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Abstract

Miscible tracer dispersion measurements in transparent model fractures with different types of wall roughness are reported.
The nature (Fickian or not) of dispersion is determined by studying variations of the mixing front as a function of the distance
travelled but also as a function of the lateral scale over which the tracer concentration is averaged. The dominant hydrodynamic
dispersion mechanisms (velocity profile in the gap, velocity variations in the fracture plane) are established by comparing
measurements using Newtonian and shear thinning fluids. For small monodisperse rugosities, front spreading is diffusive with a
dominant geometrical dispersion (dispersion coefficient D / Pe or constant dispersivity ld = D/U) at low Péclet numbers Pe; at
higher Pe values, one has either ld / Pe (i.e. Taylor dispersion) for obstacles of height smaller than the gap, or ld / Pe0.35 for
obstacles bridging the gap. For a self-affine multiscale roughness like in actual rocks and a relative shear displacement~d of
complementary walls, the aperture field is channelized in the direction perpendicular to~d. For a mean velocity ~U parallel to the
channels, the global front geometry reflects the velocity contrast between them and is predicted from the aperture field. For ~U
perpendicular to the channels, global front spreading is much reduced. Local spreading of the front thickness remains mostly
controlled by Taylor dispersion except in the case of a very strong channelization parallel to ~U. To cite this article: H. Auradou
et al., C. R. Geoscience xxx (2009).
# 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Transport miscible de solutés dans différentes fractures modèles : influence de la rugosité aléatoire ou multiéchelles.
Nous présentons des mesures de dispersion de traceurs dans des modèles transparents de fractures présentant différents types de
rugosités de parois. La nature de la dispersion (fickienne ou non) est déterminée à partir de l’évolution du front de mélange en
fonction de la distance parcourue, mais aussi en faisant varier la distance transverse sur laquelle la concentration de traceur est
moyennée. Les mécanismes de dispersion hydrodynamique dominants (profil de vitesse dans l’ouverture, variations de vitesse dans
le plan de la fracture) sont identifiés en comparant des mesures utilisant des fluides newtoniens et rhéofluidifiants. Pour des parois
avec des rugosités monodisperses de petite taille, l’étalement du front est diffusif et dominé par la dispersion géométrique aux
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faibles nombres de Péclet Pe (coefficient de dispersion D / Pe d’où une dispersivité ld = D/U constante); aux valeurs de Pe plus
élevées, on a soit ld / Pe (i.e. dispersion de Taylor), pour des obstacles de hauteur plus faible que l’ouverture ou ld / Pe0.35, lorsque
la hauteur des obstacles est identique à l’intervalle entre les parois. Pour une rugosité autoaffine multiéchelle semblable à celle des
roches naturelles et dans le cas de parois de géométries complémentaires, avec un déplacement relatif latéral ~d, le champ
d’ouverture est chenalisé dans la direction perpendiculaire à~d. Pour une vitesse moyenne ~U parallèle aux chenaux, la géométrie
globale du front reflète les contrastes de vitesses entre ceux-ci et peut être prédite à partir du champ d’ouverture. Lorsque ~U est
perpendiculaire aux chenaux, l’étalement global du front est fortement réduit. Quelle que soit la direction du décalage, l’étalement
local du front reste contrôlé par la dispersion de Taylor; cependant, lorsque le décalage est trop fort et l’écoulement trop chenalisé, le
transfert entre chenaux modifie ce comportement. Pour citer cet article : H. Auradou et al., C. R. Geoscience xxx (2009).
# 2009 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

The geothermal reservoir of Soultz-sous-Forêts, like
most geological systems, contains structures of various
sizes along which flow occurs; three main types of
structures were identified: individual fractures, fracture
clusters and major faults [15]. In order to understand
these flow systems and help with managerial decisions,
large scale numerical models incorporating such
heterogeneities have been developed. Yet, when the
transport of solutes is involved, the choice of a
dispersion law (possibly scale dependent) valid at the
scale of an individual fracture remains an open issue
[21].

At this scale, tracer dispersion results from the
combined action of the complex velocity field (varying
both in the gap of the fracture and in its plane) and of
mixing by molecular diffusion. The latter allows the
tracers to move from one streamline to another and
homogenizes the spatial distribution of the tracers. In
the classical approach, tracer particles are assumed to
perform a random walk superimposed over a drift
velocity. The latter is the average of the fluid velocity
over an appropriate volume (the representative elemen-
tary volume or REV) while smaller scale variations
induce tracer spreading. At the REV scale, the average
C̄ðx; tÞ of the tracer concentration over a section of the
medium normal to the mean displacement satisfies the
convection-diffusion equation [2]:

@C̄ðx; tÞ
@t

¼ U
@C̄ðx; tÞ

@x
þ D

@2C̄ðx; tÞ
@x2

(1)

where D is the longitudinal dispersion coefficient and U
the mean velocity of the fluid (parallel to x). The value

of D (or equivalently of the dispersivity ld = D/U) is
Please cite this article in press as: H.. Auradou, et al., Miscible tra
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independent of both time and the distance travelled: it is

determined by the combined contributions of molecular

diffusion and advection. The relative order of magni-

tude of these two effects is characterized by the Péclet

number: Pe = Ua/Dm (Dm is the molecular diffusion

coefficient; a is a characteristic length of the medium:

here the mean fracture aperture).

