lines of constant scalar θ would coincide with streamlines and would never merge.

Bonart et al. (2020) have performed DNS based on the Cahn-Hilliard Navier-Stokes
equations for two phase flow and focused on the effect of isolated sharp-edged corrugations
on the stability of a falling liquid film. Their results show that the wall structures can
either damp and amplify the Kapitza instability.

Chen et al. (2021) have extended our work by performing mass transfer simulations
of falling liquid films in actual corrugated micro-channels, where the confinement is even
stronger than in our work (H⋆=100 µm versus H⋆=1.5 mm). Various corrugation geome-
tries and real fluid combinations were investigated. In particular, the authors reported
that sinusoidal wall corrugations can produce a 40% increase of CO2 absorption in a wavy
falling water film. This is in line with our observations in panel 6.18.
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Suppression of the Kapitza instability in
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We revisit the linear stability of a falling liquid film flowing through an inclined
narrow channel in interaction with a gas phase. We focus on a particular region
of parameter space, small inclination and very strong confinement, where we have
found the gas to strongly stabilize the film, up to the point of fully suppressing the
long-wave interfacial instability attributed to Kapitza (Zh. Eksp. Teor. Fiz., vol. 18 (1),
1948, pp. 3–28). The stabilization occurs both when the gas is merely subject to an
aerostatic pressure difference, i.e. when the pressure difference balances the weight
of the gas column, and when it flows counter-currently. In the latter case, the degree
of stabilization increases with the gas velocity. Our investigation is based on a
numerical solution of the Orr–Sommerfeld temporal linear stability problem as well
as stability experiments that clearly confirm the observed effect. We quantify the
degree of stabilization by comparing the linear stability threshold with its passive-gas
limit, and perform a parametric study, varying the relative confinement, the Reynolds
number, the inclination angle and the Kapitza number. For example, we find a 30 %
reduction of the cutoff wavenumber of the instability for a water film in contact
with air, flowing through a channel inclined at 3◦ and of height 2.8 times the film
thickness. We also identify the critical conditions for the full suppression of the
instability in terms of the governing parameters. The stabilization is caused by the
strong confinement of the gas, which produces perturbations of the adverse interfacial
tangential shear stress that are shifted by half a wavelength with respect to the wavy
film surface. This tends to reduce flow-rate variations within the film, thus attenuating
the inertia-based driving mechanism of the Kapitza instability.

Key words: gas/liquid flow, instability, thin films

1. Introduction
We consider a liquid film falling along the bottom wall of an inclined narrow

channel, under the action of gravity and in interaction with a laminar gas flow (see
figure 1). We distinguish two scenarios for the gas flow: either (i) the gas is subject
to an aerostatic pressure gradient, i.e. a pressure difference which balances the weight

† Email address for correspondence: gianluca.lavalle@limsi.fr
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Wavy liquid films in interaction with a confined
laminar gas flow

Georg F. Dietze† and Christian Ruyer-Quil
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A low-dimensional model capturing the fully coupled dynamics of a wavy liquid
film in interaction with a strongly confined laminar gas flow is introduced. It is
based on the weighted residual integral boundary layer approach of Ruyer-Quil &
Manneville (Eur. Phys. J. B, vol. 15, 2000, pp. 357–369) and accounts for viscous
diffusion up to second order in the film parameter. The model is applied to study two
scenarios: a horizontal pressure-driven water film/air flow and a gravity-driven liquid
film interacting with a co- or counter-current air flow. In the horizontal case, interfacial
viscous drag is weak and interfacial waves are primarily driven by pressure variations
induced by the velocity difference between the two layers. This produces an extremely
thin interfacial shear layer which is pinched at the main and capillary wave humps,
creating several elongated vortices in the wave-fixed reference frame. In the capillary
wave region preceding a large wave hump, flow separation occurs in the liquid in
the form of a vortex transcending the liquid–gas interface. For the gravity-driven
film, a twin vortex (in the wave-fixed reference frame) linked to the occurrence of
rolling waves has been identified. It consists of the known liquid-side vortex within
the wave hump and a previously unknown counter-rotating gas-side vortex, which
are connected by the same interfacial stagnation points. At large counter-current gas
velocities, interfacial waves on the falling liquid film are amplified and cause flooding
of the channel in a noise-driven scenario, while this can be delayed by forcing regular
waves at the most amplified linear wave frequency. Our model is shown to exactly
capture the long-wave linear stability threshold for the general case of two-phase
channel flow. Further, for the two considered scenarios, it predicts growth rates and
celerity of linear waves in convincing agreement with Orr–Sommerfeld calculations.
Finally, model calculations of nonlinear interfacial waves are in good agreement with
film thickness and velocity measurements as well as streamline patterns in both phases
obtained from direct numerical simulations.

Key words: interfacial flows (free surface), low-dimensional models, thin films

1. Introduction
Thin liquid films flowing in the presence of a co- or counter-current and strongly

confined gas flow arise in a number of technological applications. For example,
cooling of miniaturized electronic equipment is performed with so-called micro-
gap coolers that consist of an extremely narrow (possibly submillimetric) channel

† Email address for correspondence: dietze@fast.u-psud.fr
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Solitary waves on superconfined falling liquid films

Gianluca Lavalle * and Nicolas Grenier
Université Paris-Saclay, CNRS, LIMSI, 91400, Orsay, France

Sophie Mergui
Sorbonne Université, Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France

Georg F. Dietze †

Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France

(Received 22 October 2019; accepted 11 February 2020; published 2 March 2020)

Solitary traveling waves are prominent features covering the surface of a falling liquid
film and are known to promote heat and mass transfer. We focus on the little studied case
where they are subject to an extremely confined countercurrent gas flow, and we identify
two secondary instabilities. At high gas velocities, a catastrophic instability develops,
leading to flooding through wave reversal and liquid arrest. At lower gas velocities, an
oscillatory instability occurs, producing a high-frequency periodic modulation of the wave
height. Conjunction of this self-sustained oscillatory state and vortices forming in the liquid
is shown to enhance mixing. We also show that the gas flow can cause extreme local film
thinning, leading to almost dry patches where the liquid thickness is very small.

DOI: 10.1103/PhysRevFluids.5.032001

Flows through miniaturized channels are usually laminar and require active or passive methods
to enhance mixing [1]. In the case of stratified two-phase flows, this can be achieved through flow
structures resulting from interfacial instabilities [2]. In horizontal pressure-driven configurations, the
instability is known to require a strong relative motion between the two phases [3,4]. By contrast, we
study the vertical configuration of a gravity-driven falling liquid film in contact with an extremely
confined gas, where the inertia-driven Kapitza instability [5] generates solitary surface waves that
greatly enhance heat and mass transfer [6]. In this case, the gas velocity can be used as a free
parameter to act on the waves.

Many works have studied the effect of a gas flow on the stability and dynamics of wavy
falling liquid films [7–9]. Such studies have usually concentrated on weakly or moderately confined
configurations. In that case, only the tangential interfacial viscous stresses exerted by the gas play
a significant role, and turbulent conditions are required to affect meaningfully the liquid film [10].
By contrast, we focus on extreme confinement levels, where the gas flow and liquid film are of
comparable thickness [11]. Here, gas pressure variations induced by surface waves become relevant
[12], and the film is affected by the gas even under laminar conditions [13]. This configuration
is bound to be more prone to flooding, i.e., occlusion of the channel by the liquid [14], wave
reversal [8], or liquid arrest [10]. Yet, it is unclear how this unwanted phenomenon is provoked
under extreme confinement. Does it result from a lack of saturated traveling-wave solutions or a
loss of their stability? Answering such a question may produce valuable insights for the design of
falling film microreactors [15–17].

*Present address: Institut de Mécanique des Fluides de Toulouse (IMFT)–Univ. de Toulouse, CNRS-INPT-
UPS, Toulouse, France; author to whom correspondence should be addressed: gianluca.lavalle@limsi.fr

†Author to whom correspondence should be addressed: dietze@fast.u-psud.fr
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Superconfined falling liquid films: linear versus
nonlinear dynamics
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The effect of a counter-current gas flow on the linear stability of an inclined falling liquid
film switches from destabilizing to stabilizing, as the flow confinement is increased. We
confront this linear effect with the response of nonlinear surface waves resulting from
long-wave interfacial instability. For the strongest confinement studied, the gas flow damps
both the linear growth rate and the amplitude of nonlinear travelling waves, and this holds
for waves of the most-amplified frequency and for low-frequency solitary waves. In the
latter case, waves are shaped into elongated humps with a flat top that resist secondary
instabilities. For intermediate confinement, the linear and nonlinear responses are opposed
and can be non-monotonic. The linear growth rate of the most-amplified waves first
decreases and then increases as the gas velocity is increased, whereas their nonlinear
amplitude is first amplified and then damped. Conversely, solitary waves are amplified
linearly but damped nonlinearly. For the weakest confinement, solitary waves are prone
to two secondary instability modes that are not observed in unconfined falling films. The
first involves waves of diminishing amplitude slipstreaming towards their growing leading
neighbours. The second causes wave splitting events that lead to a train of smaller, shorter
waves.

Key words: thin films, gas/liquid flow

1. Introduction

We consider a gravity-driven two-dimensional liquid film falling down a plane tilted at an
angle φ with respect to the horizontal, in contact with a counter-current gas flow that is
strongly confined by an upper wall placed at y = H (figure 1). Both fluids are Newtonian,

† Email address for correspondence: dietze@fast.u-psud.fr
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Effect of wall corrugations on scalar transfer to a
wavy falling liquid film
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first published online 28 November 2018)

Direct numerical simulation is employed to study the effect of small-scale wall
corrugations on scalar transfer through the wavy surface of a vertically falling liquid
film in interaction with a strongly confined counter-current gas flow. Three wall
geometries are considered: (i) a flat wall for reference; (ii) a sinusoidal corrugation
typically found on structured packings in chemical engineering devices; and (iii) a
heuristic design consisting of isolated semicircular bumps distanced by the wavelength
of the surface waves. We consider the limiting case of a Dirichlet condition for the
transported scalar (temperature or mass fraction) at the liquid–gas interface and focus
on liquid-side transport. We consider convection-dominated regimes at moderate
and large Péclet numbers, representative of heat and mass transfer respectively, and
confront forced and noise-driven wave regimes. Our results show that sinusoidal wall
corrugations increase transfer by up to 30 per cent in terms of the exchange length
required to transfer a fixed amount of the transported quantity. A slightly greater
intensification is achieved through the bump-shaped corrugations, which intermittently
disrupt the moving-frame vortex forming within the large-amplitude solitary waves,
allowing these to replenish with unsaturated liquid. However, when the velocity of
the strongly confined gas flow is increased above a certain threshold, the bumps can
trigger the flooding of the channel.

Key words: mixing, solitary waves, thin films

1. Introduction
Falling liquid films are widely used in engineering applications involving heat/mass

transfer between a gas and a liquid (Alekseenko, Nakoryakov & Pokusaev 1994;
Azzopardi et al. 2011). One example is rectification columns used e.g. for the
cryogenic separation of air. In such devices, the liquid film is in contact with
a counter-current gas flow inside so-called structured packings, which subdivide
the cross-section of the column into millimetric channels (Fair & Bravo 1990).
The sheets constituting these packings are corrugated at different levels (Valluri
et al. 2005) in order to increase interfacial transfer (by this we mean through the
mobile surface of the film). Large-scale corrugations force the liquid to meander
through the packing, increasing its residence time. Small-scale corrugations, with
amplitudes of the order of 100 µm (Trifonov 2011), additionally texture the packing

† Email address for correspondence: dietze@fast.u-psud.fr
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Chapter 7

Liquid films in narrow tubes

Liquid films confined in cylindrical geometries and subject to an active core fluid (figure
1.3), are encountered in several practical situations. For example, evaporators for milk
inspissation typically involve falling-liquid films flowing down the inner surface of long
tubes that are heated from the outside via condensing steam (Jebson & Chen, 1997).
Such tubular chemical engineering apparatuses are subject to the general trend of minia-
turization (Seebauer et al., 2012). However, increasing the radial confinement of the flow
also introduces the risk of occlusion (Dao & Balakotaiah, 2000; Camassa et al., 2014),
when the falling film forms liquid plugs (panel 7.1a). This must be avoided in counter-
current two-phase heat/mass exchangers.

Another practical example concerns mucus films in the pulmonary airways (panel
7.1c). The human respiratory network consists of over 20 generations of such airways
that successively branch into increasingly narrow orifices (panel 7.1d), starting from the
trachea (R⋆ ≈ 10 mm) and ending at the alveolar sacs (R⋆ ≪ 1 mm). These airways
are covered by a mucus film that prevents the epithelial cells from drying out and is
responsible for evacuating alien particles from the lungs (Grotberg, 1994, 2011), either
via beating cilia (Bottier et al., 2017) or under the effect of a cough-induced gas flow
(King et al., 1985). Deviations in mucus properties (Levy et al., 2014), e.g. caused by
respiratory diseases, can lead to occlusion (Bian et al., 2010) or collapse (Heil & Hazel,
2011) of the pulmonary airways and a deterioration of oxygen transport to the lungs.

Compared to the flooding mechanisms for falling liquid films in planar channels (chap-
ter 6), a cylindrical geometry additionally introduces the long-wave Plateau-Rayleigh in-
stability (Plateau, 1849; Rayleigh, 1892; Goren, 1962), which can significantly increase the
amplitude of travelling waves versus the planar configuration (Trifonov, 1992), and cause
absolute instability (Duprat et al., 2007) when the mean core radius d̄ becomes small. Its
relevance versus the Kapitza instability is determined by the Bond number Bo:

Bo =
ρ gL2

σ
=
ρ g R⋆2

σ
. (7.1)

For liquid films in extremely narrow tubes, e.g. higher-generation pulmonary capillaries,
gravity is negligible (Bo ≪1), and occlusion is solely due to the Plateau-Rayleigh insta-
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Figure 7.1: Annular liquid films in narrow cylindrical tubes in contact with a gaseous core
fluid. (a) Plug formation in a vertically-falling liquid film adapted from Camassa et al.
(2014); (b) falling liquid film subject to a counter-current air flow (Dietze et al., 2020);
(c) human respiratory network adapted from Burrowes et al. (2008); (d) generations of
pulmonary airways adapted from Tu et al. (2013).

bility (Trifonov, 1992). In that case, as discussed in figure 2.22, occlusion sets in (pro-
vided Λ>ΛC=2πd0) beyond a threshold volume V1/π/R

3 ≈1.73 (Everett & Haynes, 1972),
which bounds the existence of unduloids, i.e. surfaces of revolution with constant curva-
ture (Delaunay, 1841). For reference, in the terminal bronchioles (panel 7.1d), Bo ≈0.1
(Kamm & Schroter, 1989).

By contrast, in the case of falling liquid films (Bo & 1), the occlusion bound depends
on an intricate interplay between the Kapitza and Plateau-Rayleigh instabilities. For
example, the gravity-induced steepening of wave fronts observed in panel 5.2a favours
streamwise variations in axial curvature κx=-1

2
∂xd

2/d-∂xxd over streamwise variations of
azimuthal curvature κϕ=1/d, and this can saturate the Plateau-Rayleigh instability at
very small amplitudes (Frenkel et al., 1987; Quéré, 1990). We will see in section 7.1 that
this mechanism greatly delays the occlusion limit for falling liquid films in vertical tubes.

We have applied our cylindrical WRIBL model from section 1.2 to both types of film
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flows represented in figure 7.1, i.e. falling liquid films in vertical tubes (configuration in
panel 1.3a), and gravity-free mucus films in the pulmonary airways (configuration in panel
1.3b). In all cases studied, the tube radius R⋆ is sufficiently small to warrant the long-
wave approximation underlying our WRIBL model, and we account for the effect of the
core fluid (panel 7.1b), which we assume to be air. We have extended the state of the art
through two works (Dietze et al., 2020; Dietze & Ruyer-Quil, 2015):

• In the case of falling liquid films, the role of surface waves in the occlusion of narrow
vertical tubes had not been fully understood. Dao & Balakotaiah (2000) performed
comprehensive occlusion experiments for various fluids and tube diameters, but no
information was provided about the nature of surface waves causing the occlusion.
Nonetheless, it was conjectured that occlusion sets in when the height of TWS
reaches the tube radius. The visualisation experiments of Camassa et al. (2014),
using a high-viscosity silicone oil, later demonstrated another possible occlusion
scenario, involving surface waves of regular wavelength Λ undergoing unbounded
spatial growth. These authors found that the critical Re1 at occlusion depends on
the tube length L.

Camassa et al. (2014) also computed TWS with a first-order asymptotic model and
found that these solutions are bounded by a limit point (LP) in terms of Re1 for a
given Λ. It was conjectured that this LP sets the occlusion bound. However, ReLP1
is sensitive to Λ (Camassa et al., 2016; Ding et al., 2019), long waves being more
dangerous than short ones, and agreement with the experimental occlusion bound
could not be achieved for realistic values of Λ (Camassa et al., 2016). Zhou et al.
(2016) attempted to characterize the occlusion bound via spatially-evolving compu-
tations with a first-order IBL model. However, these computations broke down at
the first occlusion event (dmin=0) and thus could not reach a developed state.

In Dietze et al. (2020), we identified two scenarios of wave-induced occlusion, and we
reported the associated occlusion bounds for various real working liquids. Further,
we determined how these bounds are affected by axial viscous diffusion, inertia, and
the presence of a counter-current gas flow. In scenario I, occlusion is caused by
the most-amplified surface waves emerging from linear wave selection. This regime
sets in above an upper conservative bound Re1>Re

max
1 , where Remax

1 corresponds
to the LP of TWS at the linearly most amplified frequency f=fmax. In scenario
II, the most-amplified waves possess TWS, but they subsequently coalesce to form
longer more-dangerous waves, as the result of coarsening dynamics (Chang et al.,
1996b). This scenario is bounded by Remin

1 ≤ Re1 ≤ Remax
1 , where Remin

1 marks
the limit below which waves of all f possess TWS (Ding et al., 2019). Whether
occlusion occurs in a real system, depends on whether the tube is sufficiently long
to accommodate the required wave dynamics. In scenario II, we found that occlusion
can be prevented via coherent inlet forcing of short waves.

In the case of high-viscosity liquids, we found that axial viscous diffusion greatly
precipitates the upper occlusion bound Remax

1 . Accounting for this effect, allowed us
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to reproduce the visualisation experiments of Camassa et al. (2014) (see figure 2.20)
and to prove their conjecture that the experimental occlusion bound is associated
with the LP of TWS (scenario I). Except for very large Bo, we found that dmin>0
for TWS at Re=Remax

1 , thus refuting the conjecture of Dao & Balakotaiah (2000)
that occlusion occurs due to asymptotic geometrical obstruction.

Gravity strongly delays Remax
1 through the axial distortion of waves (Frenkel et al.,

1987; Quéré, 1990). Our model accurately produces this effect and thus improves
upon the work of Jensen (2000), who represented surface waves with symmetrical
equilibrium shapes. Further, we found that accounting for axial viscous diffusion
(high-viscosity liquids) and inertia (low-viscosity liquids) is necessary to correctly
predict whether occlusion is dictated by absolute (Bo<1) or convective (Bo ≥ 1)
instability. Our representation of liquid plugs (see section 2.2.3), either via our
augmented momentum equation (1.60) or via numerical limitation of the core radius
(2.45), allowed us to continue transient computations past occlusion events, until a
fully-developed state was reached.

These results are discussed in section 7.1.

• In the case of gravity-free annular liquid films (Bo ≪ 1), the occlusion bound
coincides with the loss of unduloid equilibrium solutions at V1/π/R

3 ≈ 1.731. Above
this threshold, the only possible equilibrium shape is a liquid plug separating two
spherical bubbles, and thus, the liquid film inevitably tends toward occluding the
tube. However, the draining of thin-film portions (lobes) into thicker ones (collars)
can take quite long, in particular on extended domains, where multiple collars and
lobes interact and slide back and forth, as has been shown by Lister et al. (2006b)
via simulations with a thin-film lubrication model (h≪ R).

Johnson et al. (1991) successfully reproduced the unduloid/occlusion transition with
a single-phase integral model for conditions representative of pulmonary airways
(Kamm & Schroter, 1989). Later, Halpern & Grotberg (2003), using a lubrication
model for the liquid film, accounted for the additional effect of an oscillating core gas
flow via a prescribed interfacial tagential shear stress and gas pressure gradient. The
authors showed that imposing a high frequency oscillation can prevent the occlusion
of pulmonary airways, thus explaining the underlying physics of treatments for
obstructive airway disease (Edo et al., 1998). In these studies, the mucus film was
modelled as a Newtonian fluid with representative values for the viscosity (µ1 ≈ 10−3

Pas) and surface tension (σ ≈ 20 · 10−3 N/m)2.

