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The sedimentation and fluttering (angular oscillation of the axis) of straight cylinders
are studied in a viscous fluid at rest filling a vertical Hele-Shaw cell for different density
contrasts ρs − ρf and fluid viscosities μf and for two cylinder densities ρs and diameters
D. The influence of confinement in the cell is studied by comparing the present results to
those of the literature for nonconfined fluids. While the confinement and the cylinder length
L both influence strongly the mean sedimentation velocity Vs , the characteristics of the
fluttering instability are much more similar in the confined and nonconfined cases. While the
drag coefficient is nearly constant in a nonconfined fluid, it is larger here and depends both
on L (due to flow blockage) and on the Reynolds number ReD = VsDρf /μf ; the inertial
and viscous drag components have equal magnitudes for ReD � 40. For fluttering, instead,
the key parameter is the Froude number Fr = Vs/Vg [Vg = √

(ρs − ρf )gL/ρf ], and the
fluttering oscillations vanish below Fr ∼ 0.07 for all cylinders and fluids investigated.
Above this threshold, the angular amplitude increases with Fr up to a plateau value, while
that of the horizontal oscillations is, at first, very large and then decreases; both amplitudes
are reduced when the viscous drag is dominant, but, if inertial drag is dominant, all data
points follow a common trend. For all fluids and cylinders, too, the fluttering frequency
varies as f = 0.102 Vg/L. These features of fluttering are generally qualitatively similar to
those reported in nonconfined fluids, but this instability is observable down to lower ReD

values (�24 instead of ∼200).

DOI: 10.1103/PhysRevFluids.2.104301

I. INTRODUCTION

The dynamics of objects with a large aspect ratio sedimenting freely in a fluid is a classical
problem in hydrodynamics and aerodynamics, the analysis of which goes back to such authors
as Maxwell [1] or Kirchhoff [2]. Depending on the physical control parameters and the initial
conditions [3], the stationary vertical sedimentation motion may be combined to time-dependent
horizontal displacements and to variations of the angle with respect to the horizontal [4] which can
be periodic or chaotic (flutter) [5,6], or to periodic or chaotic tumbling in which the object rotates
about its center of mass [7–11]. Many studies of such phenomena have been performed in order to
identify the different flow regimes and the relevant dimensionless numbers determining the transition
between them.

A particularly interesting case is that of confined configurations in which the diameter of the
falling solid objects is a large fraction of the distance between the channel walls: this strong
local obstruction by the object creates large back-flow and fluid entrainment effects which perturb
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considerably its motion. Practically, this corresponds to the transport of particles in such media
as fractured rocks, frequently encountered in the petroleum and gas engineering industries and in
geothermal reservoirs. These flow configurations are also encountered in chemical reactors with
plane walls or in plate heat exchangers. Confinement limits three-dimensional (3D) effects and
allows therefore for two-dimensional (2D) numerical simulations. Experimentally, it also makes
possible a precise quantitative determination of the trajectory of the objects. Belmonte [4] used,
for instance, thin rectangular sheets perpendicular to parallel side walls and of width very close to
the distance between the latter. Moreover, confinement often modifies the relative magnitude of the
viscous and inertial forces and influences the dynamics of the falling objects and the onset of the
instabilities.

The present work is therefore centered on the influence of confinement on the fluttering motion
of cylinders of large aspect ratios sedimenting between vertical parallel walls (Hele-Shaw cell
geometry); a strong confinement is obtained by using cylinder diameters which correspond to 0.68
times and 0.79 times the spacing between the walls. The cylinders mimic the fibers used in hydraulic
fracturing [12,13] for recovering oil and/or gas from tight low-porosity reservoirs or for circulating
water in hot dry rocks for geothermal steam generation.

In a nonconfined case, the phenomenon is controlled by five independent variables [6] (two
for the geometry of the object, its density and the fluid density and viscosity) from which three
dimensionless numbers can be constructed [3]: the dimensionless moment of inertia, the aspect ratio
of the object, and the Reynolds number. When the influence of inertia is low (e.g., a flattened object
falling vertically) and for small Reynolds numbers, the motion is overdamped and the object falls
without any oscillation. If the dimensionless moment of inertia is increased (e.g., a more spherical
particle), one observes frequently a tumbling motion. Finally, for small moments of inertia, and
Reynolds number above 100, both the orientation of the cylinder and the coordinates of its center
of gravity oscillate periodically. In a pioneering work, Marchildon et al. [14] analyzed the motion
of (∼100) cylinders of different materials and dimensions: they obtained a scaling relation satisfied
by the frequency of their oscillations. Chow and Adams [15] also compared satisfactorily to these
predictions the frequency of the oscillations of straight and curved cylinders sedimenting in a large
container (see Sec. IV).