Several experimental studies of breakthrough curves
of solutes in natural fractures reported in the literature
[18,19,22,23] measured dispersion coefficients increas-
ing linearly with the mean flow U (or with Pe).
Moreover, the value of the dispersivity ld = D/U
observed agreed with the predictions of a perturbation
analysis [14]. These results suggested that dispersion is
controlled (as in 3D porous media [6]) by spreading due
to velocity variations associated to the geometry of the
void structure. This determines the correlation length of
the velocity field, leading to the so-called geometrical
dispersion regime. However, flow in fractures is known
to be frequently concentrated in long channels of high
hydraulic conductance [10,21,27]. The velocity remains
then correlated over distances which may be too large
for establishing a Fickian dispersion regime. These
previous experiments were all performed for a fixed
path length: however, in order to test the validity of the
Fickian description, one must measure the variation of
the width of the mixing front with time t and check
whether it increases, as expected, as t1/2.

Another key factor is dispersion resulting from the
flow profile in the gap of the fracture: the variation of the
velocity between the walls (where it cancels out) and the
middle of the gap (where it has a maximal value)
stretches the solute front. This creates a concentration
gradient across the gap which is balanced by transverse
molecular diffusion. The decorrelation of the velocity of
the solute is then determined by the characteristic time
nsfer of solute in different model fractures: From random to
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for the diffusion of solute particles across the gap. This
differs from the geometrical regime in which the
decorrelation is determined by the geometrical structure
of the fracture. Then, the longitudinal dispersivity
scales like ld / Pe in this so-called Taylor dispersion
(instead of ld � cst for geometrical dispersion).

In fractures, both dispersion regimes are expected to
coexist [13,17,25]: at low Péclet numbers (but large
enough to neglect pure molecular diffusion), dispersion is
controlled by the disordered geometry, while, at higher
ones, Taylor dispersion becomes the leading dispersion
mechanism. However, the critical Péclet number
characterizing the transition still has to be determined.
Also, the robustness of this model, when contact points
between the fracture walls are present, must be tested.

We discuss in this article dispersion experiments
dealing with these issues and carried out in transparent
fractures with various degrees of heterogeneities. The
geometries of the void space and the roughness of the
walls of these models are described in Section 2.1. They
range from a random wall roughness with a correlation
length of the order of the aperture to a multiscale rough
wall geometry similar to that observed in the field [26];
this latter case often leads to a strong flow channeliza-
tion [27]. In the present models, a relative shear
displacement~d of complementary matching rough walls
is introduced: high aperture channels oriented normal to
the displacement and spanning over the fracture are then
created leading to an anisotrope aperture field [2,16].
This phenomenon increases with the magnitude of~d and
becomes noticeable as soon as d is of the order of the
mean aperture [20]. The influence of the contact area
between the fracture walls was also investigated by
performing flow experiments in a transparent model
fracture with an array of contact points.

In order to address these various issues, dispersion
has been studied as a function of:

� the distance traveled by the tracer;
� the lateral scale of observation in the fracture plane

over which the concentration is averaged. This scale
ranges from a (meso)microscopic scale (i.e. the
typical fracture aperture) up to the fracture width;
� the fluid rheology in order to determine, without

ambiguity, the main mechanisms controlling the
dispersion: i.e. velocity profile in the fracture gap or
velocity fluctuations in the fracture plane.

This contrasts with previous measurements realized
at the outlet of the samples and in which the
development of the mixing region and its spatial
structure cannot be investigated.
Please cite this article in press as: H.. Auradou, et al., Miscible tra
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2. Experimental setup and procedure

2.1. Experimental models and injection set-up

� Model 1: this model [9] has two transparent surfaces of
size 350 � 120 mm without contact points. The upper
one is a flat glass plate and the lower one is a rough
photopolymer plate. Thewall roughness corresponds to
randomly distributed cylindrical obstacles of diameter
do = 1.4 mm and height 0.35 mm protruding out of
the plane surface. The minimum aperture am of the
model is the distance between the top of the obstacles
and the flat glass plate with am = 0.37 � 0.02 mm;
the maximum and mean values are respectively
aM = 0.72 � 0.02 mm and ā ¼ 0:65� 0:02 mm.
� Model 2: this model uses a periodic square array of

obstacles of similar size as in model 1 but of rectangular
and variable cross section and with their top in contact
with the top plate. Flow takes then place in a two
dimensional network of channels of random aperture
[12]. The model contains 140� 140 channels (real size
150 � 140 mm) with an individual length equal to
l = 0.67 mm and a depth aM = 0.5 mm; their average
width and standard deviation are w̄ ¼ 0:33 mm and
s(w) = 0.11 mm. Following the definition of Bruderer
and Bernabe [11], the degree of heterogeneity of the
network can be characterized by the normalized
standard deviation sðwÞ=w̄. In the present work:
sðwÞ=w̄’ 0:3.
� Model 3: models 3 and 4 have complementary self-