In Dietze & Ruyer-Quil (2015), we applied our WRIBL model to various fluid combi-
nations, including water/air, water/silicone-oil, silicone-oil/water, glycerol/silicone-
oil, and mucus/air. Its novel features allow to accurately predict the dynamics of
occlusion for situations where inertia (e.g. water/air) and/or inter-phase coupling

1An exact definition of this threshold involves Jacobian elliptic functions (Everett & Haynes, 1972).
2A more realistic representation of mucus rheology, accounting for viscoelasticity, was adopted in the

lubrication model of Halpern et al. (2010).
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(e.g. water/silicone-oil) are relevant. Also, it analytically predicts the occlusion on-
set and the cut-off wavelength ΛC=2πd0 of the Plateau-Rayleigh instability. These
validation results have been discussed in section 2.3.2.

In section 7.2, we will focus on the fluid combination of model mucus
(Halpern & Grotberg, 2003) and air, for which we have discovered an alterna-
tive route to occlusion, when the liquid volume is too large to form an unduloid
(V1/π/R

3>1.73) but too small to form a static liquid plug without dry patches
on the tube wall (V1/π/R

3<Λ/R − 4/3). In that case, assuming Λ>ΛC, occlusion
is unavoidable, but the liquid film can become locally very thin as it drains into
the liquid plug. The resulting thin-film portions almost arrest further growth due
to increased viscous drag there, until, much later, a secondary instability causes a
spontaneous sliding motion of the liquid film3. This re-initiates rapid growth and
eventually leads to occlusion.

An oscillating air flow, with frequency and amplitude according to typical breath-
ing conditions, can significantly precipitate this sliding-induced occlusion, and so
does axial viscous diffusion in the liquid film. As a result of the sliding motion,
the large vortices associated with the initial symmetrical growth of liquid collars
(Newhouse & Pozrikidis, 1992) are broken up into a series of smaller unsymmetrical
vortices.

7.1 Falling liquid films in vertical tubes

Figure 7.2 characterizes the upper and lower occlusion bounds Remax
1 and Re10 for three

falling liquid film configurations involving real working liquids: the high-viscosity silicone
oil used in the experiments of Camassa et al. (2014) (panels 7.2a, 7.2b), the aqueous
glycerol solution used in experimental run 13 of Dao & Balakotaiah (2000) (panel 7.2c),
and a low-viscosity silicone oil (panel 7.2d). Pure water is not considered, because Bo≪1
for the narrow tubes investigated here and thus absolute instability sets in at very low
Re1. The core fluid is air subject to an aerostatic pressure gradient, M=1.

Panel 7.2a represents TWS in terms of Re1 for the high-viscosity silicone oil at dif-
ferent relative wave frequencies f/fmax, where the linearly most-amplified frequency fmax

is obtained via (2.24), using (2.9) (see section 2.2.1). The solid curve corresponds to
f/fmax=1 and thus represents waves that are most likely to emerge in an experiment.
We have already established in figure (2.7) that only occluded states, i.e. liquid plugs
separated by gas bubbles, exist beyond its limit point (LP). This point marks the upper
occlusion bound Remax

1 , beyond which occlusion is unavoidable. We have not drawn in
panel 7.2a nor in subsequent figures the solution branch associated with liquid plugs,
which was discussed in panel 2.7a. This is because we are interested only in the occlusion
limit here. Also, we have discovered the existence of this branch of travelling-plug solu-

3The same spontaneous sliding can occur in planar fluid films subject to the Rayleigh-Taylor instability
(Lister et al., 2006a; Dietze et al., 2018), and we will explain the underlying instability in section 8.1.
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Figure 7.2: TWS for a falling liquid film within a vertical cylindrical tube in contact
with a quiescent-air core: M=1. (a) Silicone oil IV from table 2.1 (Camassa et al.,
2014): Ka=3.29 · 10−3, R⋆=5 mm. Long dashes: f/fmax=0.5, short dashes: f/fmax=0.8,
solid: f/fmax=1, dot-dashed: f/fmax=1.1, dot-dot-dashed: f/fmax=1.2. Vertical blue
line marks limit point (LP) for linearly most amplified waves: f=fmax, Re1=Remax

1 ; (b-
d) frequency dependence at Re1=const. Dashed blue: linear spatial growth rate −ki at
Re1=Remax

1 (right abscissae), other: TWS at Re1=const (left abscissae). (b) Parameters
according to panel a. Dot-dashed red: Re1=Re10=6×10−5, thin solid: Re1=7.5×10−5, 1×
10−4, thick solid blue: Re1=Remax

1 =1.91×10−4, dotted with asterisk: Re1=2.3×10−4; (c)
glycerol(89%)-water (Dao & Balakotaiah, 2000): Ka=3.532, R⋆=3.175 mm. Dot-dashed
red: Re1=Re10=0.075, thin solid: Re1=0.1, 0.14, 0.2, thick solid: Re1=Remax

1 =0.393,
open circles: DNS with passive-core (Πµ=Πρ=0) code (Dietze et al., 2020) performed
by Christian Ruyer-Quil; (d) silicone oil III: Ka=121.4, R⋆=1.5 mm. Dot-dashed red:
Re1=Re10=1.5, thin solid: Re1=2, 5, 10, thick blue: Re1=Remax

1 =18.9.

tions (TPS) only recently. The study of liquid plugs with our augmented model (1.60) is
the subject of a new manuscript currently in preparation.

Panel 7.2b represents the TWS from panel 7.2a in terms of the wave frequency f
at different fixed Re1. This representation reveals the lower occlusion bound Re10 (red
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Figure 7.3: Occlusion due to noise-driven surface waves. Open-domain WRIBL compu-
tation of experiment in panel 3a of Camassa et al. (2014), using inlet noise (2.38): L⋆=1
m, Ka=3.29 · 10−3 (silicone oil IV and air I in table 2.1), Re1=2.3×10−4, ǫ2=2 · 10−4.
Numerical core radius limitation (2.45) with dcrit/R=0.2. (a) Snapshot of film profile;
(b-d) frequency spectra at different locations: (b) x=20; (c) x=70; (d) x=110. Vertical
blue lines at f/fmax=1.12 mark limit of TWS from panel 7.2b (asterisk there).

curve), below which there are TWS for all linearly unstable f 4. Occlusion is impossible
below this limit. The blue curve on the right corresponds to the upper occlusion bound
Remax

1 , its LP occurring at f/fmax=1.
Panel 7.3a represents an open-domain computation of the experiment in panel 3a of

Camassa et al. (2014) (the second version, using a L⋆=1 m tube), which was performed
with Re1=2.3 · 10−4, i.e. slightly greater than Remax

1 =1.91 · 10−4 in panel 7.2a. Here, we
have applied synthetic inlet noise (2.38) with an amplitude ǫ2 tuned to the experiment.
Also, we have used here and in other computations the numerical core radius limitation
(2.45) with dcrit=0.1, instead of the augmented WRIBL model (1.60). This reduces the
computational cost, without altering the dynamics leading up to occlusion, which is the
focus of the current section5. Reducing the computational cost was particularly important
for the computation in panel 7.3a, as it was run for a very long time (tfmax=480), in order
to reach a statistically developed state.

Panels 7.3b, 7.3c, and 7.3d show that the spectrum of the surface waves travelling
on the liquid film is dominated by the linearly most-amplified waves (f/fmax=1). These
waves subsequently grow until occluding the tube (panel 7.3a). Because Re1>Re

max
1 , the

linearly most-amplified waves do not possess TWS, and occlusion is inevitable. This is
occlusion scenario I. In other words, fmax lies below the LP of TWS at Re1=2.34× 10−4

4The curves are bounded on the right by the cut-off frequency fc.
5The dynamics of liquid plugs after occlusion is the subject of a new manuscript currently in prepa-

ration.
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Figure 7.4: Routes to occlusion in a spatially evolving falling liquid film in contact with a
quiescent air core: M=1. Computations of experimental runs 20 (panels a,c) and 13 (pan-
els b,d) from Dao & Balakotaiah (2000). (a,b) TWS (right abscissae) at Re1=const, and
linear growth rate dispersion curves (left abscissae). Grey zones imply absence of TWS;
(c,d) spatio-temporal computations on an L⋆=1 m domain with inlet noise (2.38) and nu-
merical core radius limitation at dcrit/R=0.1; (a,c) regime of certain occlusion (scenario
I): R⋆=4.765 mm, Ka=0.303 (glycerol(99%)-water and air I in table 2.1), Re1=0.0497,
ǫ2=10−5; (b,d) regime of conditional occlusion (scenario II): R⋆=3.175 mm, Ka=3.532
(glycerol(89%)-water and air I), Re1=0.258, ǫ2=10−5. Arrow in panel d marks coales-
cence event triggering occlusion.

in panel 7.2b (asterisk on dotted curve). This limit is represented with vertical blue lines
in panels 7.3b-7.3d.

Between the lower (red curve) and upper (blue curve) occlusion bounds in panel 7.2b,
Re10<Re1<Re

max
1 , the linearly most-amplified waves possess TWS, but there is a range

of low-frequency waves that do not. Occlusion in a real system thus depends on whether
these waves can be accommodated, e.g. via coalescence events. In this regime, occlusion
is conditional.

Panel 7.4d represents an open-domain computation (with inlet noise) that reproduces
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Figure 7.5: Occlusion is delayed by gravity. TWS for the fluid combination in panel 7.2a:
Ka=3.29 · 10−4, M=1, f=fmax. Variation of the Bond number Bo=ρl g R
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Bo=100. (a) Minimal core radius dmin; (b) surface profiles at AI and LP.

experimental run 13 from Dao & Balakotaiah (2000). Here, Re1=0.258, which lies in
the regime of conditional occlusion according to panels 7.2c and 7.4c. In this case, the
linearly most-amplified waves dominate the film surface in the upper half of the tube,
where the wave amplitude saturates to a safe level. However, coalescence events (marked
by an arrow) generate waves of lower frequency that subsequently occlude the tube further
downstream.

This is occlusion scenario II. In the current case, coalescence events result from the
well known subharmonic secondary instability of high-frequency TWS, which was first
discovered in plane falling liquid films (Liu & Gollub, 1993).

Panel 7.4c represents an open-domain computation reproducing experimental run 20 of
Dao & Balakotaiah (2000), which, according to panel 7.4a, lies beyond the upper occlusion
bound, Re1>Re

max
1 . Here, occlusion is unavoidable and results from the linearly most-

amplified waves growing without bound.

We now focus on the role of different physical effects in fixing the upper occlusion
bound Remax

1 . Panel 7.5a represents the sensitivity of the f=fmax TWS from panel 7.2a
w.r.t. the Bond number Bo, which quantifies the role of gravity (7.1). For small Bo (cir-
cle and square), where the Plateau-Rayleigh instability dominates, TWS are bounded by
absolute instability (AI). By contrast, for the three largest Bo, TWS are limited by non-
linear effects leading to occlusion (LP). For these cases, we see that Remax

1 (Re1 at the LP),
is greatly delayed with increasing Bo. The underlying cause is the distortion of surface
waves into an increasingly asymmetric shape, as evidenced by the film surface profiles
in panel 7.5b. This mechanism, which in the cylindrical configuration favours variations
of (stabilizing) axial curvature over variations in (destabilizing) azimuthal curvature, was
already discussed w.r.t. planar falling liquid films in figure 5.2, and also occurs in pressure-
driven core-annular flow (Frenkel et al., 1987) or gravity-driven flow down a cylindrical
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Figure 7.6: Occlusion is precipitated by axial viscous diffusion. TWS for the system
in panel 7.2a: Ca=µ1 U/σ=0.37, M=1. Solid curves: full WRIBL model (1.48); dot-
dashed: Jj=Kj=Lj=Mj=0 in (1.48) and (2.9); black curves with symbols: f=fmax; blue
curves without symbols: Λ=12.56. (a) Upper occlusion bounds (LP); (b) region of roll
waves: interfacial fluid velocity u|r=dmin

compared to wave speed c; (c) surface profiles
with zones of negative (grey) and positive (white) Ψxx. Solid: Re=1.47×10−4 (diamond
in panel a); dashed: Re=1.0×10−4 (cross in in panel a); (d) corresponding profiles of
normalized differential normal axial viscous stress Ψxx (7.2).

fibre (Quéré, 1990). The profiles in panel 7.5b correspond to the AI and LP bounds in
panel 7.5a. Thus, those associated with the LP (asterisk, cross, and diamond) represent
the limiting TWS in terms of occlusion. The minimal core radius dmin of these solutions
is still quite large, except for Bo=100. Thus, the conjecture of Dao & Balakotaiah (2000),
that occlusion sets in when the height of TWS reaches the tube axis, is only valid for
large tubes (Bo=100 correspond to R⋆=15 mm for the current liquid).

Figure 7.6 shows how the upper occlusion bound Remax
1 is affected by axial viscous

diffusion, which enters our model (1.48) via the coefficients Jj, Kj, Lj , and Mj . We again
focus on the system from panel 7.2a, where the capillary number Ca=µ1 U/σ=0.37 is not
negligible and thus viscous stresses compete with surface tension. Comparing the solid
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Figure 7.7: Streamlines in the wave-fixed reference frame for the marked LP in panel
7.6b. Blue lines: annular liquid film, red: core gas flow. (a) Full model (1.48). Filled
circle in panel 7.6b. The wave hump contains a vortex; (b) no axial viscous diffusion:
Jj=Kj=Lj=Mj=0 in (1.48). Asterisk in panel 7.6b. No vortex in the wave hump.

curve marked by a filled circle in panel 7.6a with the dot-dashed curve marked by an
asterisk, we find that axial viscous diffusion greatly precipitates occlusion, lowering Remax

1

by roughly 70% (based on the full-model value Remax
1 =1.9×10−4). This precipitation is

due to the normal axial viscous force Fxx acting in the cross section of the liquid film:

Fxx = 2π

∫ 1

d

∂xu rdr, Ψxx =
Fr2

Re1

∂xFxx

π(1− d2) , (7.2)

which tends to make the wave hump more symmetrical. Its normalized (w.r.t. gravity)
contribution Ψxx (7.2) in the differential axial force balance is plotted in panel 7.6d for the
two TWS in panel 7.6c, which correspondg to the open circle and asterisk in panel 7.6a. In
regions where Ψxx<0, the differential normal axial viscous force acts in upstream direction,
and vice versa where Ψxx>0. This leads to the qualitative force distribution sketched with
arrows in panel 7.6c. According to this, the differential normal axial viscous force acts
in upstream direction within the wave hump and in downstream direction within the
residual film. This causes a compression of the wave back and an elongation of the wave
front, thus counteracting the gravity-induced distortion observed in panel 7.5b.

Failing to account for axial viscous diffusion, also leads to an over-prediction of the
wave celerity, and, by extension, the onset of roll waves. These TWS, which contain a
vortex in the wave-fixed reference frame, correspond to the shaded region of panel 7.6b.
They occur much earlier when axial viscous diffusion is accounted for, as confirmed by
the streamline plots in panels 7.7a and 7.7b, which correspond to the LP in panel 7.6b.

Finally, figure 7.8 shows that, depending on the type of working liquid, axial viscous
diffusion (panel 7.8a, system in panel 7.2c) or inertia (panel 7.8b, system in panel 7.2d)
can determine whether TWS are bound by AI or nonlinear LPs and occlusion.

We now discuss the effect of a counter-current core gas flow on the upper occlusion
bound Remax

1 . We do this based on the low-viscosity silicone oil in contact with air,
as considered in panel 7.2d. For all other liquids studied, the effect of the gas core is
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Figure 7.8: Occlusion bound (LP) versus absolute instability bound (AI). Black curves
with symbols: f=fmax, blue curves without symbols: Λ=12.56. (a) Role of axial viscous
diffusion. TWS according to panel 7.2c: Ca=0.028. Solid lines: full model (1.48); dot-
dashed: no axial viscous diffusion, Jj=Kj=Lj=Mj=0 in (1.48) and (2.9); (b) role of
inertia. TWS according to panel 7.2d: M=1. Solid: full model (1.48); dot-dashed: no
inertia, Si=Fij=Gij=0 in (1.48) and (2.9).

negligible6, due to the large liquid viscosities. Panel 7.9a represents TWS in different
limits for this system. Comparing the black solid curve marked by a filled circle (M=1)
with the dashed curve marked by an asterisk (Re2=-17.27), shows that a counter-current
gas flow can significantly precipitate Remax

1 versus the aerostatic limit. This is mainly
caused by the gas pressure gradient. The role of gaseous viscous stresses is secondary, as
evidenced by comparing the dot-dashed (Πρ=0) and blue solid (Πµ=0) curves with the
full-model solution (dashed curve)7. Arrows in panel 7.9b, which represents film surface
profiles for the two LP marked in panel 7.8a, indicate the action of the gas pressure
gradient ∂xp2|d on the liquid film. This action tends to symmetrically drain liquid toward
the wave hump from the residual films on either side, thus promoting its growth.

In the conditional occlusion regime, Re10 ≤ Re1 ≤ Remax
1 , occlusion depends on what

type of surface waves emerge from primary and secondary instability in a spatially evolv-
ing falling liquid film. This opens the possibility of preventing occlusion via coherent inlet
forcing of non-dangerous surface waves. We validate this idea based on the open-domain
computations represented in figure 7.10, which again pertain to the system in panel
7.2d. For reference, panels 7.10a and 7.10b represent computations where only inlet noise
(2.38) was applied (ǫ1=0, ǫ2=10−5) and which correspond to the regimes of impossible
occlusion (Re1=1.25<Re10=1.5) and conditional occlusion (Re10<Re1=5<Remax

1 =18.9),
respectively. Although occlusion is precluded in panel 7.10a, Re1 is so low that surface
waves are very small and thus their potential to enhance mixing is forgone. By contrast,

6At least within the parameter range accessible to our WRIBL model.
7We had also observed the dominance of gas pressure versus gaseous viscous stresses for the planar

configuration (panels 6.4a and 6.5d).
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Figure 7.9: Occlusion is precipitated by a counter-current gas flow. (a) TWS according
to panel 7.2d: f=fmax. Solid: M=1; dashed: Re2=-17.27; blue solid without symbol:
Πµ=0 in (1.41a) and (1.41b), Re2=-17.27; dot-dashed: Πρ=0 in (1.41a), Re2=-17.27; (b)
wave profiles corresponding to asterisk and filled circle in panel a. Grey/white zones
between dashed profiles demarcate regions of negative/positive ∂xp2; (c,d) corresponding
streamlines in the wave-fixed reference frame. (c) M=1, Re1=14.6, Λ=6.3; (d) Re2=-
17.27, Re1=18.9, Λ=5.7.

coherent inlet forcing via an additional monochromatic perturbation of frequency f (2.38),
allows to prevent the occlusion occurring in panel 7.10b, while maintaining waves of con-
siderable amplitude. This is shown in panel 7.10c, where we have used ǫ1=0.1, ǫ2=10−5,
and f=0.5 fmax.

Impact of the work and relation to the current state of the art Our paper
Dietze et al. (2020) has been cited 5 times according to Web of Science.

By accounting for axial viscous diffusion in our WRIBL model (1.48), we were able
to reproduce numerically for the first time the occlusion experiments of Camassa et al.
(2014), via our open-domain computations (figure 2.20). Further, we have obtained a
reasonable prediction of the experimental occlusion bound based on the LP of the lin-
early most-amplified TWS in panel 7.2a (occlusion scenario I). That approach yields
Remax

1 =1.91×10−4, whereas occlusion in the experiments was observed near the upper
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Figure 7.10: Preventing occlusion via coherent inlet forcing. Open-domain computa-
tions for the system in panel 7.2d: Ka=121.4, Re10=1.5, Remax

1 =18.9. Same level of
inlet noise (2.38) for all computations: ǫ2=10−5. (a) Regime of impossible occlusion:
Re1=1.25<Re10, ǫ1=0; (b) regime of conditional occlusion: Re1=5, ǫ1=0; (c) additional
coherent inlet forcing (2.38): Re1=5, f=0.5 fmax=1.27, ǫ1=0.1.

bound of the interval Re1 ∈ [1.63 − 2.3]×10−4. Further, our analysis has shown that
the occlusion bound may strongly depend on what type of wave dynamics unfold in a
real system (occlusion scenario II). In particular, whether the tube is long enough to
accommodate the dynamics required for producing dangerous waves.

In the case of occlusion scenario I, we have shown in section 2.3.2 (figure 2.21) that
TPS at f=fmax provide an accurate prediction of the liquid plugs forming in a spatially
evolving experiment (Camassa et al., 2014), thus significantly reducing the computational
cost versus open-domain WRIBL computations and DNS. These results are the subject
of a new manuscript currently in preparation.

Romano et al. (2019); Camassa et al. (2021); Ogrosky (2021b); Romano et al. (2021),
and Ogrosky (2021a) have acknowledged our contributions to predicting plug formation
in annular liquid films within cylindrical tubes. Camassa et al. (2021) extended our work
by a detailed study of the stability of nonlinear TWS. Ogrosky (2021b) extended our
work by accounting for a surface-tension-reducing insoluble surfactant, and found that
this effect can precipitate occlusion. Most recently, Ogrosky (2021a) developed a three-
layer liquid-liquid-gas asymptotic model of core-annular flow, in order to represent the
serous-mucus bilayer associated with mucociliary clearance in the pulmonary airways.
The author acknowledged our finding that axial viscous diffusion strongly precipitates
the occlusion onset for high-viscosity liquids (figure 7.6), as motivation for developing his
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model up to second order in the long-wave parameter. Further, the author confirmed the
underlying mechanism for this precipitation, which we have explained in panels 7.6c and
7.6d.