In previous works [16,17], we had already investigated the stability of the motion of similar
cylinders in Hele-Shaw cells for a broader range of values of the confinement ratio D/H and
with both a nonzero and a zero mean flow inside the cell. (D is the diameter of the cylinders and
H the distance of the cell walls.) At values of D/H between 0.4 and 0.55 the cylinders oscillate
perpendicular to the flow and to the front walls of the cell and display a rolling motion about their main
axis but remain horizontal [16,18,19]. The detailed characteristics of these transverse oscillations
and, particularly, the influence of the mean flow are reported in detail in Ref. [17]. For D/H � 0.55,
an additional fluttering motion is superimposed onto the transverse one and induces oscillations
of both the angle of the axis of the cylinder with respect to the horizontal and of the horizontal
coordinate of its center of mass. For D/H � 0.6, the transverse oscillation disappears, and only
the fluttering instability is observed. In the context of fiber transport in fractures, the displacements
induced by these latter oscillations may have a strong influence by introducing interactions between
the fibers: the amplitude and frequency of the oscillations provide crucial information on the volume
explored by the fibers and, therefore, on their interactions.

For the values 0.68 and 0.79 of D/H in the present experiments, only the fluttering instability is
present. Moreover, in order to simplify further the configuration of the flow and the analysis of the
results, no mean flow is applied and the cylinders move solely under the influence of gravity. The
whole trajectory of all the falling cylinders is analyzed as a function of time in order to determine
the mean sedimentation velocity and the frequency and amplitudes of the oscillations. The analysis
of the variation of these variables with the length L and density ρs of the cylinders and the properties
of the fluid (viscosity μf , density ρf ) has been performed for a broad range of values of these
parameters and compared to those reported by other authors for similar sedimentation experiments
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FIG. 1. (a) Schematic front view of the experimental setup; oblique gray and black arrows represent the
motion corresponding to the fluttering oscillations. Lc = 400 mm, W = 90 mm. (b) Expanded side view of
the slice of the aperture containing the cylinder (dotted rectangle in panel a). H = 2.8 mm. (c) Sequences of
views taken at constant time intervals in the fluttering regime (the cylinder moves downward). L/W = 0.49,
D/H = 0.79, U = 7.15 mm s−1 (WG10 solution), �t = 0.66 s, field of view: 78 × 167 mm.

performed in a nonconfined fluid. This comparison will show that the influences of confinement on
the mean sedimentation motion and on the fluttering process are very different.

II. EXPERIMENTAL SETUP AND PROCEDURE

The cylinders sediment inside a liquid filled rectangular plexiglass cell of width W = 90 mm,
length Lc = 400 mm, and distance H = 2.8 mm between the largest walls (Fig. 1). Schematic views
of the experimental setup and a typical sequence of pictures of a cylinder falling in the fluttering
regime are shown in Fig. 1. One cylinder at a time is released at the top of the container below the fluid
surface. The first 50 mm of the container have a Y-shape, and the aperture decreases continuously
with the downward distance from 10 mm to H . This ensures well-controlled initial conditions and
reproducible measurement results.

Two different kinds of cylinders have been used: one type is made of plexiglas (PMMA) of density
ρs = 1.19 g cm−3 and has a diameter D = 2.2 mm (D/H = 0.79), and the second type is made of
carbon fibers of higher density ρs = 1.54 g cm−3 and its diameter is D = 1.9 mm (D/H = 0.68).
The length L of the cylinders ranged between 5 and 45 mm for most experiments. As mentioned
above, in both cases, the ratio D/H is large enough so that no transverse oscillations of the cylinder
occur [17]. Then, from Refs. [16,19], the cylinder remains in the middle plane between the cell walls
and does not interact with them.

The liquids used in the experiments are either pure water or water-glycerol solutions (relative
glycerol concentrations in weight 5 � c � 30 %). The physical parameters characterizing these
solutions are listed in Table I.