affine walls of size 350 � 90 mm, reproducing the
roughness of natural fractures [8]. In model 3, a
relative shear displacement d = 0.75 mm parallel to
the direction of the flow is applied between the walls.
The mean of the fracture aperture is ā ¼ 0:75 mm and
its standard deviation is sa = 0.11 mm. This shear
configuration is referred to as~djj~U.
� Model 4: in order to analyze the influence of the

direction of the shear displacement, the direction of the
shear for model 4 is now perpendicular to the direction
of the flow (the corresponding standard deviation of
the aperture is sa = 0.15 mm). This configuration
(and that of model 5) is referred to as~d?~U. All other
characteristics (wall size, mean aperture, map of
the roughness of each wall, amplitude d = 0.75 mm of
the shear displacement) are identical to those of
model 3.
� Model 5: the shear displacement is also perpendicular

to the mean flow but has a smaller amplitude
d = 0.33 mm: this results in a lower standard deviation
of the mean aperture sa = 0.15 mm and in a weaker
channelization.
nsfer of solute in different model fractures: From random to
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Table 1
Rheological parameters and Péclet numbers for the 500 and 1000 ppm
scleroglucan solutions used in the present work.
Tableau 1
Paramètres rhéologiques et nombres de Péclet pour les solutions de
500 et 1000 ppm de scléroglucane, utilisées dans la présente étude.

Fluids n ġ0s�1 m0 mPa.s

W-Glycerol 1 – 10
500 ppm 0.38 � 0.04 0.077 � 0.018 410 � 33
1000 ppm 0.26 � 0.02 0.026 � 0.004 4500 � 340

W-Glycerol refers to the water glycerol mixture. (W-Glycérol se
rapporte au mélange eau-glycérol).
All models are transparent and placed vertically with
their open sides horizontal. The upper side is fitted with
a leak-tight adapter allowing one to suck the fluid at a
constant flow rate. The lower open side can be dipped
into a bath containing the liquid. When the pump is
switched off, the bath can be lowered before changing
the fluid inside it. This allows one to obtain a flat initial
front between the fluids (See Figure 1 in ref [8]).

The models are illuminated from the back by a light
panel and images are acquired using a high resolution
camera. The pixel size is around 0.2 mm, i.e. lower than
the typical fracture aperture. About 100 images of the
distribution of the light intensity I(x,y,t) transmitted
through the fracture are recorded at constant intervals
during the fluid displacement using a digital camera with
a high dynamic range. Reference images with the fracture
saturated with the clear and dyed fluids (dye concentra-
tion c0) are also recorded before the experiments and after
the full saturation by the displacing fluid. A calibration
curve obtained independently through separate measure-
ments is then used to map the local relative dye
concentration 0 � c(x,y,t)/c0 � 1 (in the following, c0 is
omitted and c(x,y,t) refers directly to the normalized dye
concentration). The two fluids are of equal density: this is
verified by performing twice the experiments at each flow
rate value with the dyed fluid either displacing or
displaced by the clear fluid. Comparing the results allows
one to detect possible instabilities induced by residual
density differences (the corresponding experiments are
discarded). The two fluids are, of course, miscible and
have the same viscosity.

2.2. Fluids preparation and characterization

The solutions used in the present work are either a
Newtonian water-glycerol mixture or shear-thinning
water-polymer (scleroglucan) solutions with a 500 or
1000 ppm polymer concentration. In all cases, the
injected and displaced fluids have identical rheological
properties. The Newtonian solution contains 10% in
weight of glycerol and has a viscosity equal to
1.3 � 10�3 Pa s at 20 8C. The preparation and char-
acteristics of the shear-thinning solutions are the same
as those reported in [8]. The variation of the viscosity m

with the shear rate ġ is well fitted by the Carreau
function:

m ¼ 1

ð1þ ðġ=ġ0Þ2Þ
ð1�nÞ=2

ðm0 � m1Þ þ m1: (2)

The values of the rheological parameters characterizing

the fluids are listed in Table 1. For the non Newtonian

H. Auradou et al. / C. R. G4
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fluids and at low shear rates ġ 9 ġ0, the viscosity is

constant, as for a Newtonian fluid with m’m0 (New-

tonian plateau regime). At higher shear rates ġ 0 ġ0,

the viscosity follows a power law: m/ ġðn�1Þ. Practi-

cally, m1 is taken equal to 1 mPa s, i.e. the viscosity of

water (the solvent): this limiting value would indeed

only be reached at shear rates above the experimental

range.