7.2 Mucus films in pulmonary capillaries

We now consider the configuration in panel 1.3b and focus on the model system studied
by Halpern & Grotberg (2003), which is representative of the terminal bronchioles (panel
7.1d), i.e. a film of Newtonian model mucus (mucus IV in table 2.1) in contact with air,
within a cylindrical tube of radius R⋆=0.3 mm, where gravity is negligible (Fr−1=0).

Panel 7.11a represents time traces of the minimal core radius dmin, as obtained from
transient periodic computations with our cylindrical WRIBL model (1.48), for different
values of the liquid volume V1, which was controlled through the initial mean core radius
d0, at fixed perturbation amplitude ǫId0=0.0013 (2.41) and fixed wavelength Λ=7.73. In
all our computations, d0 is inferior to the unduloid threshold dcrit0 =0.88 (corresponding
to the LP at V crit

1 =1.73 in panel 2.22a), and thus occlusion is inevitable (dmin → 0).
However, at d0=0.87 (V1/π/R

3=1.88), we observe a drastic increase in the occlusion time
(rightmost curve with symbols in panel 7.11a).

This delay of occlusion is caused by a slowed drainage of liquid from the film trough
forming as a result of the Plateau-Rayleigh instability. Panel 7.11b shows a blown-up
view of the film surface around this trough, as it approaches the tube wall under the
driving effect of the primary instability. We see that the film surface eventually buckles,
sustaining further drainage via an additional outward capillary pressure gradient in the
face of increasing viscous drag at the newly-formed secondary troughs. After this, growth
of the deformation of the liquid film evolves degressively (red asterisk in panel 7.11a).
Thus, in theory, the liquid film would require infinitely long to attain static equilibrium.
Indeed, because V1/π/R

3<Λ-4
3
=6.4, there is not enough liquid to occlude the tube without

rupturing the residual film lining the tube wall. This implies a complete draining of the
liquid trough region in panel 7.11b, and thus a divergence of the viscous drag.

However, we do eventually observe occlusion also for this case (d0=0.87), albeit via a
different mechanism8. As shown in panel 7.11c, occlusion is triggered by a spontaneous
(leftward) sliding motion of the liquid film (from the red dashed to the solid blue curve),
which re-invigorates growth of the primary instability. The logarithmic film thickness
profiles h(x) in panel 7.11d allow to magnify what happens in the region of the buckled
film trough during this process. According to these profiles, the loss of symmetry is
associated with a thickening of the right secondary trough and a thinning of the left one.
This leads to an increased overall draining rate versus a purely symmetrical evolution
scenario. A detailed discussion of this effect and the secondary instability underlying the
spontaneous sliding motion is provided in section 8.1, where we study the related problem

8It should be possible to find a universal criterion for the sliding-induced occlusion in terms of d0,
assuming Λ=Λmax.



188 7 Liquid films in narrow tubes

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

103 104 105 106

t

d
m
in

sl
id
in
g

(b) 0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
0.2 0.3 0.4 0.5 0.6 0.7 0.8

x/Λ

r

(c) 1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
0 0.5 1 1.5 2

x/Λ

r

(d)

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

x/Λ

h

Figure 7.11: Liquid film of Newtonian model mucus in contact with air within a ter-
minal bronchiole (Halpern & Grotberg, 2003): La=σH⋆ρ1/µ

2
1=91.8 (mucus IV and air

I in table 2.1), R⋆=0.3 mm, qtot=0, Fr−1=0. Transient periodic WRIBL computations:
Λ=7.73, ǫId0=0.0013 (2.41). Delay of occlusion upon approaching the unduloid threshold
dcrit0 =0.88. (a) Time traces of the minimal core radius dmin. From left to right: d0=0.80,
0.84, 0.85, 0.855, 0.86, and 0.87; (b) buckling of the film trough (green crosses in panel
a); (c) long-time occlusion triggered by spontaneous sliding: d0=0.87. Symbols between
red asterisk and blue square in panel a; (d) logarithmic profiles of film thickness h corre-
sponding to panel c.

of a planar liquid film suspended from a ceiling subject to the Rayleigh-Taylor instability.

The spontaneous sliding motion observed in panel 7.11c also affects the core gas flow.
Figure 7.12, which represents streamlines in the wall-fixed reference frame, shows that
the two initial large toroidal vortices associated with symmetrical growth (panel 7.12a)
are broken up into smaller vortices, once the sliding sets in (panel 7.12b).

The computations in figures 7.11 and 7.12 correspond to zero net flow (qtot=0). It
is more realistic to consider a time-varying gas flow rate q2, which mimics the breathing
cycle (panel 7.13b). We implement this numerically by varying qtot according to:

qtot = q1 +Πu q2 = 2π f LT

(
π R3

)
sin (2π f t) , (7.3)
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Figure 7.12: Streamlines in the wall-fixed reference frame for the sliding solution in panel
7.11a: d0=0.87. (a) Symmetrical growth phase: last green cross in panel 7.11a, (b) after
sliding onset: first black circle in panel 7.11a.

where f=4×10−5 (f ⋆=1
3
Hz) and LT=Λ=7.73 denote the breathing frequency and stroke

length, respectively, for which we have chosen the same physiologically-relevant values as
Halpern & Grotberg (2003). Because Πµ ≪ 1, (7.3) amounts to imposing q2, as evidenced
by panel 7.13b, where the time traces of qtot (crosses) and q2 (solid line) coincide.

Panel 7.13b compares the sliding onset for different limiting cases of the d0=0.87
computation in panel 7.11a via time traces of the axial position xc:

xc =

∫ Λ

0
π (1− d2) x dx

∫ Λ

0
π (1− d2) dx

, (7.4)

of the liquid film’s center of mass. The three black curves with asterisks in panel 7.13a cor-
respond to the zero-net-flow limit qtot=0. Comparing the solid (full model) and dashed
(Ji=Ki=Li=Mi=0) curves among these, we may conclude that axial viscous diffusion
greatly precipitates the sliding onset. The same is true when applying a weak amount of
residual gravity (dot dashed line), as may be encountered in microgravity environments
in the form of g-jitter. Gravity breaks the symmetry of the primary flow and thus re-
inforces the secondary instability underlying the sliding phenomenon. It also imposes a
preferential direction for the sliding motion, in contrast to the gravity-free configuration,
where the direction is arbitrary and thus depends on the numerical noise generated by
the computation.

An oscillating core gas flow (7.3) mimicking the breathing cycle according to panel
7.13b, greatly precipitates the sliding and occlusion onsets (red line with filled circle in
panel 7.13a). In this case, the asymmetrical perturbation introduced by the gas flow is
quite strong, as evidenced by figure 7.14, which represents streamlines in the wall-fixed
reference frame for characteristic time points during the breathing cycle (filled circles in
panel 7.13b). Prior to the sliding event (panels 7.14a and 7.14b), the gas flow oscillation
produces separation zones on alternating sides of the liquid hump, and this quickly leads
to a symmetry loss also in the liquid film (panels 7.14c and 7.14d).

In this particular situation, the oscillatory air flow mimicking the breathing cycle
increases the risk of airway occlusion. In contrast, when the liquid film is thicker and
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Figure 7.13: Effect of axial viscous diffusion, gravity, and breathing on the sliding onset
of a mucus film in contact with air. Parameters according to the sliding solution in panel
7.11a: d0=0.87, qtot=0, Fr−1=0. Time is normalized based on the volume-equivalent core

radius dVE=(1− V1/Λ/π/R3)
1/2

. (a) Axial position of the center of liquid mass xc (7.4).
Solid black line with asterisk: full model (1.48), dashed: Jj=Kj=Lj=Mj=0 in (1.48),
dot-dashed: Fr−1=10−3× Fr−10 with Fr−10 =σ/µ1/

√
g R⋆, red solid with square: oscillating

qtot(t) according to panel b; (b) time variation of qtot (crosses) and q2 (solid line) mimicking
the breathing cycle according to (7.3): f ⋆=1

3
Hz, LT=7.73.

occlusion is not thwarted by viscous drag in the draining residual film, high-frequency gas
flow oscillations, such as used for the treatment of obstructive airway disease with chest
wall vibrators, can delay or prevent occlusion (Halpern & Grotberg, 2003).

Impact of the work and relation to the current state of the art Our paper
Dietze & Ruyer-Quil (2015) has been cited 26 times according to Web of Science. Many
of these citations acknowledge our contribution to the modelling of annular liquid films
and core-annular flows, as discussed at the end of section 1.2.

From a physical point of view, our work has been acknowledged w.r.t plug formation
in the pulmonary airways (Magniez et al., 2016; Mamba et al., 2018; Romano et al., 2019,
2021; Erken et al., 2022) or the occlusion of micropores (Beltrame, 2018).

Further, Xu & Jensen (2017) have shown that wall roughness can thwart the sliding
phenomenon observed in panel 7.11c, leading to trapped states, where the liquid film
resists translation in the face of a gas shear stress or pressure gradient. Moreover, Wang
(2016) showed that carefully selected wall corrugations can prevent plug formation in core
annular liquid-liquid systems with zero base flow. Erken et al. (2022) have noted that the
extreme thinness of the residual film separating two sliding humps is still prohibitive in
terms of resolving this phenomenon through DNS, which underlines the usefulness of our
WRIBL model.
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Figure 7.14: Sliding motion of a mucus film triggered by breathing (red line with square
in panel 7.13a). Streamlines in the wall-fixed reference frame for selected times during
the breathing cycle (green filled circles in panel 7.13b). (a) t(1 − dVE)
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3=82.4; (c) t(1− dVE)
3=206.0; (d) t(1− dVE)

3=508.8.



J. Fluid Mech. (2020), vol. 894, A17. c© The Author(s), 2020.
Published by Cambridge University Press
doi:10.1017/jfm.2020.267

894 A17-1

Falling liquid films in narrow tubes:
occlusion scenarios
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We study a gravity-driven wavy liquid film falling down the inner surface of a
narrow cylindrical tube in the presence of an active core gas flow. We employ the
model of Dietze and Ruyer-Quil (J. Fluid Mech., vol. 762, 2015, pp. 68–109) to
investigate the role of surface waves in the occlusion of the tube. We consider four
real working liquids and reproduce several experiments from the literature, focusing
on conditions where the Bond number is greater or equal to unity. We prove that
occlusion is triggered by spatially growing surface waves beyond the limit of saturated
travelling-wave solutions, and delimit three possible regimes for a naturally evolving
wavy film: (i) certain occlusion, when the liquid Reynolds number is greater than
the limit of the spatially most amplified travelling waves. Occlusion is caused by
surface waves emerging from linear wave selection (scenario I); (ii) conditional
occlusion, when the most amplified waves possess travelling states but longer waves
do not. Occlusion is triggered by secondary instability, generating long waves through
nonlinear coarsening dynamics (scenario II); and (iii) impossible occlusion, when
travelling waves always exist, no matter how great their wavelength. We show that
certain occlusion is delayed by gravity and precipitated by a counter-current gas flow,
axial viscous diffusion (high-viscosity liquids) and inertia (low-viscosity liquids). The
latter two effects are also found to determine whether the occlusion mechanism is
dictated by loss of travelling-wave solutions or absolute instability. Finally, we show
that occlusion can be prevented through coherent inlet forcing. As a side benefit, we
introduce an augmented version of our model based on a localized additional force
term that allows representing stable travelling liquid pseudo-plugs.

Key words: thin films, capillary flows

1. Introduction

We consider the configuration in figure 1, a thin liquid film falling down the inner
surface of a vertical cylindrical tube of radius R? under the action of the gravitational

† Email address for correspondence: dietze@fast.u-psud.fr
‡ Present address: Institut de Mécanique des Fluides de Toulouse (IMFT) - Univ. de

Toulouse, CNRS-INPT-UPS, Toulouse, France
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We consider the axisymmetric arrangement of an annular liquid film, coating the
inner surface of a narrow cylindrical tube, in interaction with an active core fluid. We
introduce a low-dimensional model based on the two-phase weighted residual integral
boundary layer (WRIBL) formalism (Dietze & Ruyer-Quil, J. Fluid Mech., vol. 722,
2013, pp. 348–393) which is able to capture the long-wave instabilities characterizing
such flows. Our model improves upon existing works by fully representing interfacial
coupling and accounting for inertia as well as streamwise viscous diffusion in
both phases. We apply this model to gravity-free liquid-film/core-fluid arrangements
in narrow capillaries with specific attention to the dynamics leading to flooding,
i.e. when the liquid film drains into large-amplitude collars that occlude the tube
cross-section. We do this against the background of linear stability calculations and
nonlinear two-phase direct numerical simulations (DNS). Due to the improvements
of our model, we have found a number of novel/salient physical features of these
flows. First, we show that it is essential to account for inertia and full interphase
coupling to capture the temporal evolution of flooding for fluid combinations that
are not dominated by viscosity, e.g. water/air and water/silicone oil. Second, we
elucidate a viscous-blocking mechanism which drastically delays flooding in thin
films that are too thick to form unduloids. This mechanism involves buckling of the
residual film between two liquid collars, generating two very pronounced film troughs
where viscous dissipation is drastically increased and growth effectively arrested.
Only at very long times does breaking of symmetry in this region (due to small
perturbations) initiate a sliding motion of the liquid film similar to observations by
Lister et al. (J. Fluid Mech., vol. 552, 2006, pp. 311–343) in thin non-flooding films.
This kickstarts the growth of liquid collars anew and ultimately leads to flooding. We
show that streamwise viscous diffusion is essential to this mechanism. Low-frequency
core-flow oscillations, such as occur in human pulmonary capillaries, are found to set
off this sliding-induced flooding mechanism much earlier.

Key words: interfacial flows (free surface), low-dimensional models, thin films

1. Introduction
The axisymmetric flow of an annular liquid film/fluid core within a cylindrical

tube, as shown in figure 1, can be viewed in different limits. In the simplest case,

† Email address for correspondence: dietze@fast.u-psud.fr
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Chapter 8

Other thin film flows

8.1 Films subject to the Rayleigh-Taylor instability

In section 7.2, we have observed the spontaneous sliding motion of a mucus film that
drains into liquid collars due to the Plateau-Rayleigh instability (panels 7.11c and 7.11d).
This phenomenon is intriguing, because it occurs even though the initial condition is
symmetrical, suggesting the existence of a symmetry-breaking secondary instability. In
Dietze et al. (2018), we studied this phenomenon based on the related configuration of
a fluid film subject to the Rayleigh-Taylor instability (figure 1.4), e.g. a liquid film sus-
pended from a ceiling draining into drops (panel 1.4a), or a vapour film underneath
a liquid layer forming blisters (panel 1.4b). Spontaneous sliding had been observed by
Lister et al. (2006a) in a liquid film underneath a sedimenting liquid drop, and by Glasner
(2007) in a liquid film suspended from a ceiling. Based on their observations, Lister et al.
(2006a) suggested the existence of an instability. Other studies had demonstrated how
easily liquid drops slide when the initial film is subjected to an asymmetric perturbation
(Yiantsios & Higgins, 1989; Lister et al., 2006b; Xu & Jensen, 2017).

In Dietze et al. (2018), we applied linear stability analysis to elucidate the cause of
the spontaneous sliding. Thereby, we focussed mainly on the configuration of liquid drops
forming on a suspended liquid film (panel 8.1a). Sliding sets in before these drops reach
a static nonlinear equilibrium. To deal with this transient behaviour in our stability
analysis, we employed two different approaches. First, a frozen-time approach, where
the (perfectly-symmetrical) nonlinear base state is assumed to evolve much slower than
the instability. This approach is limited to the late stage of the draining of the liquid
film. Second, a transient analysis, where the time evolution of the nonlinear base state is
accounted for in the linear stability problem (Schmid, 2007; Balestra et al., 2016).

Our analyses showed that the draining liquid film is indeed subject to a secondary
instability with an asymmetric most-amplified mode. This mode is present as soon as the
thin residual film separating two drops has buckled, forming two extremely thin secondary
troughs through which the remaining liquid must drain. However, the loss of symmetry
becomes macroscopically visible only after the nonlinear growth of the base state has
slowed sufficiently. Depending on the considered time horizon, the most-amplified mode
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Figure 8.1: Suspended liquid film (panel 1.4a) draining into drops, as a result of the
Rayleigh-Taylor instability: h⋆0=1 mm, Bo=0.134, Λ=

√
2Λc, Λc=2π/

√
Bo. Computation

based on the lubrication model (1.68) using symmetry conditions on a domain of length
Λ/2 (data mirrored onto full-wavelength domain here). (a) Film profiles (black solid
lines) evolving from the initial condition (red dot-dashed line) to the lowest-energy static
equilibrium state (dashed blue line): t=427, 641, 1068, and 6.4 × 104; (b) profiles of the
pressure gradient at t=6.4 × 104. Solid line: full pressure gradient (8.1); dot-dashed:
gravity-induced contribution ∂xp|g; dashed: capillary contribution ∂xp|σ.

evolves from an odd pulse-like perturbation localized at the secondary troughs to a pertur-
bation constituting a concerted translation of the entire liquid film. We have elucidated
the underlying positive feedback mechanism, which is linked to the secondary troughs.
From an energetic point of view, the instability can be understood by considering the
viscous drag at the secondary troughs. If the left trough is slightly thinner and the right
one slightly thicker, liquid drains preferentially to the right and the total draining rate
is increased. Thus, an asymmetric evolution is the energetically favourable route toward
the lower-energy final state.

Further, we demonstrated in Dietze et al. (2018) that the sliding instability also occurs
in a thin vapour film underneath a liquid layer, assuming physical properties typically
encountered underneath Leidenfrost drops (Burton et al., 2012). Such drops are known
to move autonomously on horizontal surfaces (Ma et al., 2015; Bouillant et al., 2018).
Finally, we found that additional thermal Marangoni stresses can entirely suppress the
sliding instability in suspended liquid films, by fundamentally modifying the draining
mechanism at the troughs. In that case, the film undergoes a cascade of buckling events
instead of sliding, similar to the traditional Marangoni problem (Boos & Thess, 1999;
Oron, 2000).

We start with the suspended water film (panel 1.4a), for which panel 8.1a represents
the time evolution from a weakly perturbed initial state (dot-dashed red line) toward
static equilibrium (blue line). The final state consists of suspended drops separated by a
portion of dry substrate, the width of the drops corresponding to the cut-off wavelength of
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the Rayleigh-Taylor instability1 Λc=2π/
√
Bo. Our computation underlying panel 8.1a was

performed with the lubrication model (1.68) on a domain of width Λ=
√
2Λc, i.e. the most-

amplified wavelength in the passive-gas limit (Πµ=Πρ=0), using symmetry conditions. As
a result, sliding is precluded and we obtain a perfectly symmetrical time-evolving nonlinear
base state to which we apply our stability analysis.

To reach static equilibrium, the liquid between two drops must drain through an
increasingly thin film, and this eventually leads to a buckling of the liquid-gas interface
(panel 8.1a), similar to the annular mucus film in panel 7.11b. In this buckled state,
drainage is driven by the capillary contribution ∂xp|σ to the total pressure gradient ∂xp:

∂xp = − ∂xh
︸ ︷︷ ︸
∂xp|g

− 1

Bo
∂xxxh

︸ ︷︷ ︸
−∂xp|σ

. (8.1)

Panel 8.1b, which corresponds to the latest solid profile h(x) in panel 8.1a, shows that
this contribution (dashed line) is much larger than the hydrostatic contribution ∂xp|g (dot
dashed line) in the region of the secondary troughs (marked by open circles), where we
observe large spikes of ∂xp (solid curve) that are linked to strong variations of surface
curvature. By contrast, the pressure gradient in the liquid drops is all but zero, meaning
that they have virtually attained their final state. This state is neutrally stable and thus
it can be translated with minimal energy input. Both of these features are necessary
ingredients of the sliding instability.

Sliding is observed in computations with periodic boundary conditions, which do not
force symmetry. Panel 8.2a represents time traces of the location xmin of the film height
minimum hmin (left secondary trough after the buckling event), as obtained from two such
computations for the suspended water film from figure 8.1. The solid line corresponds to
the lubrication model (1.68), which we will rely on here, and the dashed line corresponds to
our full model (1.64), which incorporates inertia. Both computations reach the same quasi-
steady state before the onset of sliding, only that the full-model computation produces
several prior oscillations2. The kinematics of the sliding phenomenon comprise four stages:
rapid initial growth of the Rayleigh-Taylor instability (panel 8.2c), buckling (panel 8.2d),
quasi-steady evolution (panel 8.2e), and, ultimately, loss of symmetry and sliding (panel
8.2f). The onset of the sliding motion is accompanied by a thickening of the trailing
secondary trough and a thinning of the leading one (panel 8.2f).