The motion of the cylinders is monitored by a digital camera with a spatial resolution of
0.13 mm/pixel and a frame size of 504 × 1584 pixels. The images are acquired at constant intervals
(1/60 s): all images are processed after each experiment in order to determine the instantaneous
position of the center of mass [coordinates xc(t) and zc(t)] and the corresponding tilt angle θ (t)
of the cylinder axis with respect to the horizontal. The variations of both zc and θ with time are
generally well fitted by a sine-wave variation which provides the frequency f , the amplitudes, and
the relative phase of their respective oscillations. The time variation of the vertical coordinate xc of
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TABLE I. Physical properties of the solutions used in the experiments at a temperature T = 25 oC. Mass
concentration of glycerol: c; density: ρf ; dynamical viscosity: μf . The symbols at right are those used in the
graphs: open symbols correspond to PMMA cylinders and black symbols to the carbon ones.

c (%) ρf (g/cm3) μf (mPa s) μf /μwater

Name Water and water-glycerol solutions Symbols

W 0 0.997 0.89 1 �,�
WG5 5 1.008 1.01 1.13 �
WG10 10 1.02 1.15 1.29 ©,

WG15 15 1.032 1.33 1.49 ♦
WG20 20 1.044 1.542 1.73 �,�
WG30 30 1.075 2.1 2.36 	, 


the center of mass corresponds to the superposition of a mean drift providing the constant global
sedimentation velocity Vs and of vertical oscillations of frequency 2f [17].

For practical reasons, each cylinder is used only once. The repeatability of the measurement is
tested by performing two to four experiments using cylinders of lengths differing by, at most, 2%.
The values of the frequency f and the mean velocity Vs used in the plots are obtained by averaging
the results of these different experiments: individual values differ by less than ±2% from the mean
one.

Narrow stripes have been painted on the cylinder and parallel to its axis in order to detect indirectly
displacements of the cylinder away from the midplane of the cell: the latter induce rotations of the
cylinder due to the velocity gradients of the Poiseuille profile. These rotations are detected from the
relative motion of the stripes and the cylinder axis [16]: no such displacements were present in the
experiments performed in the present work as expected for the high values of the ratio D/H which
have been used [17].

III. MEAN VERTICAL SEDIMENTATION VELOCITY

We discuss now the variation of the time average of the vertical component of the sedimentation
velocity Vs with the density and length of the cylinders and with the density and viscosity of the
fluid. These data allow us to determine both the viscous and inertial drag forces on the cylinder
and the dependence of their ratio on the Reynolds number: the influence of confinement inside the
Hele-Shaw cell is evaluated by comparing these results to those reported for nonconfined fluids.

The sedimentation velocities measured experimentally are plotted in Fig. 2 for both PMMA and
carbon cylinders as a function of their length L: this plot contains data corresponding both to the
stationary and to the fluttering regimes but no abrupt variation of Vs is observed at the transition
between them. The velocity decreases monotonically by a factor (1.5–2) as L increases in agreement
with our previous studies using a similar confined geometry both with and without an imposed flow
(Fig. 4 in Ref. [17]). This behavior contrasts strongly with that found in the absence of confinement
[20,21]: in this latter case, the velocity slowly increases with the length of the cylinders and finally
tends towards a constant.

As could be expected, for a given water-glycerol solution, Vs is significantly larger for carbon
cylinders than for PMMA ones (by a factor of 2–3) due to their larger density contrast with the fluid.
For a given cylinder, the velocity is lower for the water-glycerol solutions of higher concentration:
in this case, both the reduced density contrast and the increased viscosity contribute to this variation.

These results allow us to estimate now the forces acting on the cylinder. In the constant
sedimentation velocity regime, the weight of the cylinder, corrected from the effect of buoyancy
(M ′g), is balanced by an hydrodynamic vertical drag force Fx with M ′g + Fx = 0. The force Fx

includes an inertial (Fxi) and a viscous (Fxv) component. Using classical definitions, Fxi can be
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FIG. 2. Variation of the mean vertical downward sedimentation velocity Vs as a function of the length
L for PMMA (open symbols) and carbon (dark symbols) cylinders in water-glycerol solutions of different
mass concentrations c of glycerol. Pure water (�,�); water-glycerol solutions: c = 5% (�), c = 10% (©, ),
c = 15% (♦), c = 20% (�,�), c = 30% (	, 
). Gray symbols correspond to experiments for which no
oscillations were observed. Dotted lines: theoretical variations Vs(L) obtained by solving the implicit Eq. (8).