The two main dispersion mechanisms, i.e., Taylor
dispersion (ld / Pe) and geometrical dispersion
(ld � cst) are affected in opposite directions when a
Newtonian fluid is replaced by a shear thinning solution.
More precisely, the velocity contrasts between different
flow paths are enhanced for a shear thinning fluid,
resulting in an increase of the geometrical dispersion
(without modifying the relation ld � cst). By contrast,
the velocity profiles in the gap become flatter: this
reduces therefore Taylor dispersion, but still with
ld / Pe. Varying the fluid rheology modifies the relative
influence of the two main dispersion mechanisms in
opposite ways: the dominant one can therefore be
identified unambiguously for each fracture geometry
and flow rate.

3. Experimental results

3.1. Fracture model 1

In this model, flow takes place in the free space
between a flat plate and a second one with protuberant
obstacles. The latter perturb the flow velocity field: the
local mean fluid velocity (averaged over the gap) is
greater between the obstacles, where the aperture is
largest than at their top, where it is minimal. These
mean velocity variations in the fracture plane result in
geometrical tracer spreading. As for the velocity profile
in the fracture gap, it induces Taylor-like dispersion.
The variation of the dispersivity ld = D/U as a function
nsfer of solute in different model fractures: From random to
/j.crte.2009.03.003
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of Pe confirms that it is the sum of the two contributions
discussed above with:

ld

a
¼ aG þ aT Pe; (3)

where aTPe corresponds to Taylor dispersion and aG to

geometrical dispersion. Longitudinal molecular diffu-

sion introduces an additional term aD/Pe in which

aD < 1 reflects the tortuosity of the medium: this term

is, however, omitted here because it would only become

significant compared to aG at Pe values below the

experimental range. For a fracture with two flat parallel

plates and a Newtonian fluid, one has: aG = 0 and

aT = 1/210; also, one has aG 6¼ 0 only for fractures with

rough walls. Moreover, if the correlation length of the

velocity field is small compared to the fracture size and

if the ratio e of the amplitude of the velocity fluctuations

to the mean velocity U is small, then the perturbation

theory predicts that aG / e2 (a complete expression of

aG is given by Eq. (3) of [9]).

Experimental dispersivity variations as a function of
Pe are plotted in Fig. 1 for the three fluids. These data
sets are well adjusted (see lines in Fig. 1) by functions of
the type shown in Eq. (3): the dispersivity increases at
Please cite this article in press as: H.. Auradou, et al., Miscible tra
multiscale wall roughness, C. R. Geoscience (2009), doi:10.1016

Fig. 1. Variation of the experimental dispersivity ld as a function of
the Péclet number in model 1. ( , ): water-glycerol solution; ( , ):
1000 ppm, ( , ): 500 ppm polymer solutions. ld is determined from
variations of the local concentration (filled symbols) or of its average
over the model width (open symbols). Solid, dotted and dashed lines:
fits of the data for each solution (in the above order) with Eq. (3).

Fig. 1. Variation de la valeur expérimentale de la dispersivité ld en
fonction du nombre de Péclet Pe dans le modèle 1. ( , ) : solution
eau-glycérol; solutions de polymère de concentrations: ( , )
1000 ppm et ( , ) 500 ppm. ld est déterminée à partir des variations
de la concentration locale (symboles pleins) ou de sa moyenne sur la
largeur du modèle (symboles vides). Lignes continues, pointillées,
tirets: ajustement des données par l’Éq. (3) pour chaque solution (dans
l’ordre précédent).
first slowly with Pe above Pe’ 20 from a nearly
constant plateau value before displaying a linear
variation at higher velocities. The plateau value
corresponds to aG in Eq. (3) and increases with the
polymer concentration. It can be shown that the
amplitude of the velocity fluctuations is larger for
shear thinning fluids: for a power law dependence of the
viscosity on the shear rate ðm/ ġðn�1ÞÞ, the parameter e
would increase theoretically by a factor (1 + 1/n)/2
compared to a Newtonian fluid. The velocity fluctua-
tions (and, as a result, the dispersivity) increase
therefore when n decreases, i.e, when the shear thinning
character of the fluids is stronger. Unlike aG, the
parameter aT for shear-thinning fluids is lower than the
Newtonian value 1/210 [9].

The values represented in Fig. 1 by filled symbols
were obtained by fitting variations with time of the local
concentration on each individual pixel by solutions of
Eq. (1); this provides local values of both the dispersion
coefficient D(x,y) and the transit time. The values of
D(x,y) at points far enough from the inlet so that
dispersion has reached a stationary regime are then
averaged over x and y. A similar analysis was performed
on the average of the local concentrations over the
fracture width and its results are displayed by empty
symbols in Fig. 1: they almost fall on the filled symbols
demonstrating the lack of large scale concentration
heterogeneities in the mixing front.

3.2. Fracture model 2

In this model, the obstacles extend over the full gap
height and mimic gouge particles created by the failure
of the rock and evenly distributed in the fracture
(Section 2.1). The model is then a plane array of
channels of random width: it can be considered as a 2D
porous medium in which the pores correspond to the
junctions between the channels. We show now that
mixing at these junctions has a crucial influence on
dispersion.