We apply our frozen-time stability analysis (2.13) to the fully-symmetric base state
obtained from our computation in panel 8.1 at time t=7 × 104, which lies in the quasi-
steady regime. Panel 8.3a confronts the corresponding surface profile h(x) (solid line)
with the profile obtained from our periodic computation (crosses) in panel 8.2e. The
difference between these two profiles is plotted with asterisks in panel 8.3b. As the
periodic computation has just lost symmetry, this profile is representative of the most-
amplified linear perturbation. The solid blue and black lines in panel 8.3b represent the

1We remind the reader that the scaling from (1.66) is used for the Rayleigh-Taylor problem.
2As shown in panel 8.2b, the full-model data are in good agreement with our own DNS using Gerris

(compare solid red and dashed black curves).
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Figure 8.2: Spontaneous sliding of the water film from figure 8.1: h⋆0=1 mm, Bo=0.134,
Λ=
√
2Λc, Λc=2π/

√
Bo. Computations using periodicity conditions on a domain of length

Λ. (a,b) Position and height of film trough (left secondary trough after buckling). Dashed
lines: full model (1.64), solid: (1.68), red solid: DNS with Gerris; (c) film surface profiles
during progressive growth stage (crosses in panels a and b); (d) flattening and buckling
(filled circles); (e) quasi-steady two-trough shape (diamonds, movie 1 in Dietze et al.
(2018)); (f) loss of symmetry and sliding (open circles, movie 2).

symmetric and asymmetric eigenmodes ĥ=η−1∂t h
′|t=0 with the largest growth rate η, as

obtained from our frozen-time stability analysis (2.13c).
The asymmetric mode is the only unstable one and it agrees well with the actual
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Figure 8.3: Frozen-time linear stability analysis for the suspended water film from figures
8.1 and 8.2: t=7× 104. (a) Solid line: base state H(x) obtained from symmetric simula-
tion on domain of length Λ/2 (501 grid points) and mirrored onto full-wavelength domain;
crosses: profile from periodic simulation on domain of length Λ (1001 grid points) slightly
after loss of symmetry; (b) solid lines: most-unstable asymmetric (Aj=0) and symmet-

ric (Bj=0) eigenfunctions ĥ(x) (2.13c) obtained from frozen-time linear stability analysis
of the symmetric base state from panel a; asterisks: actual perturbation, i.e. difference
between periodic and symmetric profiles in panel a; red-dashed line: perturbation re-
sulting from pure translation of base profile H(x) with speed c, i.e. ∂th=−c ∂xH; (c)
normalized perturbation profiles from panel b; (d) time derivative of surface curvature
∂t(∂xxh)=η ∂xxĥ associated with most-unstable eigenfunctions in panel b.
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perturbation (asterisks). The ĥ maxima within the liquid drops in panel 8.3b seem to
imply that the instability mechanism unfolds there. However, the perturbation in these
portions of the film corresponds to a pure translation, i.e. ∂th=−c ∂xH, represented with
a dashed red line in panel 8.3b. By contrast, the region around the secondary troughs
exhibits actual growth, as evidenced by panel 8.3c, which represents the profiles from panel
8.3b normalized with the base state film height H(x)3. Thus, the instability mechanism
must emanate from these secondary troughs.

The most-amplified perturbation ĥ, which is unsymmetrical, pushes down the left
secondary trough and pulls up the right one (black circles in panel 8.3c). At the same
time, the left trough is flattened, i.e. ∂xxh is reduced, and the right one is curved, i.e. ∂xxh
is increased, as shown in panel 8.3d. Given the sign of the capillary pressure gradient
∂xp|σ (8.1) at the secondary troughs (panel 8.1b), this tends to increase the flow rate
discrepancy across the left trough and decrease it across the right trough4. Consequently,
the left trough further thins and the right one further thickens, thus amplifying the
perturbation. Finally, because the ĥ/H extrema in panel 8.3c are slightly shifted w.r.t.
the secondary troughs (marked by open circles), the latter also move to the left, thus
imparting a concerted sliding motion on the liquid drops, which have virtually reached
static equilibrium and oppose no resistance.

Our transient stability analysis, which explicitly accounts for the time evolution of
the base state H(x, t) in the linear problem (2.14a) and does not rely on a normal mode
decomposition, yields the same overall conclusions. Panel 8.4c represents profiles of the
most-amplified linear perturbations h′ (solid lines) for the three base state profiles in
panel 8.4a (plotted with a logarithmic scale), as obtained from an iterative solution of
the direct (2.14a) and adjoint (2.14c) linear problems, for a given time horizon T . These
perturbations are pulse-like and localized at the secondary troughs, confirming that the
instability mechanism emanates from these troughs. As t → T , they evolve toward
the normal mode uncovered by our frozen-time approach (dashed lines), which is also
recovered when solving the direct linear problem (2.14a) starting from a noisy initial
condition (panel 8.4c).

We have applied our transient stability analysis at different times in the evolution of
the base state according to panel 8.1a. Instability w.r.t. to the asymmetric sliding mode
is observed as soon as the residual film between two liquid drops has buckled. However,
the sliding motion becomes macroscopically visible only when the evolution of the base
state has slowed sufficiently. This onset also depends strongly on the noise level ǫ applied
via hnoise (2.15), as shown in panel 8.4d, which represents computations performed with
different values of ǫ corresponding to the surface roughness of typical materials ranging
from glass to steel.

The secondary sliding instability is also observed in the case of a thin vapour film
underling a liquid layer (configuration in panel 1.4b). We demonstrate this in figure 8.5,

3The local growth rate at t=0 is given by H−1∂th=η ĥ
H .

4See panel 8b in Dietze et al. (2018) for a profile of the primary-flow curvature profile ∂xxH across
the secondary troughs.
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Figure 8.4: Transient stability analysis applied to the suspended water film in panel
8.2a. (a) Profiles of the symmetrical base state H(x, ti): ti=1922 (red), 20000 (green),
and 70000 (blue); (b) long-term linear responses h′(x, ti + T ) according to (2.14a) to
a noisy perturbation hnoise (2.15) (black line) over a time horizon T . Red: T=2000,
green: T=6000, blue: T=10000; (c) most-unstable perturbations (solid lines) obtained
from transient stability analysis (2.14) and linear responses at t=ti+T (dashed lines).
Red: T=200, green: T=1000, blue: T=1000; (d) nonlinear response of the periodic
computation in panel 8.2a to a noise injection at t=683. Time traces of the center of mass
xC for different noise levels ǫ=max(hnoise) − min(hnoise)=0 (solid), 1.3 × 10−4 (dashed),
1.3 × 10−3 (dotted), 1.3 × 10−2 (dot-dashed), and 0.04 (dot-dot-dashed). These values
correspond to the surface roughness of materials ranging from glass to steel.

which represents nonlinear computations performed with the lubrication model (1.68)
and with our full WRIBL model (1.64). The mean film thickness h̄=h0 and the fluid
properties correspond to the experiments of Burton et al. (2012), which were performed
with a Leidenfrost drop of water. The logarithmic surface profiles in panel 8.5a once
again exhibit pronounced secondary troughs that deform asymmetrically when the sliding
motion sets in (panel 8.5b).
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Figure 8.5: Sliding instability in the case of a vapour film underneath a liquid layer (panel
1.4b): h0=100 µm, Bo=0.0016, Λ=2

√
2 π/
√
Bo, D=10. Fluid properties correspond to

the experiments of Burton et al. (2012) which were performed with a Leidenfrost drop of
water: ρ1=0.47 kg/m3, ρ2=958.4 kg/m3, µ1=1.8·10−5 Pa s, µ2=0.28·10−3 Pa s, σ=0.059
N/m. (a) Surface profiles. Solid black lines: just before and just after the onset of sliding;
circles: suspended water film from figure 8.1; (b) time traces of the film thickness at the
left and right secondary troughs. Solid: full model (1.64), dashed: Πµ=0, dot-dot-dashed:
lubrication model (1.68).

Both for the suspended water film (panel 8.4a) and for the thin vapour film (panel
8.5a), the minimal film thickness hmin upon sliding is at least two orders of magnitude
greater than the range of long-range van der Waals forces, which is of the order of 10 nm
(Bonn, 2009; Israelachvili, 2011). Thus, sliding should be observed in an experiment well
before the occurrence of spinodal dewetting.

In case of the suspended water film (configuration in panel 1.4a), the sliding instability
can be suppressed via thermal Marangoni stresses by heating the liquid from the wall,
i.e. for Ma<1 and |Ma| sufficiently large. This is shown in figure 8.6, which represents
a computation based on the augmented lubrication model (1.69). Instead of reaching a
quasi-steady state, the liquid film continues undergoing buckling events (panel 8.6a), i.e.
secondary troughs form tertiary troughs (panel 8.6b) which in turn split into quaternary
troughs (panel 8.6c) and so forth, eventually leading to film rupture in an experiment.
This repeated buckling results from the thermocapillary drain rate contribution q|Ma in
(1.69):

q1 =
1

3
h3∂xh
︸ ︷︷ ︸

q|g

+
1

3
Bo−1h3∂xxxh
︸ ︷︷ ︸

q|σ

+−1
2

Ma

Bo
h2 ∂xh

Bi

(1 + Bi h)2︸ ︷︷ ︸
q|Ma

, (8.2)

which is symmetric about the troughs (dashed line in panel 8.6d), i.e. Marangoni stresses
pull liquid away from a trough in both directions. This thermocapillary flow rate survives
in the face of viscous drag even at small h (q|Ma ∝ h2), in contrast to the gravitational
contribution (q|g ∝ h3). On the inside of a given trough (e.g. the left tertiary trough
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Figure 8.6: Suppression of sliding due to thermal Marangoni stresses. Suspended water
film from figure 8.2 with additional heating from the wall. Numerical computation based
on (1.69): Ma=-0.2, Bi=1.0. (a) Surface profile after three buckling events (t=2 · 104).
Inset shows enlarged view of boxed region around left tertiary hump; (b) second buckling
event leading to tertiary hump; (c) third buckling event leading to leftmost quaternary
hump; (d) normalized flow rate contributions (8.2) for thick red profile in panel b. Open
circles mark loci of tertiary troughs. Thick red solid line: total flow rate q; dashed:
thermocapillary contribution q|Ma (8.2); dot-dot-dashed: capillary contribution q|σ.

in panel 8.6b, marked by an open circle in panel 8.6d), q|Ma counteracts the capillary
drain rate q|σ, which is always directed outward from the smallest hump. This leads to
a divergence point (red solid line in panel 8.6d changes sign), where the next-generation
trough will develop.

Thus, new troughs always develop on the inside of an existing one and this counteracts
the pealing mechanism required for the sliding instability (panel 8.2f). Also, the thermo-
capillary draining mechanism resists the surface perturbation associated with the sliding
mode (panels 8.3c and 8.3d). Considering the (nonlinear) thermocapillary growth rate
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contribution:

h−1 ∂th|Ma = −h−1 ∂xq|Ma ≈
MaBi

Bo
(∂xh)

2 +
1

2

MaBi

Bo
h ∂xxh, (8.3)

Marangoni stresses (Ma<0) reduce the thinning rate of a trough that has been flattened
(decreased in hxx) and increase the thinning rate of a trough that has been curved (in-
creased in hxx). These two thermocapillary effects explain why sliding is suppressed when
the liquid film is heated from the wall.

Impact of the work and relation to the current state of the art Our work
Dietze et al. (2018) has been cited 3 times according to Web of Science.

Pillai & Narayanan (2018b), who studied dielectric liquid films subject to the
Rayleigh-Taylor instability under additional transient electrostatic forcing, observed an
oscillatory sliding regime, where the minimal film thickness is reduced after each period.
Pillai & Narayanan (2020) have shown that the transition from sliding to cascaded buck-
ling (compare panels 8.2f and 8.6a), which occurs due to Marangoni stresses in our case,
can also be brought about via applying a steady electrical field to a film of dielectric
liquid. In that case, sliding is favoured by normal Maxwell stresses acting at the film sur-
face, whereas tangential stresses promote repeated buckling. Lerisson et al. (2020) have
invoked our work w.r.t to the formation of rivulets on a liquid film flowing underneath an
inclined wall.
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Figure 8.7: Experiment conducted at Tokyo University of Science (Nakamura et al.,
2020b). Contact line at the front of a liquid drop of silicone oil spreading on a smooth
substrate and entering into contact with a spherical particle of radius R⋆=25 µm:
ν1=2 × 10−6m2/s, ρ1=873 kg/m3 σ=0.0183 N/m. The static contact angles on the sub-
strate and particle are βs=5◦ and βp=20◦. (a) Top-view and side-view photographs at
different times; (b) contact line velocity obtained from image processing, evidencing an
accelerated spreading rate shortly after contact with the particle at time t0.

8.2 Drops spreading around microparticles

The results presented in this section were obtained in the context of an international
project “Fluid dynamics in the vicinity of a macroscopic contact line in interaction with
microparticles” lead by Ichiro Ueno at Tokyo University of Science. My role in this
project was to introduce a numerical approach to reproduce experiments on liquid-particle
interaction that were well under way at that time (figure 8.7). The basis for this was laid
with a Masters student, Motochika Inoue, who visited FAST for a 4 month period in 2015.
Subsequent simulations (figures 8.8 and 8.9) used in our publications (Nakamura et al.,
2020b,a) were performed by another student, Hayate Nakamura, at Tokyo University of
Science between 2019 and 2020. My contribution to the results presented here was mainly
in a supervising role.

We consider a liquid drop that spreads on a smooth horizontal substrate and comes
into contact with an individual micro-particle (figure 8.7). We assume a regime of partial
wetting, i.e. S<0, where S denotes the spreading parameter:

S = σSG − σSL − σ = σ {cos(β0)− 1} , (8.4)

introducing the solid/liquid and solid/gas interfacial tensions σSL and σSG, and the equi-
librium contact angle β0. In a broader sense, this configuration corresponds to the wetting
of rough surfaces, although the isolated-particle situation is clearly a limiting case.
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Figure 8.8: Numerical simulation of the experiment in figure 8.7. Dynamic contact angle
β (4.44) imposed on the substrate and particle, with β0=βs=5◦ and β0=βp=20◦. The
simulation was performed with the interFOAM solver (Rusche, 2002) at Tokyo University
of Science (Nakamura et al., 2020b). (a) Pressure field at different wall distances; (b) top
and side views of the liquid spreading around the particle; (c) time evolution of the liquid
meniscus on the downstream side of the particle.

Adding small-scale structures is known to enhance the wetting characteristics of a
given substrate material (Quéré, 2005): omniphobic (hydrophobic in the case of water)
substrates become super-omniphobic (Onda et al., 1996) and omniphilic substrates be-
come super-omniphilic (Bico et al., 2001). We are interested in the latter case, where
β0<

π
2
, and micro-structures accelerate liquid spreading (Cazabat & Stuart, 1986).

From a technological point of view, such a behaviour is useful for liquid transport in
small-scale two-phase systems, e.g. heat pipes (Jouhara et al., 2017) or labs on a chip
(Blanchard et al., 1996), and can be functionalized by appropriately designing the to-
pography of the micro-structure (Courbin et al., 2007). Conversely, the forces exerted
by the liquid on the particle are relevant for the cleaning of contaminated surfaces
(Aramrak et al., 2013; Zoueshtiagh et al., 2014).

Many studies have investigated the spreading of liquids on ordered arrays of structure
elements such as micro-pillars (Quéré, 2005; Bonn, 2009). Here, we focus on the interac-
tion between an advancing contact line and a single or a series of two isolated particles,
in order to elucidate the mechanisms underlying enhanced spreading.

Figure 8.7 displays results from an experiment at Tokyo University of Science, where
a droplet of low-viscosity silicone oil spreads on a smooth plane substrate and comes
into contact with an isolated spherical micro-particle of radius R. When the contact line
constituting the front of the spreading droplet has reached the particle, a meniscus is
formed around the foot of the latter. This meniscus, of initially very large curvature,
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Figure 8.9: Same numerical simulation as in figure 8.8 with an additional second particle
placed at a distance L⋆. (a) Formation of a liquid meniscus between the two particles
for L⋆=75, 100, and 125 µm; (b) time evolution of the contact line position (top) and
contact line velocity (bottom). Red solid: L⋆=75 µm, blue dashed: L⋆=100 µm, green
dot-dashed: L⋆=125 µm. Grey zones highlight the time spans during which the contact
line moves around the first and second particle.

sucks liquid toward it and rapidly rises until attaining a quasi-steady shape. As a result,
the thickness of the liquid film around the particle is considerably increased versus the
situation prior to first contact (panel 8.7a). At the same time, the spreading velocity U⋆

CL

of the contact line, which is now located downstream of the particle, is strongly increased
(panel 8.7b).

In Nakamura et al. (2020b), we reproduced the experiment from figure 8.7 via DNS
with the interFOAM5 solver (see section 4.1.3), in order to elucidate the mechanism un-
derlying contact line acceleration (figure 8.8). These DNS reproduce the dynamics of the
meniscus formation and the contact line acceleration in good agreement with the exper-
iment (compare panels 8.8b and 8.7a). The mechanism of this acceleration relies on two
ingredients, which both result from the rise of the meniscus around the particle. Firstly,
the increased thickness of the liquid film around the particle reduces viscous drag. Sec-
ondly, the increased slope of the film front at the contact line downstream of the particle
(panel 8.8c) projects the system back into a regime of faster liquid spreading. This is
evidenced by panel 8.8a, which represents pressure contours within wall-parallel planes of
different y. In particular, we observe a pronounced pressure minimum behind the parti-
cle, once the contact line has reached there (last two images from the lowest row). This
minimum is much lower than the pressure along the portions of the contact line that are
further away from the particle.

In Nakamura et al. (2020a), we applied the same numerical procedure to a two-particle
system (figure 8.9), where two identical particles were placed one behind the other at a
separation distance L⋆. In this case, the contact line acceleration is repeated at the

5Version 5 of the OpenFOAM package.
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Figure 8.10: Two-dimensional meniscus pump: liquid film spreading on a horizontal
substrate then rising on a vertical wall. DNS with Gerris: βs

0=5◦, βp
0=20◦, R⋆

0=0.755
mm, Bo=2.6 · 10−5 (silicone oil 2 in table 2.1). Dynamic contact angle β according to
(4.25) with c=10, L⋆

e=R
⋆
0, and L⋆

i=100 µm. Adaptive grid refinement with RLmax=8
based on L⋆=L⋆=0.125 mm. (a) Snapshots of the liquid-gas interface at t⋆=0, 0.12, 3.09,
3.66, 4.12, 4.43, and 9.16 ms; (b) time trace of the liquid Reynolds number Re1|x=0 at the
left domain boundary, where homogeneous Neumann boundary conditions are applied.

second particle. Moreover, the acceleration caused by the second particle results in a
larger maximum of U⋆

CL than the one caused by the first, as shown in panel 8.9b. Here,
we have plotted time traces of the contact line position x⋆CL and spreading velocity U⋆

CL for
three values of L⋆. Grey zones in these plots correspond to time spans where the contact
line is located underneath the equator of a given particle, their width depending on the
current spreading velocity U⋆

CL. We conclude from these data that the magnitude of the
second U⋆

CL maximum depends on the separation distance L⋆. When L⋆ is too large, the
inter-particle meniscus becomes too deep (panel 8.9a), which increases viscous drag within
the liquid film. By contrast, when L⋆ is too small (not shown here), the inter-particle
meniscus becomes too curved, which reduces the driving pressure drop across the second
particle.

Figure 8.10 represents a two-dimensional DNS performed with Gerris, which allows
to quantify the strength of the meniscus pump at the origin of the meniscus rise and
the resulting contact line acceleration observed in figures 8.8 and 8.9. In panel 8.10a, a
liquid film spreads on a horizontal plane substrate (βs=5◦) and then climbs up a vertical
pillar (βp=20◦) placed at the right domain boundary. Our simulation is started from an
initial condition representing a circular liquid drop of radius R⋆

0=0.755 mm, and we use
the same liquid properties as in the experiment of figure 8.7 (silicone oil II in table 2.1).
At the left domain boundary, x=0, we impose homogeneous Neumann conditions on all
variables. Thus, liquid can enter or leave the domain freely at this position, depending
on the spreading dynamics. Panel 8.10b represents the time trace of the liquid Reynolds
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Figure 8.11: Pressure-driven stratified water/air flow through a narrow channel in zero-
gravity environment. TWS from panel 2.14a: H⋆=0.39 mm, Ka=3592.3 (water I and air
III in table 2.1), Λ=200/3, h̄=1/3, M=-256.0, Re1=5.97, Re2=33.86. Streamlines in the
wave-fixed reference frame. (a) Full view; (b) blown up view of the shear layer near the
liquid-gas interface.

number Re1|x=0=q
⋆
1|x=0/ν1 at this position. At the time when the film moves onto the

pillar (t⋆ ≈ 3.1 ms), Re1|x=0 strongly increases, due to the sucking action of the meniscus
forming at the pillar foot. Then, it reaches a maximum and decreases again, attaining
zero when the meniscus has reached its static shape. The height of the Re1|x=0 maximum
is a measure of the pumping strength of the meniscus, which is considerable in our system.
Indeed, Re1|x=0 increases by one order of magnitude versus the spreading regime of the
film before contact with the pillar.