written as

Fxi = 1
2ρf CdiDLV 2

s , (1)

where DL is the area of the object projected on a plane normal to the flow and Cdi is the drag
coefficient for purely inertial forces. Assuming, as is often the case at low Reynolds numbers, that
L is the most relevant characteristic length for the viscous forces leads to [20]

Fxv = μf CdvLVs. (2)

The force balance equation becomes then, since M ′g = π (ρs − ρf )gLD2/4,

π

4
(ρs − ρf )gLD2 = 1

2
ρf CdiDLV 2

s + μf CdvLVs = 1

2
ρf CdDLV 2

s . (3)

The expression after the first equal sign is a second order development describing the transition
between viscous drag (∝Vs) at low Reynolds numbers [20,21] and inertial drag (∝V 2

s ) at high ones.
Summing the two terms reflects the combination of these two force components at intermediate
Reynolds numbers. The expression of the global drag component is then obtained by dividing the
two terms of the last equality by 1/2 ρf DLV 2

s :

Cd = Cdi + 2

ReD

Cdv. (4)

Using the balance between the global drag and the buoyancy force, Cd is computed for each
experiment from the experimental sedimentation velocity:

Cd = π

2

(ρs − ρf )

ρf

gD

V 2
s

. (5)

Figure 3 displays the variations with ReD of Cd computed from Eq. (5) for cylinders of different
lengths (in the present experiments, 12 � Cd � 180). Each set of points corresponding to a given
length L follows a single common trend, although it includes data corresponding to both carbon and
PMMA cylinders and to different fluid solutions: this suggests that Cd does not depend specifically
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FIG. 3. Main graph: Variation of the global drag coefficient Cd as a function of the Reynolds number
ReD = ρf VsD/μf for lengths L of the sedimenting cylinder: L = 10 mm (�	), L = 15 mm (⊕), L = 20 mm
(×+), L = 25 mm (⊗), L = 30 mm (
), L = 35 mm (+), L = 44 mm (×). Each symbol corresponds to both
PMMA and carbon cylinders. Gray symbols: experiments with no oscillations. Curves at bottom left: predictions
from Ref. [21] (table 7) for cylinders in an infinite fluid with L/D = 22.5 (continuous line), 12.5 (dotted), 5
(dashed-dotted). Insert: Variation with L/W of the coefficients Cdi (�) and Cdv (
) determined by fitting the
data of the main graph using Eq. (4); dashed lines: variations corresponding to Eqs. (6). Vertical segment at
bottom left (L/W = 0): range of theoretical values of Cdv for cylinders of same L and D values as here in a
nonconfined fluid.

on ρs , ρf , or μf but rather on ReD and on the ratio L/W characterizing the relative obstruction of the
width of the cell by the cylinder. The influence of the dimensionless diameter D/H on fluttering is
not studied here because its value was kept on purpose in the narrow range for which only fluttering
appears; this influence was studied in a previous paper [17] and found to be weak. Overall, Cd

decreases with ReD and tends towards a constant asymptotic value which corresponds to the purely
inertial component Cdi . These variations have been compared to those obtained from the analytical
expression given in Ref. [21]: these are shown in the range (1 � ReD � 40) investigated in this
reference for three values of L/D (22.5, 12.5, and 5) corresponding, in the present experiments, to
lengths L = 45, 25, and 10 mm. One observes that the influence of the length L is much weaker
than in the confined case and that the values of Cd are significantly lower at a given Reynolds
number.

For each length L, Cdi , and Cdv have been determined by performing a linear regression on the
variations of Cd as a function of 1/ReD in Fig. 3). The values obtained in this way are plotted in the
insert of Fig. 3 as a function of the dimensionless ratio L/W . The variations of both Cdi and Cdv

with L/W are well fitted empirically within the experimental uncertainties by the following linear
dependences:

Cdi = (1.6 ± 0.2) + (1.0 ± 0.5)L/W, (6a)

Cdv = (5 ± 3) + (270 ± 10)L/W. (6b)

These increasing trends reflect the stronger perturbation of the flow by the cylinder (and the
resulting larger drag) as L/W increases.