Fig. 2 displays variations of the dispersivity with the
Péclet number deduced from time variations of the local
concentration at the pore scale (filled symbols) and of its
average over the fracture width (open symbols); it is
seen that the values of ld obtained in both cases are
similar so that, in the following, only global measure-
ments will be discussed.

For Pe < 10, ld = D/U, is nearly constant (i.e.
D / Pe), suggesting dominantly geometrical disper-
sion. As discussed in Sec. 3.1, the value of ld in this
regime should depend strongly on the rheology of the
solution: more precisely, it should increase with the
nsfer of solute in different model fractures: From random to
/j.crte.2009.03.003
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Fig. 2. Variation of the dispersivity ld (mm) with the Péclet number
for experiments with water-polymer solutions: ( ),( ): 500 ppm
concentration - ( ), ( ) 1000 ppm. Open (resp. filled) symbols:
averaging interval: 35 (resp. 0.4) mesh sizes. Dashed lines: Mean
dispersivity values for the geometrical dispersion regime. Dotted line:
power law fit of the variation for Pe > 10 (exponent 0.35 � 0.03).

Fig. 2. Variation de la dispersivité ld (mm) avec le nombre de Péclet
Pe pour des expériences avec des solutions eau-polymère de concen-
trations: ( ),( ) 500 ppm et ( ), ( ) 1000 ppm. Symboles ouverts
(resp. pleins) : intervalle de moyennage : 35 (resp. 0,4) tailles de
maille. Tirets : valeurs de dispersivité moyennes pour le régime de
dispersion géométrique. Pointillés: ajustement par une loi de puis-
sance de la variation pour Pe > 10 (exposant 0,35 � 0,03).
polymer concentration as indeed observed here (like for
model 1).

For Pe > 10, a second dispersion regime is observed,
in which ld increases with Pe. Furthermore, the linear
trend observed in a log-log coordinate shows that ld
follows a power law of Pe (more precisely, ld / Pe0.35

for Pe > 10). This result is in agreement with numerical
simulations by Bruderer and Bernabe [4] and differs
from the Taylor dispersion regime ld / Pe observed in
model 1 at high Pe values. This difference is explained
by the influence of the pore junctions. At low flow
velocities (typically Pe < 10), tracer particles can
explore effectively the local flow field by molecular
diffusion during their transit time through a given
junction: this distributes evenly the tracer concentration
inside it which represents a perfect mixing condition.
Then, the tracer concentration is equal in all outgoing
paths and the probability to follow one of them is
proportional to the corresponding flow rate [1,24].
Therefore, in this regime, dispersion is controlled by the
disordered geometry of the array of channels.

At higher Pe values (typ. Pe > 10), mixing at the
junctions is no more perfect and the tracer concentration
in slower channels (like those transverse to the mean
flow) is lower compared to the perfect mixing situation.
The dispersion characteristic becomes more similar to
the case of capillary tubes (representing the fast flow
Please cite this article in press as: H.. Auradou, et al., Miscible tra
multiscale wall roughness, C. R. Geoscience (2009), doi:10.1016
channels) oriented along the flow direction. In this case,
one would observe Taylor dispersion with ld / Pe but
the influence of flow redistribution at the junctions is
quite large: this leads to a variation of ld as Pe0.35

intermediate between those observed in the geometrical
and Taylor regimes. The origin of power law variations
of ld with Pe is also discussed in detail in [7].

3.3. Fracture model 3

Like in model 1, the walls of this fracture do not have
any contact point but, in contrast with it, the rugosities
of the wall have been selected to reproduce the multi-
scale roughness of most natural fractures (Section 2.1).

Such fractures are known to display high aperture
channels perpendicular to the relative shear displace-
ment ~d of the walls; they are characterized by an
anisotropic permeability field with a larger permeability
in the direction parallel to the channels. While most
studies of these systems have dealt with their
permeability, little is known about the influence of
such a structure on tracer dispersion.

In model 3, flow is parallel to~d (i.e. normal to the
channels): in this case ð~djj~UÞ, the concentration
variation curves are well adjusted by the solution of
the convection-dispersion equation (1). This can be seen
in Fig. 3 (+ symbols) both for the variations of the local
concentration C(x,y,t) at a point (x,y) (inset) and for its
average C̄ðx; tÞ in the y direction across the model.
Moreover, the dispersivities determined from these
curves were found to become constant after a long
enough path inside the fracture. As in models 1 and 2,
the dispersion process is therefore Fickian. Fig. 4
displays variations of both the local and global
dispersivities with Pe for the two polymer solutions.
Theoretical Taylor dispersivities for a fracture of same
mean aperture with plane smooth walls and for the
different fluid rheologies are also plotted in Fig. 4 as
dashed and dotted lines (differences between these
curves reflect the effect of the velocity profile in the
gap).