8.3 Pressure-driven liquid films in microgaps

Pressure-driven stratified liquid/gas flows through microgaps constitute an effective means
for the cooling of semiconductor devices in terrestrial and microgravity applications
(Kabov et al., 2011). In this configuration (panel 1.2b), a liquid film and gas flow co-
currently under the effect of an imposed pressure drop, and the film surface is subject
to the Yih instability (Yih, 1967), leading to the formation of nonlinear travelling waves
(Frank, 2008). We have shown in section 2.3.1 that our WRIBL model (1.27) captures
these waves accurately (figure 2.14). Here, we introduce several insights that we have
gained from computations with this model (Dietze & Ruyer-Quil, 2013), which are based
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on the zero-gravity superconfined water/air system studied by Frank (2008) (figures 8.11,
8.12, and 8.13).

Figure 8.11 represents streamlines in the wave-fixed reference frame for the TWS
from panel 2.14a. As shown in the blown up view from panel 8.11b, the discrepancy
in superficial velocity between the liquid (Re1=5.97) and gas (Re2=33.86) is reconciled
within an extremely thin shear layer around the film surface, which contains several
elongated vortices that are linked to the capillary ripples.

The mechanism underlying the surface waves can be identified based on figure 8.12.
There, we have plotted profiles of the streamwise derivative of the gas pressure P2 (panel
8.12b) and the gaseous tangential viscous stress T2 (panel 8.12c) acting at the film surface:

P2 = p2|h , (8.5a)

T2 = T ⋆
2

L
µ2 U2

= {− (∂yû2 + ∂xv̂2) + 4 ∂xh ∂xû2}h , (8.5b)
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Figure 8.13: Self-excited tsunami waves for the pressure-driven water/air flow from figure
8.11: H⋆=0.39 mm, Ka=3592.3 (water I and air III in table 2.1), L⋆=0.3 m, Re1=5.97,
Re2=33.86. Spatio-temporal computation on a domain of length L⋆=0.3 m using inlet
outlet/outlet conditions. A noisy perturbation (2.38) is applied at the inlet: ǫ1=0, ǫ2=4 ·
10−4. (a) Spatio-temporal diagram of the film height h; (b) film profile at t=187.1 (green
line in panel a).

where P2 is obtained from the pressure equation (1.33) and consistent at order ǫ2, and T2
is obtained from the RHS of (1.6b) when dropping the velocity corrections u

(1)
2 .

According to panel 8.12a, gaseous viscous stresses play only a minor role in shaping
the surface waves. Comparing the TWS profile obtained from our full model (1.27) (solid
line) with the solution in the limit Πµ=0 (dashed line), where viscous inter-phase coupling
is inactive, we observe only a very slight variation in wave amplitude and no alteration
in the general shape of the film profile. Thus, the pressure gradient (panel 8.12b) is
the necessary ingredient for the instability. Firstly, it drives the mean flow and thus
mimics the role of gravity in falling liquid films (section 5.1). Where the film is thicker,
it produces a larger liquid flow rate q1 and vice versa where the film is thinner. The
resulting flow rate discrepancies lead to an inertia-induced instability mechanism, similar
to the one discussed in panel 5.3b. Also, humps travel faster than troughs, leading to a
compression of the wave front and an elongation of the wave back. These features, along
with the occurrence of precursory capillary ripples (panel 8.12a), are very similar to those
observed in falling films subject to the Kapitza instability.

Secondly, variations in film height h considerably increase the pressure gradient at
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the wave hump (solid line in panel 8.12b), and this amplifies the instability mechanism.
This variation in pressure gradient is not due to a variation in dynamic pressure, the
contribution of which we have approximated by P2=

1
2
(q2/d)

2 (blue dot-dot-dashed line
in panel 8.12b), but due to variations in viscous drag, as a result of variations in the gas
layer thickness.

In figure 8.13, we demonstrate the fate of these surface waves in a spatially evolving
film, as obtained from a WRIBL computation with inlet/outlet conditions on an extended
domain (L⋆=0.3 m). Surface waves are excited through a purely noisy perturbation at
the liquid inlet, i.e. ǫ1=0 and ǫ2=4 · 10−4 in (2.38). The spatio-temporal diagram in
panel 8.13 shows that the train of surface waves is repeatedly disrupted by very large
amplitude tsunami waves that self-excite as a result of coalescence events. These waves
travel extremely fast and absorb all smaller waves travelling in front, leading to a repeated
and complete renewal of the film surface. This mechanism could be beneficial for scalar
inter-phase transfer, as it entails a renewal of the scalar boundary layer developing at the
film surface6.

6In some ways, this is similar to the effect of bump-shaped corrugations discussed in figure 6.20.
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ABSTRACT: We numerically investigate the behavior of a droplet spreading
on a smooth substrate with multiple obstacles. As experimental works have
indicated, the macroscopic contact line or the three-phase boundary line of a
droplet exhibits significant deformation resulting in a local acceleration by
successive interactions with an array of tiny obstacles settled on the substrate
(Mu et al., Langmuir 2019, 35). We focus on the menisci formation and the
resultant pressure and velocity fields inside a liquid film in a two-spherical-
particle system to realize an optimal design for the effective liquid-transport
phenomenon. Special attention is paid to the meniscus formation around the
second particle, which influences the liquid supply related to the pressure
difference around the first particle as a function of the distance between the
two particles. We find that the meniscus around the first particle plays an
additional role as the reservoir of the liquid supplied toward the second
particle, which is found to enhance the total pumping effect.

■ INTRODUCTION

Wetting is ubiquitous in nature, and nature exploits wetting.
For example, lotus leaves repel water droplets owing to their
microstructures,1 and certain insects move freely on a water
surface by deforming the free surface with their feet.2 Wetting
characteristics have been applied to numerous industrial
products such as inkjet printing,3 self-cleaning,4,5 fluid
management,6,7 antioil-fouling,8 self-assembly,9,10 and food
processing.11,12 In particular, to improve industrial equipment
such as heat pipes13 and “lab on a chip devices,”14 which are
designed to efficiently transport liquids, it is essential to have a
physical understanding of the spreading of liquids on solid
surfaces and to control this efficiently.
Liquid spreading is evaluated by monitoring the behavior of

a contact line (CL), which is a three-phase interface on a solid
surface. In particular, a visually confirmed CL is known as a
macroscopic CL (M-CL). Several studies have confirmed that
the correlation between the spreading radius R and spreading
time t of a liquid film on a smooth horizontal substrate can be
expressed as R ≈ ta. The exponent a depends on the dominant
force acting on the liquid film; the exponent becomes a = 1/10
in a surface tension-dominant regime,15 and a = 1/8 in a
gravity-dominant regime.16 In particular, the exponent
becomes a = 1/7 when the surface tension is dominant in
two-dimensional spreading where the liquid film spreads in
only one direction.15

The spreading of a liquid film on a rough substrate has also
been investigated. Cazabat and Cohen Stuart17 conducted a
series of experiments on a liquid spreading on a hydrophilic

rough glass surface and determined that the presence of the
roughness made the liquid film more susceptible to spreading
on the substrate. In recent years, a number of studies have
been conducted on the phenomenon where water droplets
deposit on a superhydrophilic surface where numerous
cylinders and prismatic structures are arranged, and the liquid
penetrates into the gaps between the structures (hemi-
wicking).18−23 Courbin et al.18 demonstrated that a water
droplet on a superhydrophilic surface changes its shape to
polygons such as a square or an octagon in the process of
spreading. Several studies have attributed this phenomenon to
the complex microscopic behavior of the liquid between the
rows of individual columns (zipping).19,22 Based on the above
results, Kim et al.23 constructed a scaling law to estimate the
hemiwicking velocity on a rough substrate for different pillar
arrangements by both macroscopic and microscopic ap-
proaches. They described the correlation from the equilibrium
equations of capillary driving force and viscous drag force
generated between the structure and the liquid film. Thus, to
understand macroscopic liquid behavior, it is important to
understand the microscopic, that is, the influence of individual
structures on liquid spreading.
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Chapter 9

Ongoing work: falling liquid films
sheared by a turbulent gas

Several industrial applications, such as compact reflux condensers (Vlachos et al., 2001) or
structured packings in distillation columns (Valluri et al., 2005), involve falling liquid films
sheared by a counter-current gas flow within a plane channel at intermediate confinement
levels, i.e. H⋆ ≥ 5 mm. At such confinement levels, in contrast to the strongly-confined
films discussed in chapter 6, the effect of the gas pressure gradient ∂xP2 on the liquid
film (which enters via equation 1.76) becomes less relevant in relation to the tangential
shear stress T2. Based on the notations in figure 1.5, and assuming primary flow, the
contributions of these two quantities to the liquid-side force balance are related as follows:

T2
h0 ∂xP2

=
d0
h0

{
1 +

Re2

Fr2
1

∂xP2

}
, (9.1)

where the second term on the RHS relates gravitational and pressure forces in the gas
and is usually small. According to (9.1), the contribution of T2 thus becomes dominant
as d0/h0 is increased.

Further, large gas velocities, typically involving turbulent flow conditions, are required
to significantly affect the falling liquid film, in particular when the configuration is ver-
tical (Trifonov, 2010). Although a geometrical obstruction of the channel due to large-
amplitude surface waves may still occur for moderate H⋆ (Vlachos et al., 2001), flood-
ing is usually associated with wave reversal (Kofman et al., 2017) and/or atomization
(Zapke & Kröger, 2000). However, the mechanisms underlying these catastrophic events,
which clearly involve surface waves, have not been fully understood.

In the PhD. thesis of Misa Ishimura, we have modelled this flow (figure 1.5)
via the approach introduced in section 1.4, which couples the WRIBL method of
Ruyer-Quil & Manneville (1998), applied to the falling liquid film, with the asymptotic
method of Camassa et al. (2017), applied to the gas flow. We have used this model to
study the effect of a confined turbulent gas flow on the linear and nonlinear dynamics of
surface waves, with the aim of identifying catastrophic events associated with flooding.

Samanta (2014), who employed a WRIBL model imposing a constant gas shear stress
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Figure 9.1: Inclined falling liquid film in contact with a counter-current turbulent gas
flow. Open-domain computations with our model (1.76) applying coherent inlet forcing
at frequency f . Experimental conditions from figure 4.10 in Kofman (2014): Ka=3174.3
(water IV and air V in table 2.1), φ=5◦, H⋆=19 mm, Re1=32.7, f ⋆=2.8 Hz. (a) Passive-
gas reference case (T2=∂xP2=0); (b) Re2=-4123; (c) Re2=-6713.

T2=const, observed a reduction in wave amplitude under the effect of a counter-current
gas flow. However, his model neglects the effect of the local instantaneous film surface
position d and its inclination ∂xd on the gas shear stress. As shown by the simulations of
Tseluiko & Kalliadasis (2011), which evidence an increase in wave height with increasing
counter-current gas flow rate, these effects can play a role even in the limit H⋆ →∞.

In this limit, the gas velocity profile u2 is insensitive to H⋆, and the pressure gradient
∂xP2 is negligible in the liquid-side problem. For the confinement levels studied in our
work (10 ≤ H⋆/h⋆0 ≤ 40), this approximation is not always applicable and thus the
confinement level, entering via H⋆ in our model (1.76), comes into play.

We recall that our gas-side model was developed in the limit ǫ=L2/Λ
⋆ ≪ 1. Although

we have chosen L2=H
⋆, this does not necessarily imply that our model is invalid for

H⋆>Λ⋆. Indeed, for a fully turbulent gas flow, the main wall-normal variation of the
velocity contributions U0 (1.95) and U1 (1.96) occurs over a distance much shorter than
H⋆ (panel 2.9a). Thus, L2=H

⋆ is a conservative estimate for the length scale of wall-
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Figure 9.2: Comparison of our WRIBL model (1.76) with the experiments of Kofman
(2014). Conditions according to figure 9.1. Time traces of film thickness h at a fixed
streamwise position x. Red symbols: experiment; solid black lines: open-domain com-
putations from figure 9.1; dashed green lines: TWS from figure 9.3. (a) Quiescent gas
(T2=∂xP2=0 in the computations); (b) Re2=-4123; (c) Re2=-6713.

normal gradients and our model is expected to work also for H⋆>Λ⋆.

Figure 9.1 represents numerical computations performed on an open-domain with our
model (1.76). Conditions correspond to the experiments in figure 4.10 of Kofman (2014),
which were performed in a weakly-inclined channel of height H⋆=19 mm using water and
air, and applying coherent inlet forcing at f ⋆=2.8 Hz. The counter-current gas flow rate
is increased, starting from the quiescent-gas reference case (panel 9.1a), until reaching
fully-turbulent conditions in the gas, i.e. Re1=-4123 (panel 9.1b) and Re1=-6713 (panel
9.1c). In all three panels, we observe spatial modulations of the wave height, which are
due to a secondary side-band instability first identified by Liu & Gollub (1993) in the
limit of a quiescent gas. Here, we see that the amplitude of these modulations increases,
as the counter-current gas flow is increased (from panel 9.1a to 9.1c). In figure 9.2, we
have confronted film thickness time traces obtained from these computations (solid black
curves) with the measurement data (red open circles) of Kofman (2014). According to
this, our model accurately captures both the increase in wave height and the suppression
of capillary ripples, caused by an increasingly-strong gas flow. The dashed green curves in
the same panels correspond to TWS obtained with Auto07P (figure 9.3), which constitute
the attractors around which the modulations of the side-band instability are organized.

Figure 9.3 represents different branches of TWS in terms of the gas Reynolds number
Re2. The solid black (2 CR), dashed red (3 CR), and dot-dot-dashed green (4 CR) curves
correspond to TWS at f ⋆=2.8 Hz with different numbers of capillary ripples (CR). These
different branches coexist and it is the fastest-moving solution, as identified by the wave
speed curves in panel 9.3b, that will prevail at large distances. For example, in the passive-
gas computation of panel 9.1a, the wave train moves from 3 CR to 4 CR. However, when
the counter-current gas flow rate is increased, the 4 CR branch in figure 9.3 disappears,
and 2 CR and 3 CR waves dominate from there on (panels 9.1b and 9.1c).

The dot-dot-dashed curves in figure 9.3 correspond to 2 CR TWS at the linearly most-
amplified frequency f=fmax. As |Re2| is increased, these most-amplified solutions move
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Figure 9.3: TWS obtained with our WRIBL model (1.76) for conditions corresponding
to figure 9.1: Re1=32.7, f ⋆=2.8 Hz. Different curves correspond to different numbers of
capillary ripples (CR). Dot-dashed green: 4 CR; dashed red: 3 CR; solid black: 2 CR;
dot-dot-dashed black: f=fmax, 2 CR; blue open circles: experimental data from figure
9.2. (a) Wave height; (b) wave celerity.

from the 3 CR to the 2 CR branch of the TWS at f ⋆=2.8 Hz (red dashed and black solid
curves in panel 9.3b). Thus, the 2 CR TWS at f=2.8 Hz become privileged from the
point of view of linear growth, although their nonlinear speed is lower. This is in line
with the wave forms in panel 9.1c. Of course, at long distances, the speed advantage of
3 CR solutions will prevail in an experiment. The speed discrepancy between 2 CR and
3 CR waves in panel 9.3 becomes very large starting from Re2=-104. Beyond this point,
the wave speed of the 3 CR branch (red dashed curve in panel 9.3b) increases, whereas
that of the 2 CR branch (solid black curve) keeps decreasing.

The increase in wave speed evidenced by the dashed red curve in panel 9.3b is ac-
companied by an accumulation of more and more new capillary ripples, which eventually
become so pronounced that they would be destroyed by spanwise capillary instability
(Kofman et al., 2014) in an experiment. The streamwise streaks in the experimental pho-
tographs represented in panels 3c and 3d of Kofman et al. (2017), could be evidence of
such a 3-dimensional disintegration of capillary ripples. Thus, in our current case of a
falling water film, where capillary ripples are very pronounced due to the large Kapitza
number (Ka=3174.3), our two-dimensional WRIBL model does not seem equipped to
study regimes at large |Re2|.

Instead, we consider the DMSO-water solution (Ka=509.5) from section 6.2.1, for
which we had identified an oscillatory instability in the case of superconfined vertically-
falling liquid films (figure 6.6). We focus on the same liquid-side flow conditions as in
panel 6.6, i.e. Re1=15 and f ⋆=16 Hz, but we use a much larger channel height (H⋆=10
mm) and a fully-turbulent gas flow (Re2<-1800).

Panel 9.4a represents linear growth rate dispersion curves for these conditions, as
|Re2| is increased toward the AI limit Re2=-8552. Panel 9.4b represents TWS. Black
solid (1 CR) and dashed (0 CR) curves correspond to the linearly most-amplified waves
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Figure 9.4: Vertically-falling liquid film from figure 6.6 subject to a turbulent gas flow in
a wide channel: Ka=509.5 (DMSO-water and air II in table 2.1), Re1=15, H⋆=10 mm.
(a) Linear spatial growth rate. From bottom to top: Re2=-2000, -4000, -5000, -6000,
-7500, and -8500. Red dot-dashed curve: maximum growth rate until AI limit ReAI

2 =-
8552. Vertical line: f ⋆=16 Hz; (b) TWS at f=fmax (black solid and dashed curves) and
f ⋆=16 Hz (blue dot-dashed, dot-dot-dashed, and open circles). Dashed/dot-dot-dashed:
0 capillary ripples (CR), solid: 1 CR, dot-dashed: 2 CR, open circles: >1 CR.

at f=fmax, whereas the blue dot-dashed curves (2 CR), dot-dot-dashed curves (0 CR),
and curves with open circles (several CR) correspond to solitary waves at f ⋆=16 Hz.
TWS on the two f=fmax solution branches (black curves) exist up to the AI limit, similar
to our observations for superconfined films (panel 6.4). The solitary TWS at f ⋆=16 Hz
(blue curves) extend beyond the AI limit, and they can be bounded by a nonlinear limit
point (LP). However, their linear growth rate diminishes w.r.t. that of the most-amplified
waves as |Re2| is increased (panel 9.4a), and thus they become less likely to prevail in an
experiment.

Figure 9.5 represents results of an open-domain computation with our WRIBL model
for the system in figure 9.4. In this computation, we have forced solitary waves through
coherent inlet forcing at f ⋆=16 Hz, and incrementally increased the counter-current gas
flow rate toward the AI bound ReAI

2 =-8552. Sufficiently far from the AI bound (Re2=-
6500), the liquid film responds well to the inlet forcing, leading to a regular train of
solitary waves (panel 9.4a). By contrast, for Re2=-7500 (panels 9.5b to 9.5e), a train of
high frequency waves develops near the liquid inlet (panels 9.5a and 9.5d). These waves
still propagate downstream, but their spatial growth rate is extremely large, so that they
saturate within one wavelength (panel 9.5b).

They result from noise-sustained linear wave selection, and thus the wave train ex-
hibits small defects that lead to coalescence events and coarsening dynamics (Chang et al.,
1996c) further downstream (panel 9.5b). The resulting large-amplitude tsunami waves are
separated by long portions of residual film. It is here that absolute instability takes hold
to form rapidly growing (in time) secondary waves, which are almost standing. This can
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Figure 9.5: Vertically-falling liquid film from figure 9.4 leading up to the AI limit:
Ka=509.46, H⋆=10 mm, Re1=15, ReAI

2 =-8552. WRIBL computations on an open do-
main of length L⋆=0.843 m, using coherent inlet forcing (2.38): f ⋆=16 Hz, ǫ1=0.01,
ǫ2=0. (a) Re2=-6500; (b-e) Re2=-7500. (a,b) Snapshots of the fully developed film pro-
file h(x). Red segment corresponds to slightly later time and green curve indicates spatial
oscillation undergone by the large wave crests; (c) spatio-temporal diagram of normalized
film height h/hmax; (d,e) film height time traces h(t) at x/L=0.1 and x/L=0.6.

be deduced by confronting the spatial and temporal film height profiles in panels 9.5b and
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9.5e. In the spatio-temporal plot of panel 9.5c, these secondary waves appear as almost
horizontal streaks connecting to the downward sloping fronts of the tsunami waves. This
structure is similar to the ripples observed experimentally in panel 20b of Kofman et al.
(2017), although those ripples moved upward. The experiments of Kofman et al. (2017)
were conducted in a weakly-inclined channel using water. For such configurations, we have
found that the liquid flow rate q1 in the residual film in between large waves can become
negative, thus allowing for a transition from downward-convective to upward-convective
instability via absolute instability (Vellingiri et al., 2015; Schmidt et al., 2016). This may
explain the difference between the experimental observation of Kofman et al. (2017) and
the downward-travelling ripples observed in our vertically-falling liquid film (panel 9.5c).

Having said this, the ripples observed in panel 9.5c move extremely slowly, i.e. they
are much slower than the tsunami waves. This can be observed by comparing the full
profile in panel 9.5b (solid black line) with the red profile segment, which corresponds to a
slightly later time. During the time span separating these two profiles, the tsunami waves
have visibly moved, while the ripples have not. As a result of this speed discrepancy,
the large wave humps move over the ripples and this causes a strong modulation of their
amplitude (green curve tracking one of the wave maxima in panel 9.5b). Although the
cause for these modulations is quite different from that for the oscillatory instability in
panel 6.6c, their effect on heat and mass transfer is expected to be equally beneficial.
Based on the result in figure 9.5, it seems that wave regimes leading up to the AI limit
are not necessarily dangerous, and may even be useful.