The constant term in Eqs. (6) corresponds to the limit L/W = 0, which is also the value for a
nonconfined flow (W → ∞). We have therefore compared it to the theoretical predictions of the
force on a fixed cylinder in a uniform infinite flow [20,21]. Assuming that the angle between the
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FIG. 4. Variation of the ratio CdiReD/(2Cdv) with the Reynolds number ReD for the different cylinders and
solutions used in the experiments (same symbols as in Fig. 2). Horizontal line: ratio equal to 1. Insert: expanded
view of the region around CdiReD/(2Cdv) = 1.

flow and the normal to the cylinder is not too large, one obtains

Cdv = 4π

ln(L/D) − 1/2
. (7)

From this equation, Cdv varies slowly (logarithmically) with L/D and decreases only from 5.6 to
3.25 as L/D increases. This range of values (vertical bar on the axis L/W = 0) is compatible, within
the experimental errors, with the corresponding experimental limit (5 ± 3) of Cdv for L/W → 0.

The ratio CdiReD/(2Cdv) of the inertial and viscous drag components in Eq. (4), computed
using Eqs. (6) is plotted in Fig. 4 as a function of the Reynolds number ReD for all cylinders and
solutions used in the experiments. Most data points follow a common linear increasing trend with
upwards deviations for the shortest cylinders (for which the Reynolds number is largest). As could
be expected, the ratio is largest (up to �9) for the shortest carbon cylinders in water and smallest
(down to 0.3) for the longest PMMA cylinders in the most viscous solution. The two components
are of the same order of magnitude for ReD � 40 (insert).

Combining the force balance relation (3) and Eq. (4) leads to the implicit equation (ReD contains
a factor Vs)

Vs =
√

gD(ρs − ρf )

ρf

√
π

2

1

Cdi(L) + 2 Cdv(L)/ReD

. (8)

By solving this equation iteratively (initializing with the value of Vs obtained by neglecting the
viscous term) and using Eqs. (6), one obtains theoretical predictions for the variations of Vs with L.
These predicted curves are shown as dotted lines in Fig. 2: they agree well with the experimental
data (symbols) for all cylinders (carbon and PMMA) and solutions.

These measurements of the mean velocity of cylinders sedimenting in a confined Hele-Shaw cell
geometry display therefore large differences with respect to similar ones performed in nonconfined
geometries. More precisely, the velocity Vs decreases strongly, and the drag coefficient Cd increases
when the length L increases, while, in nonconfined geometries, Vs and Cd vary only slowly with
L and the value of Cd is lower. We compare now, for the same experiments, the variations of the
angular and horizontal fluttering amplitudes motion and of its frequency to those reported for similar
experiments in the nonconfined case.
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FIG. 5. Main graph: Variation of the Strouhal number (Sr = f L/Vs) with the Froude number (Fr = Vs/Vg).
Dashed line: fit by Sr ∝ 1/Fr. Insert: variation of Sr with the Reynolds number ReD = ρf VsD/μf . Points with
(Sr = 0) correspond to experiments for which no oscillations occurred. Experiments were realized using PMMA
(open symbols) and carbon (dark symbols) cylinders sedimenting in pure water (�,�) and water-glycerol
solutions of different mass concentrations: c = 5% (�), c = 10% (©, ), c = 15% (♦), c = 20% (�,�),
c = 30% (	, 
).

IV. FLUTTERING INSTABILITY

A. Fluttering frequency

In our experiments, the measured frequency of the fluttering oscillations ranges between
0.5 and 3 Hz. As usual in oscillatory hydrodynamic instabilities [10], we characterize this fluttering
frequency by the dimensionless Strouhal number Sr = f L/Vs . The length L is chosen as the
characteristic one for the instability because the latter involves flow variations over distances
of the order of L; this oscillating flow component cannot be considered as locally 2D like, for
instance, the mean flow around the cylinder or that created by transverse oscillations [17]. This
choice will be, in addition, justified a posteriori by the discussions below.