For Pe > 12, the local dispersivity increases with Pe
in qualitative agreement with theoretical expectations
(ld / Pe) and is also lower for the strongly shear-
thinning 1000 ppm solution (open symbols). For both
solutions ld is larger than predicted, particularly for the
500 ppm solution for which it is close to the Newtonian
value. This may be due to the vicinity of the ‘‘plateau’’
domain of the rheological curve in which the solution
behaves like a Newtonian fluid at low shear rates. For
Pe � 12, in which both solutions should be in this
‘‘plateau’’ regime, the dispersivities are, as expected,
nsfer of solute in different model fractures: From random to
/j.crte.2009.03.003
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Fig. 4. Variation of the normalized dispersivity ld/a as a function of
Pe for model 3 and two different polymer concentrations. ( , ):
global dispersivities determined from concentrations averaged over
the fracture width. ( , ): local dispersivities determined from
concentration variations on individual pixels. Lines: Taylor dispersion
for plane parallel walls with the same mean gap as for model 3. ( , ),
dotted line: 1000 ppm polymer solution; ( , ), dashed line: 500 ppm
polymer solution; continuous line: Newtonian solution. Insert: varia-
tion of the ratio of the local and global dispersivities as a function of
the Péclet number. ( ): 500 ppm solution. ( ): 1000 ppm solution.

Fig. 4.Variation de la dispersivité normalisée ld/a en fonction de Pe
pour deux concentrations en polymère différentes dans le modèle 3.
( , ): dispersivités globales déterminées à partir de la moyenne de la
concentration sur la largeur de la fracture. ( , ) : dispersivités locales
déterminées à partir des variations de concentration sur des pixels
isolés. Lignes : dispersion de Taylor entre des parois planes et
parallèles avec le même intervalle que pour le modèle 3. ( , ), ligne
pointillée: solution de polymère de concentration 1000 ppm ; ( , ),
tirets : solution de concentration 500 ppm; ligne continue : solution
newtonienne. Insert : variation du rapport des dispersivités locale et
globale en fonction du nombre de Péclet. ( ) : solution de concen-
tration 500 ppm. ( ) : solution de concentration 1000 ppm.

Fig. 3. Compared time variations of the average C̄ðx; tÞ of relative
concentration across the width of models 3 and 4 at a distance
x = 285 mm from the inlet for dispersion experiments at a same Péclet
number Pe = 285. Insert: time variation of the local relative concen-
tration C(x,y,t) at a point (x,y) for the same distance x as for C̄ðx; tÞ.
Experimental data points: (+) for model 3 and (�) for model 4. Solid
lines: fit of the corresponding data with the solution of Eq. (1). t̄ðx; yÞ
and t̄ðxÞ ¼ mean transit time determined by the fits.

Fig. 3. Comparaison des variations temporelles de la moyenne
C̄ðx; tÞ sur la largeur des modèles 3 et 4, à une distance
x = 285 mm de la face d’entrée, pour des expériences de dispersion
à un même nombre de Péclet Pe = 285. Insert : variation temporelle de
la concentration C(x,y,t) en un point (x,y) correspondant à la même
distance x que C̄ðx; tÞ. Données expérimentales : modèle 3 (+), modèle
4 (�). Lignes continues: ajustement des données correspondantes par
une solution de l’Éq. (1). t̄ðx; yÞ et t̄ðxÞ : temps de transit moyens
déterminés par les ajustements.
the same for the two solutions but still slightly higher
than the theoretical value. At Pe < 10, ld rises again due
to the influence of longitudinal molecular diffusion and
its value is also the same for the two solutions (the [*]
and [&] symbols coincide).

These values of the local dispersivity are compared in
Fig. 4 to the global dispersivities determined from time
variations of the concentration averaged over the fracture
width (filled symbols): as seen in Fig. 4 and its insert, the
local dispersivities are significantly smaller (at a same
Péclet number and for a same solution). The front
contours (c = 0.5) displayed in Fig. 5a and b for model 3
reveal fine structures of the mixing front: they reflect
fluctuations of the velocity induced by the fracture wall
roughness. Their magnitude is large enough to account
for the additional increase of the global dispersivity with
respect to pure Taylor dispersion (compared to local
dispersion) but not enough to allow for the observation of
a geometrical dispersion regime.

To conclude, in model 3 with ~djj~U, dispersion is
mostly controlled by the Taylor dispersivity component
due to the velocity profile between the walls as soon as
Please cite this article in press as: H.. Auradou, et al., Miscible tra
multiscale wall roughness, C. R. Geoscience (2009), doi:10.1016
Pe 0 12; there is, however, an amplification of the
dispersion due to the fracture roughness.

3.4. Fracture model 4

In model 3, the mean flow was perpendicular to the
channels or to the ridges induced by the shear
displacement: the correlation length of the velocity is
then determined by the typical width of these structures.
Model 4 has the same size as model 3, a same mean
aperture and complementary rough walls with a self-
affine geometry exactly identical to that used for model
3. However, the shear~d is, this time, perpendicular to the
mean flow ~U. In this configuration ð~d?~UÞ, ~U is parallel
to the channels and ridges created by the shear: the
correlation length of the flow velocity is then
determined by the length of the channels which is
much larger than their width.
nsfer of solute in different model fractures: From random to
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Fig. 5. Experimental isoconcentration fronts (c = 0.5) in model 3
(graphs (a) and (b)) and in model 4 (graphs (c) and (d)) as a function of
the normalized distance xðxðtÞ (x̄ ¼ mean front distance) for two
different ratios b of the injected volume to the pore volume (dots:
b = 0.85, dashes: b = 0.5). Mean velocities: (a), (c): U = 0.0125 mm/s,
Pe = 14; (b), (d): U = 0.25 mm/s, Pe = 285. Continuous line: theore-
tical variation from Eq. (4). All experiments have been realized with
identical 1000 ppm water-polymer solutions.