The assumptions underlying the representation of turbulence in our WRIBL model
from section 1.4 are quite crude. We use a mixing-length model to represent the turbulent
viscosity, we assume that the liquid-gas interface behaves like a wall from the point of
view of the gas (turbulent fluctuations at the liquid-gas interface are neglected), and, due
to our first-order long-wave formulation, only the ρ2u′2v

′
2 Reynolds stress is accounted for.

Although our comparisons with the experiments of Kofman et al. (2017) (figure 9.2) give
some confidence in our approach, it would be helpful to check our assumptions against
numerical simulations based on the full unsteady RANS equations, large eddy simulations
(LES), or DNS. For example, Adjoua (2010) have developed a two-phase VOF solver
within the JADIM code, where turbulence is resolved through the LES approach. This
code has been applied to the simulation of horizontal liquid films driven by a co-current
turbulent gas flow (Adjoua & Magnaudet, 2009). Based on their results, the authors
concluded that the liquid-gas interface can be considered as a solid wall from the point
of view of the gas.





Chapter 10

Conclusions and outlook

Part of the work presented in this document has been to develop low-dimensional mod-
els that capture the dynamics of two-fluid films flows with interfacial instabilities. In
particular, we have applied the weighted residual integral boundary layer (WRIBL) ap-
proach, originally developed for single-phase film flows (Ruyer-Quil & Manneville, 1998),
to two-phase systems.

Based on the validation in section 2.3 and the physical studies reported in chapters
5 to 9, we may conclude that: (i) the two-phase WRIBL approach produces accurate
quantitative predictions for realistic two-phase flows; (ii) this approach is a useful tool for
elucidating the physics of such flows. For example, the noise-driven occlusion regime in
panel 7.3a required simulating a falling liquid film within a long cylindrical tube (L⋆=1
m) for a long physical duration (4.6 washout periods), to attain a statistically developed
state. The direct numerical simulation (DNS) of such a flow is prohibitive, even when
using parallel computing, because the explicit time discretization scheme used for the
advection equation (4.29) in the VOF method imposes very small time steps. Another
example is the spontaneous sliding phenomenon observed in our computations of mucus
films (panel 7.11), which involves portions where the film thickness is extremely thin. The
DNS of this flow requires a substantial local grid refinement, which limits the time step and
increases the computational cost considerably. By contrast, our WRIBL models require
no numerical discretization in wall-normal direction. And, they allow an a posteriori
reconstruction of the flow field (e.g. figure 7.12) via the analytical base velocity profiles û
(1.49) and v̂ (1.50).

The numerical continuation of travelling-wave solutions (TWS) based on our WRIBL
models, and the investigation of their stability, has proven to be a useful approach for
identifying and predicting critical events in wavy two-fluid film flows, such as the onset
of oscillatory or catastrophic secondary instabilities in narrow channels (figures 6.6 and
6.8) or the occlusion of narrow cylindrical tubes (figure 7.2). Further, our WRIBL models
are an efficient tool for linear stability analysis, versus solving the full Orr-Sommerfeld
equations. For example, we have simultaneously solved the linear stability problem within
our computations of nonlinear TWS, thus allowing to track the linearly most-amplified
nonlinear waves (panel 7.2a), and to monitor the absolute instability (AI) bound (figure
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6.13). Also, the low-dimensional formulation of our models has enabled us to apply the
transient stability analysis method of Balestra et al. (2016), which searches for arbitrary
instability modes, i.e. not necessarily normal modes. This enabled us to elucidate the
secondary sliding instability of films subject to the Rayleigh-Taylor instability (section
8.1), where the nonlinear primary flow evolves in time (figure 8.4). Moreover, WRIBL
models can be useful for considering limiting cases, such as no inter-phase viscous coupling
(Πµ=0) or no pressure coupling (Πρ=0) in liquid-gas flows. This allows to identify the
dominant physical effects. For example, we established in panel 8.12 that interfacial
tangential stresses play only a minor role in the instability of pressure-driven water-air
flow through a narrow horizontal channel.

Importantly, we have developed our WRIBL models up to second order in the long-
wave parameter ǫ=Λ⋆/H⋆ (except for inertial terms, which are truncated at first order).
Thus, viscous diffusion in wall-parallel direction is accounted for, in contrast to many other
modelling works from the literature. We have found that this effect can play an important
role in several of the studied flows. For example, it greatly precipitates occlusion in high-
viscosity falling liquid films within narrow cylindrical tubes (figure 7.6), and it favours
the onset of spontaneous sliding in mucus films (figure 7.13).

Of course, our WRIBL models, which rely on a long-wave approximation, have their
limitations. Clearly, short wave instability modes cannot be accounted for. This imposes
severe limitations on their use for liquid-liquid systems (Preziosi et al., 1989). Also, sur-
face tension should always be dominant over inertia, which we have accounted for only up
to first order. This restricts our models to moderate Reynolds numbers for usual working
fluids, although we have shown them to work for liquid films sheared by a turbulent gas
flow. In this case, part of the momentum transport can be modelled via a diffusional term
based on the Boussinesq hypothesis, which improves the order of our approximation of
inertia.

In chapters 5 to 9, we have investigated several physical problems based on linear
stability analysis, nonlinear WRIBL computations, and DNS. The salient results obtained
from these studies have been summarized at the start of each chapter and their impact on
the literature has been discussed at the end of individual sections. Thus, I will attempt
here to draw overarching conclusions from the body of work presented in this document.

One overarching feature of the film flows studied in chapters 5 to 9 have been surface
waves resulting from convective instability, which play an important role both hydrody-
namically and in terms of scalar transport. From our different investigations, we may
conclude that controlling such surface waves is not only feasible but also a promising
route toward optimizing small-scale two-phase systems. For example, we have shown
that temporal forcing can be applied to avoid catastrophic events, such as the occlusion
of narrow planar channels (panel 6.10) or cylindrical tubes (panel 7.10). On the other
hand, we have demonstrated that additional spatial forcing via wall-corrugations can be
used to significantly intensify inter-phase scalar transfer (figure 6.16).

Our work on superconfined falling liquid films (chapter 6) has uncovered a new field of
regimes, with a rich dynamics and interesting potential for applications involving minia-
turized two-phase systems (Lapkin & Anastas, 2018). We were surprised to find that the
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Kapitza instability underlying surface waves in falling liquid films can be fully suppressed
in such systems, either linearly (panel 6.2b) or nonlinearly (panel 6.13c), by a counter-
current gas flow. Thus, superconfined films are not necessarily more prone to flooding.
They may even constitute a route toward optimal regimes that maximize heat transfer
while avoiding catastrophic events. For example, the oscillatory instability uncovered in
figure 6.6, allows to enhance mixing within individual surface waves (figure 6.7) without
risking the flooding of the channel. Moreover, the complexity of the wave modulation
can be tuned by increasing the gas flow rate. This works until a certain limit, where
TWS undergo a catastrophic instability involving wave reversal (figure 6.8). Such de-
tailed investigations allow to identify precisely the onset of catastrophic events, and thus
to push the boundaries for the design of current systems beyond conservative guidelines.
Of course, most of our studies have been limited to two-dimensional flows. The robustness
of our conclusions for three-dimensional geometries remains to be proven, and this is an
interesting route for future work.

Another goal of this document has been to break down as far as possible the governing
mechanisms underlying the phenomena studied. This has allowed to explain in simple
terms, why precursory capillary ripples form on falling liquid films (section 5.1), why
large-amplitude wave humps can oscillate between two- and three-dimensional wave forms
(section 5.2), how surface waves are suppressed by a strongly-confined counter-current
gas flow (section 6.1), why the occlusion of narrow tubes is precipitated by axial viscous
diffusion in high-viscosity falling liquid films (section 7.1), and why thin films subject
to the Rayleigh-Taylor instability spontaneously slide (section 8.1). Such a mechanistic
understanding can help to extend or exploit our results. For example, we have found that
the secondary troughs arising during the draining of a vapour film underneath a liquid
layer (panel 8.5a) play an important role in the siding instability discussed in section 8.1.
It is known that the vapour film underneath a Leidenfrost drop displays a similar buckled
shape with two pronounced troughs (Burton et al., 2012) and such drops are known to
slide spontaneously (Bouillant et al., 2018).

Finally, the work presented in this document has opened up several routes for future
research. Over a short time horizon, I plan to extend several of the investigations reported
in this work. Our modelling work on falling liquid films sheared by a turbulent gas flow
(chapter 9), which is part of the PhD. thesis of Misa Ishimura, has produced promising
results. To improve our representation of the gas-liquid coupling, we plan to apply the
WRIBL approach also to the gas phase, instead of using asymptotic expansion to obtain
the coupling quantities T2 and ∂xP2 in equation (1.76). This should extend the range of
validity of the model to even higher values of the gas Reynolds number, and, possibly, to
approach typical operating conditions for air separation units.

Regarding the modelling of annular liquid films (sections 1.2, 2.1.2, 2.2.3, 2.3.2, and
chapter 7), I am proud to have found a formalism for the representation of liquid plugs
within the WRIBL approach (1.60b). This formalism yields excellent predictions of trav-
elling liquid plugs (figures 2.19, 2.20, and 2.21). I plan to use it to study occluded flows in
different configurations, e.g. falling liquid films (currently ongoing), pressure-driven core
annular flows (collaboration with Gianluca Lavalle, École des Mines Saint-Étienne), and
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rising bubbles in cylindrical tubes.

Thirdly, my collaboration with Ranga Narayanan (University of Florida) on thin films
subject to the Rayleigh-Taylor and Marangoni instabilities will continue in the context of
a Chateaubriand fellowship awarded to Igin Ignatius, who will join FAST in March 2022.
We will work on modelling heated liquid films subject to the Marangoni instability, with
the aim of suppressing surface deformations via mechanical vibrations.

I also plan to continue investigating heat and mass transfer in falling liquid films (sec-
tion 6.2). Recently, Collignon et al. (2021) applied a two-color Laser-Induced-Fluorescence
(LIF) technique to measure the temperature field within the cross-section of a heated
falling liquid film. For some regimes, their data evidence a very large zone of cold fluid
within the wave humps, which extends all the way to the bounding wall. We aim to per-
form DNS with Basilisk to elucidate the origin of this large mixing zone. This work will
involve a collaboration with Guillaume Castanet (Université de Lorraine) and Christian
Ruyer-Quil (Université Savoie Mont Blanc) in the context of the postdoctoral project of
Romain Collignon.

Over a mid-term time horizon, I plan to work on two problems that involve additional
physical effects. First, my collaboration with Air Liquide will move into a new direction:
falling liquid films formed by condensing nitrogen vapour. In a cryogenic air separation
unit, this flow occurs within the so-called vaporizer-condenser, which is used to liquefy
gaseous nitrogen formed in the high-pressure portion of a distillation column, in order
to expand it in the low-pressure portion. In this case, the Kapitza instability underlying
the formation of surface waves is modified through the phase change occurring at the
liquid/gas interface. Condensation has a stabilizing effect, whereas evaporation has a
destabilizing effect. This work will take place in the context of a CIFRE PhD. thesis,
which will be supervised by Jacopo Seiwert at Air Liquide and myself at FAST, and which
will start in 2022. The project also involves Christian Ruyer-Quil (Université Savoie
Mont Blanc) and Sophie Mergui (FAST). The aim is to intensify condensation via three-
dimensional wall corrugations. Figure 10.1 shows preliminary computations of falling
liquid films subject to condensation (panel 10.1a) or evaporation (panel 10.1b) at the
film surface. These computations were performed with a new WRIBL model accounting
for phase change. Additional physical effects, such as wall-corrugations (Oron & Heining,
2008) and the onset of condensation on an initially dry substrate (Oron & Bankoff, 2001),
need to be incorporated into this model.

Second, our work on the interaction between contact lines and micro-particles (section
8.1) will be extended in the context of the ANR project FEFS (Fluid Engineering for
Food Security), which is headed by Farzam Zoueshtiagh (Université de Lille), and which
I joined in October 2021. This project aims at using microfluidics to clean surfaces
contaminated by bacteria. In particular, I will use DNS to elucidate the forces exerted by
a liquid/gas two-phase flow on model bacteria spores adhering to a solid wall. Compared
to our previous studies of film-particle interaction (section 8.2), this will involve much
smaller objects (R⋆ ∼ 50µm→ R⋆ ∼ 1µm). An enticing prospect is to model such flows
via the WRIBL approach, by representing the wet to dry transition with a precursor film
(Thiele et al., 2001).
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Figure 10.1: Falling liquid films subject to condensation and evaporation at the film
surface. Computations via a new WRIBL model incorporating phase-change. (a) Liquid
nitrogen film formed by spontaneous condensation on a cold substrate. Upstream, where
the film is thin, the stabilizing effect of condensation enforces a smooth film surface.
Further downstream, the Kapitza instability becomes dominant and produces surface
waves; (b) evaporating falling liquid film flowing on a hot substrate. The mean film
thickness decreases in streamwise direction as a result of the evaporation, which also
leads to a reduction of the wave amplitude.

Over a long time horizon, there are two ambitious research perspectives that I am
interested in pursuing. The first concerns mucus films in the pulmonary airways. Our first
investigation of such films (section 7.2) showed that the two-phase WRIBL approach is
well equipped for studying such biological flows, owing to the low Reynolds number values
and strong confinement levels involved. However, in Dietze & Ruyer-Quil (2015), we made
quite crude assumptions about the rheology of the mucus, i.e. it was represented via a high-
viscosity Newtonian fluid. Real pulmonary mucus is viscoelastic, shear-thinning, and has
a (small) yield stress (Spagnolie, 2015). Accounting for viscoelasticity within the WRIBL
method or other low-dimensional approaches is possible, as has been shown for planar
films (Amatousse et al., 2012; Uma & Usha, 2006; Saprykin et al., 2007; Halpern et al.,
2010) and annular falling liquid films (Zhou et al., 2016). Based on this, I have recently
started work on a new project, mucusFILM (funded by Labex LaSIPS), which is aimed
at modelling ciliary clearance (Bottier et al., 2017) of viscoelastic mucus films in contact
with a gas flow. This project, of which I am the PI, involves Marcel Filoche (École
Polytechnique) and Nicolas Grenier (Université Paris-Saclay), as well as a postdoctoral
fellow, Anjishnu Choudhury, who has started work at FAST in September 2021. Figure
10.2 represents results of two preliminary DNS using Basilisk, wherein a viscoelastic
mucus film is subjected to a metachronal wave mimimicking the momentum transfer
from beating cilia. The full numerical representation of this flow, which also includes fluid-
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Figure 10.2: Viscoelastic mucus film of height h0=h
⋆
0/Λ

⋆ subject to a metachronal wave of
wavelength Λ and frequency f , mimicked through a spatio-temporally varying wall veloc-
ity uw: Λ⋆=2π/k⋆=20 µm, f ⋆=ω⋆/2π=10 Hz, uw=û cos (k x− ω t). DNS via Basilisk

using the Oldroyd-B model with solvent and polymeric viscosities µs and µp and relaxation
time λ: µ1=µs=0.65 Pas, β=µs/(µs + µp)=0.5, λ=0.06 s. (a) Velocity vectors evidencing
travelling vortices generated by the metachronal wave: h⋆0=10 µm, û⋆=0.1 mm/s; (b) time
trace of the liquid Reynolds number Re1=q̄

⋆
1/ν1: h0=50 µm, û=1 mm/s.

structure interaction between cilia and liquid (Sedaghat et al., 2022), for physiologically
representative conditions has been identified as an urgent and unresolved task (Levy et al.,
2014). I am tempted to work on this challenge, with the aim of elucidating the underlying
hydrodynamics of respiratory diseases and identifying ways of curing them.

The second long-term research perspective is the problem of turbulence in falling liquid
films. Based on our three-dimensional DNS of laminar falling liquid films (section 5.2), we
have suggested an explanation for why the transition to turbulence occurs at much lower
Reynolds numbers in falling liquid films compared to wall-bounded flows. We believe that
this is due to a very substantial increase of the local liquid Reynolds number Re1 and
inverse Weber number We−1 within the wave humps, which we have observed for laminar
flow regimes (panel 5.11a). However, this conjecture needs to be verified via simulations
of actual turbulent regimes. Also, the nature of turbulence in falling liquid films and its
interaction with the film’s waviness remain to be elucidated.

Only very few experimental works have addressed the subject (Adomeit & Renz, 2000;
Ishigai et al., 1972; Mascarenhas & Mudawar, 2013). For example, Adomeit & Renz (2000)
observed regions of extreme surface curvature within the large wave humps, where they
suspected turbulent spots to exist. But, no experimental data about the flow field in
these regions was available. The Reynolds dye experiments of Ishigai et al. (1972) iden-
tified a wave-induced turbulence regime in the range 2.2Ka3/10 ≤ Re1 < 75, as well as
an extended transitional regime of wall-induced turbulence in the range 75 ≤ Re1 < 400,
before the flow becomes fully turbulent. However, these experiments did not characterise
the wave dynamics associated with the different regimes.
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To fill these gaps, we plan to perform fully-resolved DNS of three-dimensional falling
liquid films using Basilisk, which has been optimized for high-performance comput-
ing. By elucidating the transition to turbulence in falling liquid films, results ob-
tained could allow to orient the development of turbulence models for falling liquid films
(Mukhopadhyay et al., 2017). An even more ambitious step will be to quantify the effect
of wave-induced turbulence on wall-side heat transfer (Pr ∼ 10) and inter-phase mass
transfer (Sc > 100). This entire topic may be well suited for an ANR project involving
experiments, numerical simulations, linear stability analysis, and bifurcation theory.





Appendix A

Coefficients of WRIBL models

The expressions for all coefficients reported in this appendix have been inserted into the
current LATEX document automatically from the corresponding Mathematica source files
using the Splice command. This avoids manual transcription errors. As a result of the
automatic transcription, the notation for derivatives is different than in the main body of
the document. For functions of the form w(y) and f(y, h) with h=h(x, t), the following
definitions apply:

w′(y) = ∂yw,

f (n,0)(y, h) = (∂y)
nf, f (0,n)(y, h) = (∂h)

nf, f (1,1)(h, h) = (∂yhf)|y=h .
(A.1)

A.1 Planar model

The coefficients fki of the streamwise velocity component’s base profile ûk (1.17) are as
follows:

f11 =
3y (y (−4hΠµ + h−H) + 2h (h (2Πµ − 1) +H))

2h3 (h (Πµ − 1) +H)
(A.2a)

f12 =
3y(2h− 3y)ΠµΠu

2h(h−H) (h (Πµ − 1) +H)
(A.2b)

f21 = −
3(H − y)(2h+H − 3y)

2h(h−H)Πu (h (Πµ − 1) +H)
(A.2c)

f22 = −
3(H − y) (−2h2 (Πµ − 2) + h(H + y) (Πµ − 4) + 4Hy)

2(h−H)3 (h (Πµ − 1) +H)
(A.2d)
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The coefficients gk1, gk2, gk3, and gk4 of the wall-normal velocity component’s base profile
v̂k (1.22) are as follows. For the liquid (k=1):

g11 = −
∫ y

0

f11
(0,1) (ỹ, h) dỹ, g12 = −

∫ y

0

f12
(0,1) (ỹ, h) dỹ,

g13 = −
∫ y

0

f11 (ỹ, h) dỹ, g14 = −
∫ y

0

f12 (ỹ, h) dỹ,

(A.3a)

and for the gas (k=2):

g21 =

∫ H

y

f21
(0,1) (ỹ, h) dỹ, g22 =

∫ H

y

f22
(0,1) (ỹ, h) dỹ,

g23 =

∫ H

y

f21 (ỹ, h) dỹ, g24 =

∫ H

y

f22 (ỹ, h) dỹ.

(A.3b)

The coefficients Si, Fij, Gij, Ci, Ji, Ki, Li, and Mi of the momentum equation (1.27) are
defined on the next pages.
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A.2 Cylindrical model

The coefficients fki of the streamwise velocity component’s base profile ûk (1.49) are as
follows (where “log” refers to the natural logarithm):

f11 =
log(R) ((8d2 − 8r2) Πµ − 4d2)

Ξ
+

log(r) ((8R2 − 8d2) Πµ + 4d2)

Ξ
(A.4a)
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Ξ
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Ξ
,
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4r2R2

d2
− 4R4

d2
− 4r2 + 4R2

)

Ξ
(A.4b)

+

(
−4R4

d2
− 4d2 + 8R2

)
ΠµΠu log(r)

Ξ
+

log(d)ΠµΠu (8r
2 − 8R2)

Ξ
,

f21 =
4r2R2

d2
+ 2d2 − 4r2 − 2R2

ΞΠu

+
(4d2 − 8r2) log(R)

ΞΠu

+
(8r2 − 4d2) log(d)

ΞΠu

, (A.4c)

f22 =
log(d)

((
4d2 − 4R4

d2

)
Πµ − 8d2 + 8r2

)

Ξ
+

log(R)
((

4R4

d2
− 4d2

)
Πµ + 8d2 − 8r2

)

Ξ

+
−2r2R4

d4
+
(
−4R4

d2
− 4d2 + 8R2

)
Πµ +

8r2R2

d2
+ 2R4

d2
+ 6d2 − 6r2 − 8R2

Ξ
, (A.4d)

where we have extracted the common factor Ξ:

Ξ = π log(d)
((
4d4 − 4R4

)
Πµ − 4d4

)
+ π log(R)

((
4R4 − 4d4

)
Πµ + 4d4

)
(A.4e)

+ π
(
−4d4 + 8d2R2 − 4R4

)
Πµ + π

(
3d4 − 4d2R2 +R4

)
.