As a first step in the search of the relevant parameter controlling fluttering and by analogy with
other periodic instabilities like vortex shedding, Sr is plotted as function of ReD in the insert of Fig. 5
for different solutions and cylinders. Beyond the fact that, for a given cylinder and fluid, Sr decreases
as ReD increases, Sr cannot clearly be a function of ReD only. Moreover, for the different cylinders
and fluids, there is a significant dispersion of the threshold values of ReD below which no oscillation
occurs. We note, however, that, for the lightest and longest cylinders together with the more viscous
fluids, oscillations are observed down to ReD = 24 (the global range is 12 � ReD � 180); this is
much lower than the threshold values (ReD ∼ 200) in nonconfined geometries [15]. For coherence,
we plotted also (not shown in the figures): Sr as a function of a Reynolds number ReL = Vsρf L/μf

based on the same characteristic length L as Sr (its range of values in the present experiments is
180 � ReL � 2250). The collapse of the different curves is not better than for ReD , and neither ReD

nor ReL nor, more generally, the relative influence of the viscous forces appear as the key parameters
of the process.

No oscillations were observed (Sr = 0) for the two data points corresponding to the carbon
cylinder in solutions C = 20% and C = 30% and to the highest values of Fr (∼0.4 and ∼0.43).
This is unexpected since the corresponding Reynolds numbers are still rather large (ReD ∼ 70
and ∼100), while the high Fr value should promote large oscillation amplitudes (Fig. 7). Due to
the corresponding large values of Vs (upper gray symbols in Fig. 2), this likely means that the
oscillations of the cylinder do exist but lack time to develop during the transit through the field of
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√
ρs/ρf f L/Vg with
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√

ρs/ρf for the same experiments as in the main graph. The horizontal dashed lines in the main graph and in
the insert correspond respectively to values of the vertical coordinate equal to 0.102 and 0.108. The symbols
correspond to the same fluids and cylinders as in Fig. 5.

view of the experiment. A setup providing a larger interval of heights over which sedimentation can
be monitored will be needed to test this hypothesis.

In this problem, buoyancy forces drive the motion of the cylinders, and, at least at high Reynolds
numbers, one will assume, as shown by Chow et al. [15] for nonconfined geometries, that the
dynamics of the cylinder involves a balance between buoyancy and inertial forces. Retaining, as
discussed above, L as the characteristic length, the corresponding characteristic velocity is

Vg =
√

(ρs − ρf )gL

ρf

. (9)

We select therefore the associated dimensionless Froude number: Fr = Vs/Vg as a possible control
parameter of fluttering.

Figure 6 displays the variation of Sr as a function of Fr for both types of cylinders and for all
fluid solutions: there is, this time, a good collapse of the different curves and the decreasing trend
is well fitted by a variation Sr ∝ 1/Fr (dashed line). In view of this fit, we replotted in Fig. 6 (main
graph) the product Sr Fr = f/(Vg/L) as a function of Fr. The curves corresponding to the different
solutions and cylinders coincide well: for Fr � 0.25, the data points corresponding to the carbon
cylinders are, however, slightly below those corresponding to the PMMA ones while they coincide
well for Fr � 0.25. For all cylinders and solutions, the dimensionless frequency f/(Vg/L) increases
slightly with Fr up to Fr � 0.25 and then becomes constant with

f = (0.102 ± 0.005)

√
(ρs − ρf )g

ρf L
= (0.102 ± 0.005)

Vg

L
for Fr � 0.25. (10)

Physically, these latter features may be understood in the perspective of a result established by
Lord Rayleigh [22] for 2D plates of length L of normal tilted at an angle θ with respect to a potential
flow. For θ 
= 0, the pressure field is not symmetrical with respect to the centerline, and the maximum
of pressure is located closer to the upstream edge of the plate. Rayleigh showed that the displacement
x of the center of pressure from its location for θ = 0 is x = 3/4 L sin θ/(4 + π cos θ ), which is
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proportional to θL at low enough angles: the dependence on L is logical since x = 0 for θ = 0 and L is
the only characteristic length scale of the potential problem. This result was checked experimentally
to remain applicable to gas flows around 3D rectangular plates [23]; it was then extended to
nonconfined cylinders sedimenting in a liquid by Marchildon et al. [14] and Chow et al. [15].