Fig. 5. Fronts isoconcentrations expérimentaux (c = 0.5) dans le
modèle 3 (graphiques (a) et (b)) et dans le 4 (graphiques (c) and
(d)) en fonction de la distance normalisée x=ðxðtÞ ðxðtÞ ¼
distance moyenne du frontÞ pour deux rapports différents b du volume
injecté et du volume poreux (pointillés : b = 0,85, tirets : b = 0,5).
Vitesses moyennes - (a), (c) : U = 0,0125 mm/s, Pe = 14 ; (b), (d) :
U = 0,25 mm/s, Pe = 285. Ligne continue : variation théorique d’après
l’Éq. (4). Toutes les expériences ont été réalisées avec des solutions
eau-polymère identiques de concentration 1000 ppm.
The dispersion characteristics are then very different
as can be seen by comparing isoconcentration fronts
obtained for model 4 (Figs. 5c, d) and model 3 (Figs. 5a,
b) at different times and in identical experimental
conditions. More precisely, large fingers and troughs are
observed for model 4 while none appears for model 3
(note that the horizontal scales is 3 times more
expanded for model 3 than for model 4 in Fig. 5).
Also, the amplitude of these features parallel to ~U is
larger at the higher velocity for which the solution has a
Please cite this article in press as: H.. Auradou, et al., Miscible tra
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shear-thinning behaviour (Fig. 5d) than at the lower
velocity at which it behaves like a Newtonian fluid
(Fig. 5d). Another important feature is the good collapse
of the large features of the front observed at different
times when normalized by the mean distance: this
shows that the size of these features parallel to the flow
increases linearly with time.

These results show that front spreading is purely
convective and that the total width Dx of the front
parallel to ~U (i.e. the distance between the tips of the
fingers and the bottom of the troughs) increases linearly
with distance as xDU/U (DU/U = typical large scale
velocity contrast between the different channels created
by the shear).

In order to predict these contrasts, we modelled
the fracture aperture field as a set of independent
parallel channels of aperture a(y) = <a(x,y)>x ([3,4]).
A particle starting at a transverse distance y at the inlet is
assumed to move at a velocity proportional to a(y)(n+1)/

n; The theoretical profile xf (y,t) of the front at a time t is
then:

x f ðy; tÞ ¼
xðtÞaðyÞðnþ1Þ=n

< aðyÞðnþ1Þ=n > y

; (4)

where xðtÞ ¼ < x f ðy; tÞ> y and < aðyÞðnþ1Þ=n > y are

averages over y of the local aperture a(x,y). Normalized

profiles x f ðy; tÞ=xðtÞ computed using Eq. (4) and the

actual aperture fields are plotted in Fig. 5a to d as

continuous lines. The exponent n has been taken equal

to 1 at the lowest velocity for which ġ� ġ0 (Fig. 5a, c)

and to 0.26 at the highest one for which ġ> ġ0 (Fig. 5b,

d) (as mentioned in Section 2.2, ġ0 is the shear-rate

value corresponding to the crossover from the New-

tonian to the shear-thinning behaviour of the fluid).

Eq. (4) clearly predicts well the location and shape of
the large ‘‘fingers’’ and ‘‘troughs’’ at both velocities for
~d?~U. In contrast, the theoretical curve does not
reproduce the front geometries in model 3 ð~djj~UÞ except
for the small global slope.

This confirms that, for ~d?~U (model 4), the large
scale features of solute transport are determined by the
velocity contrasts between the channels created by the
shear. The curves of Fig. 5c, d also reproduce well the
difference between the sizes of the fingers at the two
velocities investigated. This confirms that the difference
between these sizes may be accounted for by the
different rheological behavior of the fluid: the velocity
contrasts (and, therefore, the size) are amplified for
Pe = 285 (shear-thinning power law domain) compared
to the vicinity of the Newtonian constant viscosity
regime (Pe = 14).
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For model 3, the hypothesis of the model are not
satisfied and it does not reproduce the front geometry:
however, the features of the front are generally visible at
similar transverse distances y in Fig. 5a and b (at a given
time). They likely reflect also, in this case, a convective
spreading of the front due to velocity contrasts between
the flow paths: however, there is no simple relation of
the front geometry to the aperture field, in contrast with
model 4.