The coefficients gk1, gk2, gk3, and gk4 of the wall-normal velocity component’s base
profile v̂k (1.50) are as follows. For the liquid film (k=1):

g11 =

∫ R

r
r̃f11

(0,1) (r̃, d) dr̃

r
, g12 =

∫ R

r
r̃f12

(0,1) (r̃, d) dr̃

r
,

g13 =

∫ R

r
r̃f11 (r̃, d) dr̃

r
, g14 =

∫ R

r
r̃f12 (r̃, d) dr̃

r
,

(A.5a)

and for the core fluid (k=2):

g21 = −
∫ r

0
r̃f21

(0,1) (r̃, d) dr̃

r
, g22 = −

∫ r

0
r̃f22

(0,1) (r̃, d) dr̃

r
,

g23 = −
∫ r

0
r̃f21 (r̃, d) dr̃

r
, g24 = −

∫ r

0
r̃f22 (r̃, d) dr̃

r
.

(A.5b)
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The coefficients Si, Fij, Gij, Ci, Ji, Ki, Li, and Mi of the momentum equation (1.48) are
defined on the next pages.



(1)

S1 = ΠρΠ
2
u

(∫ d

0

rw2(r)f21(r, d) dr

)
+

∫ R

d

rw1(r)f11(r, d) dr

S2 = ΠρΠ
2
u

(∫ d

0

rw2(r)f22(r, d) dr

)
+

∫ R

d

rw1(r)f12(r, d) dr

F11 = ΠρΠ
3
u

(∫ d

0

rw2(r)f21
(1,0)(r, d)g23(r, d) dr +

∫ d

0

rw2(r)f21(r, d)2 dr

)

+

∫ R

d

rw1(r)f11
(1,0)(r, d)g13(r, d) dr

+

∫ R

d

rw1(r)f11(r, d)2 dr +

∫ R
d
rw1(r)f11

(0,1)(r, d) dr

2πd

F12 = ΠρΠ
3
u

(∫ d

0

rw2(r)f21
(1,0)(r, d)g24(r, d) dr +

∫ d

0

rw2(r)f21(r, d)f22(r, d) dr

−
∫ d
0
rw2(r)f21

(0,1)(r, d) dr

2πd

)

+

∫ R

d

rw1(r)f11
(1,0)(r, d)g14(r, d) dr +

∫ R

d

rw1(r)f11(r, d)f12(r, d) dr

F21 = ΠρΠ
3
u

(∫ d

0

rw2(r)f22
(1,0)(r, d)g23(r, d) dr +

∫ d

0

rw2(r)f21(r, d)f22(r, d) dr

)

+

∫ R

d

rw1(r)f12
(1,0)(r, d)g13(r, d) dr

+

∫ R

d

rw1(r)f11(r, d)f12(r, d) dr +

∫ R
d
rw1(r)f12

(0,1)(r, d) dr

2πd

F22 = ΠρΠ
3
u

(∫ d

0

rw2(r)f22
(1,0)(r, d)g24(r, d) dr +

∫ d

0

rw2(r)f22(r, d)2 dr

−
∫ d
0
rw2(r)f22

(0,1)(r, d) dr

2πd

)

+

∫ R

d

rw1(r)f12
(1,0)(r, d)g14(r, d) dr +

∫ R

d

rw1(r)f12(r, d)2 dr

G11 = ΠρΠ
3
u

(∫ d

0

rw2(r)f21
(1,0)(r, d)g21(r, d) dr +

∫ d

0

rw2(r)f21(r, d)f21
(0,1)(r, d) dr

)

+

∫ R

d

rw1(r)f11
(1,0)(r, d)g11(r, d) dr +

∫ R

d

rw1(r)f11(r, d)f11
(0,1)(r, d) dr
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G12 = G21

=
1

2
ΠρΠ

3
u

(∫ d

0

rw2(r)f21
(1,0)(r, d)g22(r, d) dr +

∫ d

0

rw2(r)f22
(1,0)(r, d)g21(r, d) dr

+

∫ d

0

rw2(r)f22(r, d)f21
(0,1)(r, d) dr +

∫ d

0

rw2(r)f21(r, d)f22
(0,1)(r, d) dr

)

+
1

2

(∫ R

d

rw1(r)f11
(1,0)(r, d)g12(r, d) dr +

∫ R

d

rw1(r)f12
(1,0)(r, d)g11(r, d) dr

+

∫ R

d

rw1(r)f12(r, d)f11
(0,1)(r, d) dr +

∫ R

d

rw1(r)f11(r, d)f12
(0,1)(r, d) dr

)

G22 = ΠρΠ
3
u

(∫ d

0

rw2(r)f22
(1,0)(r, d)g22(r, d) dr +

∫ d

0

rw2(r)f22(r, d)f22
(0,1)(r, d) dr

)

+

∫ R

d

rw1(r)f12
(1,0)(r, d)g12(r, d) dr +

∫ R

d

rw1(r)f12(r, d)f12
(0,1)(r, d) dr

C1 = 2π

(
Re−12 ΠρΠ

3
u

(∫ d

0

w2(r)f21
(1,0)(r, d) dr +

∫ d

0

rw2(r)f21
(2,0)(r, d) dr

)

+ Re−11

(∫ R

d

w1(r)f11
(1,0)(r, d) dr +

∫ R

d

rw1(r)f11
(2,0)(r, d) dr

))

C2 = 2π

(
Re−12 ΠρΠ

3
u

(∫ d

0

w2(r)f21
(1,0)(r, d) dr +

∫ d

0

rw2(r)f21
(2,0)(r, d) dr

)

+ Re−11

(∫ R

d

w1(r)f11
(1,0)(r, d) dr +

∫ R

d

rw1(r)f11
(2,0)(r, d) dr

))

J1 = Re−11


−

2g11(d, d)
(∫ R

d
rw1(r) dr

)

d2
+ 2

∫ R

d

rw1(r)f11
(0,2)(r, d) dr

+ f11
(0,2)(d, d)

(∫ R

d

rw1(r) dr

)
+ f11

(1,1)(d, d)

(∫ R

d

rw1(r) dr

)

+
2g11

(0,1)(d, d)
(∫ R

d
rw1(r) dr

)

d
+

2g11
(1,0)(d, d)

(∫ R
d
rw1(r) dr

)

d




+ Re−11 ΠµΠ2
u

(
2dw2(d)f21

(0,1)(d, d)− dw2(d)g21
(0,1)(d, d)− 2dw2(d)g21

(1,0)(d, d)
)

+ Re−11 Πu

(
−4dw2(d)f11

(0,1)(d, d)− 2w2(d)g11(d, d) + dw2(d)g11
(0,1)(d, d)

)

+ Re−12 ΠρΠ
3
u

(
2

∫ d

0

rw2(r)f21
(0,2)(r, d) dr − f21(0,2)(d, d)

(∫ d

0

rw2(r) dr

)

− f21(1,1)(d, d)

(∫ d

0

rw2(r) dr

))

+ Re−11 ΠµΠu

(
2g21

(1,1)(d, d)

(∫ R

d

rw1(r) dr

)
+ 2g21

(2,0)(d, d)

(∫ R

d

rw1(r) dr

))
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J2 = Re−11


−

2g12(d, d)
(∫ R

d
rw1(r) dr

)

d2
+ 2

∫ R

d

rw1(r)f12
(0,2)(r, d) dr

+ f12
(0,2)(d, d)

(∫ R

d

rw1(r) dr

)
+ f12

(1,1)(d, d)

(∫ R

d

rw1(r) dr

)

+
2g12

(0,1)(d, d)
(∫ R

d
rw1(r) dr

)

d
+

2g12
(1,0)(d, d)

(∫ R
d
rw1(r) dr

)

d




+ Re−11 ΠµΠ2
u

(
2dw2(d)f22

(0,1)(d, d)− dw2(d)g22
(0,1)(d, d)− 2dw2(d)g22

(1,0)(d, d)
)

+ Re−11 Πu

(
−4dw2(d)f12

(0,1)(d, d)− 2w2(d)g12(d, d) + dw2(d)g12
(0,1)(d, d)

)

+ Re−12 ΠρΠ
3
u

(
2

∫ d

0

rw2(r)f22
(0,2)(r, d) dr − f22(0,2)(d, d)

(∫ d

0

rw2(r) dr

)

− f22(1,1)(d, d)

(∫ d

0

rw2(r) dr

))

+ Re−11 ΠµΠu

(
2g22

(1,1)(d, d)

(∫ R

d

rw1(r) dr

)
+ 2g22

(2,0)(d, d)

(∫ R

d

rw1(r) dr

))

K1 = Re−11


−

2g13(d, d)
(∫ R

d
rw1(r) dr

)

d2
− 4dw2(d)Π2

uf21(d, d)

+ 4

∫ R

d

rw1(r)f11
(0,1)(r, d) dr + 2f11

(0,1)(d, d)

(∫ R

d

rw1(r) dr

)

+
2g11(d, d)

(∫ R
d
rw1(r) dr

)

d
+

2g13
(0,1)(d, d)

(∫ R
d
rw1(r) dr

)

d

+
2g13

(1,0)(d, d)
(∫ R

d
rw1(r) dr

)

d




+ Re−11 ΠµΠu

(
f21

(1,0)(d, d)

(∫ R

d

rw1(r) dr

)
+ 2g21

(1,0)(d, d)

(∫ R

d

rw1(r) dr

)

+ 2g23
(1,1)(d, d)

(∫ R

d

rw1(r) dr

)
+ 2g23

(2,0)(d, d)

(∫ R

d

rw1(r) dr

))

+ Re−11 ΠµΠ2
u

(
2dw2(d)f21(d, d)− dw2(d)g21(d, d)− dw2(d)g23

(0,1)(d, d)

− 2dw2(d)g23
(1,0)(d, d)

)
+ Re−12 ΠρΠ

3
u

(
4

∫ d

0

rw2(r)f21
(0,1)(r, d) dr

− 2f21
(0,1)(d, d)

(∫ d

0

rw2(r) dr

)
− f21(1,0)(d, d)

(∫ d

0

rw2(r) dr

))

+ Re−11 Πu

(
dw2(d)g11(d, d)− 2w2(d)g13(d, d) + dw2(d)g13

(0,1)(d, d)
)
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K2 = Re−11


−

2g14(d, d)
(∫ R

d
rw1(r) dr

)

d2
− 4dw2(d)Π2

uf22(d, d)

+ 4

∫ R

d

rw1(r)f12
(0,1)(r, d) dr + 2f12

(0,1)(d, d)

(∫ R

d

rw1(r) dr

)

+
2g12(d, d)

(∫ R
d
rw1(r) dr

)

d
+

2g14
(0,1)(d, d)

(∫ R
d
rw1(r) dr

)

d

+
2g14

(1,0)(d, d)
(∫ R

d
rw1(r) dr

)

d




+ Re−11 ΠµΠu

(
f22

(1,0)(d, d)

(∫ R

d

rw1(r) dr

)
+ 2g22

(1,0)(d, d)

(∫ R

d

rw1(r) dr

)

+ 2g24
(1,1)(d, d)

(∫ R

d

rw1(r) dr

)
+ 2g24

(2,0)(d, d)

(∫ R

d

rw1(r) dr

))

+ Re−11 ΠµΠ2
u

(
2dw2(d)f22(d, d)− dw2(d)g22(d, d)− dw2(d)g24

(0,1)(d, d)

− 2dw2(d)g24
(1,0)(d, d)

)
+ Re−12 ΠρΠ

3
u

(
4

∫ d

0

rw2(r)f22
(0,1)(r, d) dr

− 2f22
(0,1)(d, d)

(∫ d

0

rw2(r) dr

)
− f22(1,0)(d, d)

(∫ d

0

rw2(r) dr

))

+ Re−11 Πu

(
dw2(d)g12(d, d)− 2w2(d)g14(d, d) + dw2(d)g14

(0,1)(d, d)
)

L1 = Re−11


2

∫ R

d

rw1(r)f11
(0,1)(r, d) dr + f11

(0,1)(d, d)

(∫ R

d

rw1(r) dr

)

+ dw2(d)Πug11(d, d) +
2g11(d, d)

(∫ R
d
rw1(r) dr

)

d




+ Re−12 ΠρΠ
3
u

(
2

∫ d

0

rw2(r)f21
(0,1)(r, d) dr − f21(0,1)(d, d)

(∫ d

0

rw2(r) dr

))

+ Re−11 Πµ

(
2Πug21

(1,0)(d, d)

(∫ R

d

rw1(r) dr

)
− dw2(d)Π2

ug21(d, d)

)
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L2 = Re−11


2

∫ R

d

rw1(r)f12
(0,1)(r, d) dr + f12

(0,1)(d, d)

(∫ R

d

rw1(r) dr

)

+ dw2(d)Πug12(d, d) +
2g12(d, d)

(∫ R
d
rw1(r) dr

)

d




+ Re−12 ΠρΠ
3
u

(
2

∫ d

0

rw2(r)f22
(0,1)(r, d) dr − f22(0,1)(d, d)

(∫ d

0

rw2(r) dr

))

+ Re−11 Πµ

(
2Πug22

(1,0)(d, d)

(∫ R

d

rw1(r) dr

)
− dw2(d)Π2

ug22(d, d)

)

M1 = Re−11


Πuf21(d, d)

(∫ R

d

rw1(r) dr

)
+ 2

∫ R

d

rw1(r)f11(r, d) dr + dw2(d)Πug13(d, d)

+
2g13(d, d)

(∫ R
d
rw1(r) dr

)

d




+ Re−12 ΠρΠ
3
u

(
2

∫ d

0

rw2(r)f21(r, d) dr − f21(d, d)

(∫ d

0

rw2(r) dr

))

+ Re−11 Πµ

(
2Πug23

(1,0)(d, d)

(∫ R

d

rw1(r) dr

)
− dw2(d)Π2

ug23(d, d)

)

M2 = Re−11


Πuf22(d, d)

(∫ R

d

rw1(r) dr

)
+ 2

∫ R

d

rw1(r)f12(r, d) dr + dw2(d)Πug14(d, d)

+
2g14(d, d)

(∫ R
d
rw1(r) dr

)

d




+ Re−12 ΠρΠ
3
u

(
2

∫ d

0

rw2(r)f22(r, d) dr − f22(d, d)

(∫ d

0

rw2(r) dr

))

+ Re−11 Πµ

(
2Πug24

(1,0)(d, d)

(∫ R

d

rw1(r) dr

)
− dw2(d)Π2

ug24(d, d)

)
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Jury: W. Schröder, C. Tropea, R. Kneer, M. Zeller

2005 Master of Engineering, Dipl.-Ing. (cum laude)
RWTH Aachen University, Aachen, Germany

Academic career

since 2016 CNRS research associate, rank CR1
Laboratoire FAST, UMR 7608
CNRS, Université Paris-Saclay
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Jean Saint-Vil 2016, Université de Lille
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since 2016

Tokyo University of Science exchange program: “Fluid
dynamics in the vicinity of a macroscopic contact line in in-
teraction with microparticles.”
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Partners: Tokyo University of Science, Université de Lille,
Université Côte d’Azur, Technion Israel Institute of Technol-
ogy

Principal Investigator
2014-2015

INSIS project DYNAFILM: “Excitation spatiale de la
dynamique non-linéaire d’un film liquide tombant : applica-
tion à l’optimisation des échangeurs à films ruisselants”
Partners: Université Savoie Mont Blanc
Grant: 15.000 EUR

Principal Investigator
2017

Industrial consulting contract
Partner: Air Liquide
Grant: 4.000 EUR

Principal Investigator
2013

Industrial consulting contract
Partner: Air Liquide
Grant: 10.000 EUR

Referee activities

International journals J. Fluid Mech.; Phys. Fluids; Phys. Rev. Fluids; Phys. Rev. E;
Exp. Fluids; Eur. J. Mech. B.; Meccanica; Fluid Dyn. Res.;
Int. J. Multiphase Flow; J. Comp Phys.; J. Eng. Math.; Int.
J. Numer. Methods Fluids; Can. J. Chem. Eng.; Int. J. Heat
Mass Transfer; Int. J. Therm. Sci.; Ind. Eng. Chem. Res.;
J. Process Mech. Eng.; NPJ microgravity; Transp. Porous
Media; IJST-T Mech. Eng.

Funding agencies Review of 1 PRC proposal for Agence Nationale de la Recherche
(2013)

Research activities

• Integral boundary layer modelling of slender multiphase flows
Development of low-dimensional models based on the Weighted Residual Integral
Boundary Layer (WRIBL) approach. Collaboration with: C. Ruyer-Quil (Université
Savoie Mont Blanc).

• Direct numerical simulation of interfacial instabilities
Simulations with solvers based on the Volume of Fluid (VOF) and Continuum
Surface Force (CSF) approaches (Gerris, Basilisk, OpenFOAM); high-performance
computing.

• Experiments in two-phase flows using optical measurement techniques
Collaboration with: Sophie Mergui (FAST). PhD. students: W. Rohlfs (RWTH
Aachen University), N. Kofman (Université Pierre et Marie Curie).

• Hydrodynamics of falling liquid films
Collaboration with: R. Kneer (RWTH Aachen University) and Benoit Scheid (Uni-
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versité Libre de Buxelles). PhD. students: W. Rohlfs (RWTH Aachen University).

• Falling liquid films in strongly-confined channels
Collaboration with: C. Ruyer-Quil (Université Savoie Mont Blanc), S. Mergui (Sor-
bonne Universités), and N. Grenier (Université Paris-Saclay). Postdoctoral schol-
ars: G. Lavalle, Y. Li. PhD. students: Misa Ishimura (Université Savoie Mont Blanc,
FAST).

• Falling liquid films in narrow tubes
Collaboration with: C. Ruyer-Quil (Université Savoie Mont Blanc).

• Heat/mass transfer intensification in wavy falling liquid films
Collaboration with: M. Gisclon, D. Bresch, and C. Ruyer-Quil (Université Savoie
Mont Blanc).

• Mucus films in pulmonary airways
Collaboration with: Marcel Filoche (École Polytechnique), Nicolas Grenier (Uni-
versité Paris-Saclay), C. Ruyer-Quil (Université Savoie Mont Blanc). Postdoctoral
scholars: A. Choudhury.

• Thin films subject to Rayleigh-Taylor and Marangoni instabilities
Collaboration with: R. Narayanan (University of Florida). PhD. students: I. Ig-
natius, J. Picardo (University of Florida).

• Spreading films and microparticles
Collaboration with: I. Ueno (Tokyo University of Science), F. Zoueshtiagh (Univer-
sité de Lille), and H. Yoshikawa (Université de Nice).

• Falling liquid films formed by condensation
Collaboration with: J. Seiwert (Air Liquide), C. Ruyer-Quil (Université Savoie
Mont Blanc), and S. Mergui (FAST). PhD. students: W. Combaluzier (Université
Paris-Saclay).

Teaching activities

2015 Lectures on low-dimensional modelling of thin film flows; graduate stu-
dents; 20 hours. University of Florida

2012 Lecture at “Summer School on Wave Patterns and Interactions in Advection-
Dominated Flows”; graduate students. University of Thessaly

2012-2013 Tutorials in Heat and Mass Transfer; third year students; 32 hours.
Polytech Université Pierre et Marie Curie

2007-2010 Lectures in Heat and Mass Transfer; third year students; 58.5 hours.
RWTH Aachen University

2005-2007 Tutorials in Heat and Mass Transfer; third year students; 36 hours.
RWTH Aachen University
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Institutional responsibilities

since 2019 Member of steering committee of GDR 2042 TRANSINTER. Co-chair of
topic 2: “Falling films and associated transfer”.

since 2013 Co-organizer of joint mechanics seminar at Laboratoires LISN and FAST

since 2017 “Correspondant partenariat et innovation” for INSIS

since 2017 “Correspondant relations internationales” for Université Paris-Saclay

2014-2016 Organizer of internal seminar at Laboratoire FAST
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List of publications
The number in front of each listed paper corresponds to the number of citations

registered by the search engine Web of Science. This currently indicates an h-index of
11 for my publications. Hyperlinks coloured in blue link to the respective papers on the
website of the journal.

23 peer-reviewed papers in international journals

0 Lavalle, G., Grenier, N., Mergui, S., Dietze, G. F. 2021 : Superconfined falling liquid
films : linear versus nonlinear dynamics. Journal of Fluid Mechanics 919, R2.

5 Dietze, G. F., Lavalle G., Ruyer-Quil, C. 2020 : Falling liquid films in narrow tubes :
occlusion scenarios. Journal of Fluid Mechanics 894, A17.

2 Nakamura, H., Delafosse, V., Dietze, G. F., Yoshikawa, H. N., Zoueshtiagh, F., Mu,
L., Tsukahara, T., Ueno, I. 2020 : Enhancement of Meniscus Pump by Multiple
Particles. Langmuir 36, 4447-4453.

4 Lavalle, G., Grenier, N., Mergui, S., Dietze, G. F. 2020 : Solitary waves on super-
confined falling liquid films. Physical Review Fluids 5(3), 032001(R).

3 Nakamura, H., Ogawa, T., Inoue, M., Hori, T., Mu, L., Yoshikawa, H. N., Zouesh-
tiagh, F., Dietze, G. F., Tsukahara, T. and Ueno, I. 2020 : Pumping effect of hetero-
geneous meniscus formed around spherical particle.
Journal of Colloid and Interface Science 562, 133-141.

10 Lavalle, G., Li, Y., Mergui, S., Grenier, N. and Dietze, G. F. 2019 : Suppression of
the Kapitza instability in confined falling liquid films.
Journal of Fluid Mechanics 860, 608-639.

13 Dietze, G. F. 2019 : Effect of wall corrugations on scalar transfer to a wavy falling
liquid film.
Journal of Fluid Mechanics 859, 1098-1128.

3 Dietze, G. F., Picardo, J. R. and Narayanan, R. 2018 : Sliding instability of draining
fluid films.
Journal of Fluid Mechanics 857, 111-141.

17 Dietze, G. F. 2016 : On the Kapitza instability and the generation of capillary
waves.
Journal of Fluid Mechanics 789, 368-401.

26 Dietze, G. F. and Ruyer-Quil, C. 2015 : Films in narrow tubes.
Journal of Fluid Mechanics 762, 68-109.

27 Dietze, G. F., Rohlfs, W., Kneer, R. and Scheid, B. 2014 : Three-dimensional flow
structures in laminar falling liquid films. Journal of Fluid Mechanics 743, 75-123.
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45 Dietze, G. F. and Ruyer-Quil, C. 2013 : Wavy liquid films in interaction with a
confined laminar gas flow. Journal of Fluid Mechanics 722, 348-393.

7 Haustein, H. D., Gany, A., Dietze, G. F., Elias, E. and Kneer, R. 2013 : The Dynamics
of Bubble Growth at Medium-High Superheat : Boiling in an Infinite Medium and
on a Wall. Journal of Heat Transfer 135, 111-119.

3 Rohlfs, W., Dietze, G. F., Haustein, H. D. and Kneer, R. 2013 : Experimental inves-
tigation of 3-dimensional wavy liquid films under the coupled influence of thermo-
capillary and electrostatic forces. European Physical Journal Special Topics 219, 111-
119.

10 Rohlfs, W., Dietze, G. F., Haustein, H. D., Tsvelodub, O. and Kneer, R. 2012 : Expe-
rimental investigation into three-dimensional wavy liquid films under the influence
of electrostatic forces. Experiments in Fluids 53, 1045-1056.

11 Rohlfs, W., Dietze, G. F., Haustein, H. D. and Kneer, R. 2012 : Two-phase electro-
hydrodynamic simulations using a volume-of-fluid approach : A comment. Journal
of Computational Physics 231, 4454-4463.

18 Dietze, G. F. and Kneer, R. 2011 : Flow separation in falling liquid films. Frontiers
in Heat and Mass Transfer 2 (3), 033001.

65 Dietze, G. F., Al-Sibai, F. and Kneer, R. 2009 : Experimental study of flow separation
in laminar falling liquid films. Journal of Fluid Mechanics 637, 73-104.

65 Dietze, G. F., Leefken, A. and Kneer, R. 2008 : Investigation of the backflow phe-
nomenon in falling liquid films. Journal of Fluid Mechanics 595, 435-459.

11 Bardow, A., Bischof, C. H., Bücker, M. H., Dietze, G., Kneer, R., Leefken, A., Mar-
quardt, W., Renz, U. and Slusanschi, E. 2008 : Sensitivity-based analysis of the
k-epsilon model for the turbulent flow between two plates. Chemical Engineering
Science 63, 4763-4775.

52 Lel, V. V., Kellermann, A., Dietze, G., Kneer, R. and Pavlenko, A. N. 2008 : Inves-
tigations of the Marangoni effect on the regular structures in heated wavy liquid
films. Experiments in Fluids 44, 341-354.

7 Lel, V. V., Dietze, G., Stadler, H., Al-Sibai, F. and Kneer 2007 : Investigation of
the thermal entry length in laminar wavy falling films. Microgravity Science and
Technology 19, 66-68.

37 Schagen, A., Modigell, M., Dietze, G. and Kneer, R. 2006 : Simultaneous measu-
rement of local film thickness and temperature distribution in wavy liquid films
using a luminescence technique. International Journal of Heat and Mass Trasfer 49,
5049-5061.

1 patent

Dietze, G., Flock, D., Schmachtenberg, E. 2011 : Geothermiesonde und Verfahren
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zu deren Betrieb. Deutsches Patent- und Markenamt. DE102009040476A1.

9 invited talks (symposia/workshops/summer schools)

Dietze, G. F. 2021 : Contrôle d’ondes interfaciales au sein de films liquides tombants
pour l’optimisation de procédés de distillation. Webinaire ADEME-ANCRE-ANR - In-
novations de rupture pour la décarbonation de l’industrie chimique.

Dietze, G. F. 2018 : Effect of wall corrugations on scalar transfer to a wavy fal-
ling liquid film. WMS2018 International Symposium of Water Frontier Science and
Technology Research Center, Tokyo University of Science.

Dietze, G. F., Ruyer-Quil, C., Picardo, J. and Narayanan, R. 2018 : Integral boun-
dary layer modeling applied to three examples of thin film interfacial instability.
Symposium in honor of Lewis Johns, University of Florida.

Dietze, G. F. 2018 : Effect of wall corrugations on scalar transfer to a wavy fal-
ling liquid film. IUTAM Symposium on Dynamics and Stability of Fluid Interfaces,
University of Florida.

Dietze, G. F. 2015 : Liquid films in confined geometries. PHC-Sakura Symposium,
Université de Lille 1.

Dietze, G. F. 2015 : Wave-induced momentum transport in falling liquid films :
simulations, experiments and modeling. 3rd I2plus International Symposium on
Thermo-Fluid Dynamics, Tokyo University of Science.

Dietze, G. F. 2014 : Wave dynamics and flow patterns in falling liquid films. Work-
shop on Fluid Patterns for Science and Technology, University of Florida.

Dietze, G. F. 2013 : Mesures d’épaisseur, vélocimétrie et thermométrie optique au
sein de films liquides tombants. 34ème journée thématique de l’AFVL, CNRS Belle-
vue, Meudon.

Dietze, G. F. 2010 : Heat and Mass Transfer in Falling Liquid Films. Summer School
on Wave Patterns and Interactions in Advection-Dominated Flows, University of Thes-
saly.

8 peer-reviewed papers in international conference proceedings

Lavalle, G., Li, Y., Mergui, S., Grenier, N. and Dietze, G. F. 2019 : Falling liquid films
in interaction with a confined counter-current gas. CFM - 24ème Congrès Français
de Mécanique.

Rohlfs, W., Dietze, G. F., Haustein, H. D., Lel, V. V. and Kneer, R. 2011 : Expe-
rimental investigation of 3-dimensional wavy liquid films under the influence of
electrostatic forces. Proceedings of the sixth International Conference on Two-Phase
Systems for Ground and Space Applications.
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Dietze, G. F. and Kneer, R. 2011 : Séparation de l’écoulement dans un film liquide
et laminaire. CFM - 20ème Congrès Français de Mécanique.

Haustein, H. D., Dietze, G. F. and Kneer, R. 2011 : A new empirical model for
bubble growth : Boiling in an infinite medium and on a wall at high superheat.
ASME/JSME - 8th Thermal Engineering Joint Conference, AJTEC2011-44429. ISBN
978-0-7918-3892-1.

Dietze, G. F. and Kneer, R. 2010 : Capillary flow separation in 2- and 3-dimensional
laminar falling liquid films. IHTC 14 - Proceedings of the 14th International Heat
Transfer Conference, 753-768. ISBN 978-0-7918-4938-5.

Karalashvili, M., Bischof, C., Bücker, M., Dietze, G., Kneer, R., Mhamdi, A., Veh-
reschild, A. and Marquardt, W. 2009 : Sensitivity-analysis and identification of an
effective heat transport model in wavy liquid films. Progress in Computational Heat
and Mass Transfer, 644-651.

Dietze, G., Lel, V. V. and Kneer, R. 2006 : Modelling of heat transfer in stable wavy
film flow based on effective thermal diffusivity. IHTC 13 - Proceedings of the 13th
International Heat Transfer Conference, Nr. CSN-13. ISBN 1-56700-226-9.

Lel, V. V., Kellermann, A., Dietze, G., Kneer, R. and Pavlenko, A. N. 2006 : Experi-
mental investigations of metastable quasiregular structures in heated wavy liquid
films. IHTC 13 - Proceedings of the 13th International Heat Transfer Conference, Nr.
CSN-12. ISBN 1-56700-226-9.

3 papers in conference proceedings with peer-review of only the abstract

Rohlfs, W., Dietze, G. F., Haustein, H. D. and Kneer, R. 2011 : Experimental in-
vestigation of 3-dimensional wavy liquid films under the influence of electrostatic
forces. Proceedings of the sixth International Berlin Workshop (IBW6) on Transport
Phenomena with Moving Boundaries, (ed. F.-P. Schindler), Fortschritt-Berichte VDI
Reihe 3, 929. VDI Verlag. ISBN 978-3-18-392903-0.

Dietze, G. F., Horsky, M., Lel, V. V., Al-Sibai, F. and Kneer, R. 2011 : Selected trans-
port phenomena in falling liquid films. Fifth International Berlin Workshop (IBW5)
on Transport Phenomena with Moving Boundaries (ed. F.-P. Schindler), Fortschritt-
Berichte VDI Reihe 3, 920, 107-150. VDI Verlag. ISBN 978-3-18-392003-7.

Dietze, G., Lel, V. V. and Kneer, R. 2005 : Experimental investigation and modeling
of wavy film flow. Procedings of the third International Berlin Workshop (IBW3) on
Transport Phenomena with Moving Boundaries (ed. F.-P. Schindler), 159-173.

11 presentations at international conferences without proceedings

Lavalle, G., Li, Y., Mergui, S., Grenier, N. and Dietze, G. F. 2019 : Falling liquid films
in interaction with a confined counter-current gas. IUTAM Symposium - Computa-
tional modelling of instabilities and turbulence in separated two-phase flows.
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Lavalle, G., Li, Y., Mergui, S., Grenier, N. and Dietze, G. F. 2019 : Falling liquid films
in confined channels. ICMF 2019 - 10th International Conference on Multiphase
Flow.

Lavalle, G., Li, Y., Mergui, S., Grenier, N. and Dietze, G. F. 2018 : On the stability
of inclined liquid films with confined counter-current gas. APS 2018 - 71th Annual
Meeting of the Division of Fluid Dynamics.

Lavalle, G., Li, Y., Mergui, S., Grenier, N. and Dietze, G. F. 2018 : Suppression of
the Kapitza instability in falling liquid films by confining the gas phase. EFMC12 -
12th European Fluid Dynamics Conference.

Li, Y., Mergui, S., Lavalle, G., Grenier, N. and Dietze, G. F. 2018 : Influence of
confinement on the linear stability of a falling liquid film. IMA9 - 9th Conference of
the International Marangoni Association.

Lavalle, G., Li, Y., Mergui, S., Grenier, N. and Dietze, G. F. 2017 : Instability of thin
liquid films in strongly confined channels. APS 2017 - 70th Annual Meeting of the
Division of Fluid Dynamics.

Lavalle, G., Li, Y., Mergui, S., Grenier, N. and Dietze, G. F. 2017 : Wave dynamics
in counter-current gas-liquid flows for distillation process applications. Multiphase
2017 - 17th International workshop on trends in numerical and physical modeling for
industrial multiphase flows.

Dietze, G. F. and Ruyer-Quil, C. 2015 : Thin liquid films in confined geometries.
BIFD 2015 - Sixth International Symposium on Bifurcations and Instabilities in Fluid
Dynamics.

Dietze, G. F., Rohlfs, W., Nährich, K., Kneer, R. and Scheid, B. 2014 : Direct and
model-based simulations of three-dimensional falling liquid films : surface waves
and associated flow structures. IMA 7 - Seventh Conference of the International Ma-
rangoni Association.

Dietze, G. F. and Ruyer-Quil, C. 2013 : Wavy liquid films in interaction with a
strongly confined laminar gas flow : modeling and direct numerical simulations.
APS 2013 - 66th Annual Meeting of the Division of Fluid Dynamics.

Dietze, G. F. and Ruyer-Quil, C. 2013 : Wavy liquid films interacting with a confined
laminar gas flow : modelling and DNSs. Euromech Colloquium No. 555 - Small-
scale numerical methods for multi-phase flows.

5 presentations at national conferences and workshops without proceedings

Dietze, G. F., Rohlfs, W., Nährich, K. and Scheid, B. 2014 : Simulation dreidi-
mensionaler Fallfilme : Strömungsstruktur und Wellendynamik. Jahrestreffen der
ProcessNet-Fachausschüsse Mehrphasenströmungen und Wärme- und Stoffübertragung.

Dietze, G. F. and Ruyer-Quil, C. 2012 : Rieselfilme unter dem Einfluss einer Gasströmung :
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ein integrales Grenzschichtmodell. Jahrestreffen des ProcessNet-Fachausschusses für
Wärme- und Stoffübertragung.

Rohlfs, W., Lahann, N., Dirgayasa, A., Dietze, G. and Kneer, R. 2010 : Numerische
und experimentelle Untersuchungen von Rayleigh-Bénard Konvektion in einer ges-
chlossenen Zelle. Jahrestreffen der ProcessNet-Fachausschüsse Computational Fluid
Dynamics und Wärme- und Stoffübertragung.

Dietze, G. and Kneer, R. 2009 : Experimentelle Untersuchung der Strömungsablösung
in laminaren Rieselfilmen. Jahrestreffen der ProcessNet-Fachausschüsse Mehrphasenströmun-
gen und Wärme- und Stoffübertragung.

Dietze, G. F. and Kneer, R. 2008 : Experimentelle und numerische Untersuchun-
gen von Transportprozessen in laminaren Rieselfilmen. Jahrestreffen des ProcessNet-
Fachausschusses Wärme- und Stoffübertragung.

12 invited seminars at research laboratories

Dietze, G. F. 2017 : Sliding instability of draining fluid films. Department of Chemi-
cal Engineering, University of Florida.

Dietze, G. F. 2017 : On the Kapitza instability and the generation of capillary waves.
Department of Mechanical Engineering, Ueno Research group, Tokyo University of
Science.

Dietze, G. F. 2017 : Sliding instability of draining fluid films. Department of Mecha-
nical Engineering, Ueno Research group, Tokyo University of Science.

Dietze, G. F. 2015 : Wave-induced momentum transport in falling liquid films : si-
mulations, experiments and modeling. Department of Mechanical Engineering, Ueno
Research group, Tokyo University of Science.

Dietze, G. F. 2014 : Wave-induced momentum transport in falling liquid films : si-
mulations, experiments and modeling. Nonlinear Physical Chemistry Unit, Université
Libre de Bruxelles.

Dietze, G. F. 2014 : Ondes de surface et dynamique de films liquides (tombants) :
simulation, expériences et modélisation. Laboratoire de Mathématiques, Université
de Chambéry.

Dietze, G. F. 2013 : Ondes de surface et dynamique de films liquides : simulations,
expériences et modélisation. ArcelorMittal, Maizières-lès-Metz.

Dietze, G. F. 2013 : Wave-Induced Momentum Transport in Falling Liquid Films.
Department of Chemical Engineering, University of Florida.

Dietze, G. F. 2011 : Flow separation in the capillary wave region of a falling liquid
film. Institut Jean Le Rond d’Alembert, Université Pierre et Marie Curie, Paris.

Dietze, G. F. 2011 : Séparation de l’écoulement dans la région capillaire d’un film
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liquide tombant. Service TIPs (Transferts, Interfaces et Procédés), Université Libre de
Bruxelles.

Dietze, G. F. 2010 : Séparation de l’écoulement dans la région capillaire d’un film
liquide laminaire. Laboratoire FAST, Orsay.

Dietze, G. F. 2010 : Strömungsablösung in laminar-welligen Rieselfilmen. Center
for Smart Interfaces, Technische Universität Darmstadt.

12 talks at informal meetings of the research networks GDR 3373 and GDR 2042

Dietze G. F., Lavalle, G., Li, Y., Mergui, S. et Grenier, N. 2021 : Effect of wall corru-
gations on scalar transfer to a wavy falling liquid film. Institut Jean le Rond d’Alem-
bert, Paris.

Lavalle, G., Li, Y., Mergui, S., Grenier, N. and Dietze, G. F. 2019 : Instability of thin
liquid films in strongly confined channels. Centre Paul Langevin, Aussois.

Dietze, G. F., Picardo, J. R. and Narayanan, R. 2017 : Symmetry loss of thinning
fluid films. Centre Paul Langevin, Aussois.

Dietze, G. F. 2015 : On the Kapitza instability and the generation of capillary waves.
Centre Paul Langevin, Aussois.

Dietze, G. F. 2014 : Films liquides fortement confinés au sein de géométries cylin-
driques. Laboratoire de Mécanique des Fluides et d’Acoustique, Lyon.

Dietze, G. F. 2013 : Capillary and inertial flow structures in 3-dimensional wavy
liquid films. Domaine de l’Asnee, Nancy.

Dietze, G. F. 2013 : Dissection of the velocity field in three-dimensional falling
liquid films based on DNS. Centre Paul Langevin, Aussois.

Dietze, G. F. 2012 : Heat and mass transfer in falling liquid films. CAES du CNRS,
Fréjus.

Dietze, G. F. 2012 : Films liquides en interaction avec un écoulement gazeux et
confiné : un modèle intégral. Institut de Mécanique des Fluides de Toulouse, Toulouse.

Dietze, G. F. 2012 : Wavy liquid films in interaction with a strongly confined lami-
nar gas flow : an integral model. Université Pierre et Marie Curie, Paris.

Dietze, G. F. 2011 : Films liquide cisailles par un écoulement gazeux : un état de
l’art. Centre Paul Langevin, Aussois.

Dietze, G. F. 2011 : Séparation de l’écoulement dans la région capillaire d’un film
liquide et laminaire. Université Pierre et Marie Curie, Paris.

1 manuscript

Dietze, G. F. 2010 : Flow Separation in Falling Liquid Films. PhD. thesis, RWTH
Aachen. Sierke Verlag. ISBN 978-3-86844-259-5.
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Delaunay, C. 1841 Sur la surface de révolution dont la courbure moyenne est constante.
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Pohlhausen, K. 1921 Zur näherungsweisen Integration der Differentialgleichung der
laminaren Grenzschicht. Z. angew. Math. Mech. 1, 252–268.

Pope, S. B. 2000 Turbulent Flows . Cambridge University Press.

Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows.
Journal of Computational Physics 228, 5838–5866.

Popinet, S. 2015 A quadtree-adaptive multigrid solver for the serre-green-naghdi equa-
tions. Journal of Computational Physics 302, 336–358.



278 Bibliography

Pozrikidis, C. 1998 Gravity-driven creeping flow of two adjacent layers through a chan-
nel and down a plane wall. Journal of Fluid Mechanics 371, 345–376.

Pradas, M., Kalliadasis, S., Nguyen, P.-K. & Bontozoglou, V. 2013 Bound-
state formation in interfacial turbulence: direct numerical simulations and theory. Jour-
nal of Fluid Mechanics 716, R2.

Pradas, M., Kalliadasis, S. & Tseluiko, D. 2012 Binary interactions of solitary
pulses in falling liquid films. IMA Journal of Applied Mathematics 77 (3), 408–419.

Pradas, M., Tseluiko, D. & Kalliadasis, S. 2011 Rigorous coherent-structure
theory for falling liquid films: Viscous dispersion effects on bound-state formation and
self-organization. Physics of Fluids 23, 044104.

Prandtl, L. 1925 Bericht über Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift
für angewandte Mathematik und Mechanik 5, 136–139.

Preziosi, L., Chen, K. P. & Joseph, D. D. 1989 Lubricated pipelining - stability of
core annular flow. Journal of Fluid Mechanics 201, 323–356.

Prosperetti, A. & Tryggvason, G., ed. 2007 Computational Methods for Multiphase
Flow . Cambridge University Press.

Pumir, A., Manneville, P. & Pomeau, Y. 1983 On solitary waves running down an
inclined plane. Journal of Fluid Mechanics 135, 27–50.
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