One finds the same contrast with model 3 for the
variations with time of the concentration displayed in
Fig. 3. The time variation of the average C̄ðx; tÞ of the
concentration across the model is not well fitted this
time (� symbols) by the solutions of Eq. (1). The broad
width of the transition zone in the curve and its complex
shape reflect the large scale velocity contrasts between
the different channels. The variations of the local
concentration on single pixels, in contrast, are generally
well fitted by solutions of Eq. (1) and, at some points
(x,y), the curves are very similar to those obtained for
model 3, as can be seen in the inset of Fig. 3. The
distribution of the local dispersivity ld(x,y) is, however,
much broader than for model 3 and the mean value is
larger.

The same measurements have been performed [8] on
model 5 which has a similar wall geometry but
corresponds to a smaller amplitude d = 0.33 mm of
the shear (still with~d?~U). In this case, the values of the
local dispersivity are very close to those predicted from
Taylor dispersion. The amplitude of the large scale
fingers is also significantly smaller but their geometry is
again well described by Eq. (4) [4]. Both features
indicate that the disorder of the flow field is stronger for
model 4 than for model 5 and, therefore, increases with
the amplitude of the displacement d.

4. Conclusion

To conclude, the present experiments in 5 different
models of rough fractures demonstrate that tracer
dispersion depends crucially on the geometrical
characteristics of the roughness. Investigating the
dependence on the Péclet number and the influence
of the fluid rheology allows one to identify the different
mechanisms and their relative magnitude. The char-
acteristics obtained with the different models can be
grouped into two sets.

Models 1 and 2: both models correspond to obstacles
with a single characteristic size. The height of the
obstacles is smaller than the aperture for model 1 and
equal to it in model 2: this models the case of gouge (or
proppant) particles bridging the gap. In both cases, the
Please cite this article in press as: H.. Auradou, et al., Miscible tra
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size of the wall rugosities and the correlation length of
the velocity field are small compared to the global size
of the fracture. As a result, the variation with distance
and time of the tracer concentration satisfies the
convection dispersion equation (1); moreover, the
corresponding values of D are independent of the
fraction of the width of the model over which the
concentration is averaged and of the distance from the
inlet. Dispersion in these models may therefore be
characterized by a single macroscopic dispersion
coefficient.

At low Péclet numbers, one has, for both models,
D / U corresponding to geometrical dispersion due to
the disorder of the velocity; in this regime, ld = D/U
increases with the polymer concentration (i.e. with the
shear-thinning character of the fluids) due to an
enhancement of the velocity contrasts. Moreover, for
model 1, the value of ld is close to that predicted from a
small perturbation theory.

At higher Pe’s, other characteristics of the structure
of the void space such as the flow profile in the
aperture (model 1) and the distribution of the tracer in
the pore junctions (model 2) influence dispersion.
For model 1, there is a transition towards Taylor
dispersion with D / Pe2. In model 2, D increases at
high Pe values as Pe1.35: this exponent agrees with
previous numerical simulations [11] and should
depend on the distribution of the size of the obstacles.
In this latter model, the transition between the
different regimes is controlled by mixing at the scale
of individual junctions.

Models 3, 4 and 5: The roughness of the walls of
these models has a multiscale self-affine geometry
similar to that of many fractured rocks; the walls of
these fractures are complementary with a relative
shear displacement either parallel ð~djj~UÞ for model 3
or perpendicular ð~d?~UÞ for models 4 and 5. The
relative shear produces a channelization perpendicu-
lar to ~d of the aperture field: this channelization has
a key influence on dispersion which, therefore,
depends strongly on the relative orientation of ~d
and ~U.

For ð~d?~UÞ (models 4 and 5), the global spreading of
the mixing front is not dispersive: instead, its global
width parallel to ~U increases linearly with time and
reflects the velocity contrasts between the channels. For
the largest relative shear d = 0.75 mm (model 4), large
scale structures of the front can be predicted from the
aperture field and their size increases with the shear-
thinning character of the fluid.

The variation of the local thickness of the front
remains instead dispersive: for the smaller relative
nsfer of solute in different model fractures: From random to
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shear d = 0.33 mm (model 5), the value of D
corresponds to Taylor dispersion while, for model 4,
it is larger.

For model 3 ð~djj~UÞ, the global spreading of the front
is much weaker that in model 4 of same characteristics
but for which ~d?~U: local spreading is controlled by
Taylor dispersion at large Pe’s and by molecular
diffusion at lower ones. Actually, for models 3,4,5, no
geometrical dispersion regime is observed, even at low
Péclet numbers.

An important issue in the channelized fractures is
whether the transverse exchange of tracer may be large
enough so that a diffusive spreading regime is reached at
very large distances. Recent work by other authors [5]
report adjustments of dispersion curves in rough
sandstone samples by a similar parallel channels model:
however, the adjusted parameters vary in this case with
the distance from the inlet. This may indeed result from
some amount of transverse exchange reducing the
channelization effect.

These results have a strong relevance to the
efficiency of the recovery of heat through water
circulation in geothermal reservoirs. There are also
other possible applications to the prediction of seismic
events from water circulation in the rock layers under
stress.
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