In the quasistatic limit, the pressure force balances the weight of the cylinder corrected for
buoyancy, the resulting restoring torque scales as �r ∝ −[(ρs − ρf )D2Lg](θL); �r : This torque is
balanced by the angular acceleration term Id2θ/dt2 where I ∝ ρsL

3D2 is the moment of inertia of
the solid cylinder rotating around an axis perpendicular to it. This leads to a theoretical value fth of
the frequency of the oscillation satisfying 2πfth = √

�r/θI so that

fth ∝
√

(ρs − ρf )g

ρsL
=

√
ρf

ρs

Vg

L
. (11)

This expression is the same as Eq. (10) used to obtain the main graph of Fig. 6, but for the
prefactor

√
ρs/ρf before Fr. This difference may be due to the fact that the moment of inertia I used

in the theoretical model [15] includes only the solid density ρs and neglects the added component of
I associated to the motion of the fluid (zero entrainment); Eq. (10) corresponds instead to the case
of a moment of inertia purely associated to the motion of the fluid (very strong entrainment).

We tested Eq. (11) by plotting the same data in the insert of Fig. 6 after multiplying both f L/Vg

and Fr by
√

ρs/ρf . This time, the collapse is poorer than in the main graph for Fr � 0.2 and better
for Fr � 0.2: this suggests that one has an intermediate entrainment depending, in addition, on the
value of Fr.

B. Angular and linear fluttering amplitudes

As mentioned above, both the angle θ of the axis of the cylinder with respect to the horizontal
and the horizontal coordinate zc of its center of gravity are measured continuously. After an initial
overshoot, the oscillations of θ with time reach a constant amplitude θM and the peak to peak
amplitude of those of zc takes a value �zc. In their study of the case of an infinite fluid, Chow
et al.[15] assumed that the velocity Vosc of the end of the cylinder scales like the sedimentation
velocity Vs . Using the fact that the displacement of the end of the cylinder during an oscillation
scales like Vosc/f = Vs/f and that f may be estimated from Eq. (10), we obtain

θM ∝ Vs

f L
= Fr. (12)

We have therefore plotted θM as a function of Fr in the main graph of Fig. 7. The different data points
collapse quite well, except for a few points corresponding to the lighter PMMA cylinders and to
the most viscous solutions for which fluttering still occurs but which are below the common trend.
In view of comparisons with the results of Chow et al., we have also plotted in the insert of Fig. 7
the same data as a function of

√
ρs/ρf Fr [this amounts to use in Eq. (12) the value of f computed

from Eq. (11)]. The plots and, more specifically, the dispersion of the data points are similar in both
graphs.

The third important parameter characterizing fluttering is the amplitude AM of the oscillations
of the center of gravity along the direction x. The values of AM are plotted as a function of the
Froude number Fr in the main graph of Fig. 8. Unlike θM , AM rises sharply as Fr decreases towards
the cutoff value Fr ∼ 0.07 below which no fluttering oscillations are observed. Between ∼0.09 and
0.07 the rising trend levels off for some of the fluid solutions and some low values of AM are
measured. Like θM , AM follows roughly a common trend of variation with Fr for the solutions of
lower viscosity (for PMMA cylinders) and for carbon cylinders (dashed line): this confirms that Fr
is the relevant control parameter in this case. The amplitude AM is instead, like θM , significantly
reduced for PMMA cylinders sedimenting in the most viscous solutions; this motion corresponds to
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FIG. 7. Variation of the angular amplitude θM of the fluttering motion as a function of the Froude number
Fr (main graph) and of the product

√
ρs/ρf Fr (insert) for the same experiments and using the same symbols as

in Fig. 5.

smaller values of the Reynolds number, which suggests that the latter needs to be taken into account
in these cases.

In order to plot these same data in dimensionless coordinates, we normalized AM by the ratio Vs/f

(i.e., the mean falling distance of the cylinder during one oscillation period): like for θM , AMf/Vs

is plotted as a function of
√

ρs/ρf Fr in the insert of Fig. 8. The characteristics of this variation are
qualitatively similar to that of AM with Fr for all solutions. Plots using several other dimensionless
combinations have been tested. Replacing AMf/Vs by AM/L gives a poorer collapse; while using
(D/L)0.5 or Fr(ρs/ρf )0.5 as suggested by the work of other authors [14,15] does not improve the
collapse. We have therefore retained the present choice: the present dispersion of the data points

40

20

0

AM

 (mm)

0.50.250 Fr

0.75

0.5

0.25

0

AM f/Vs 

0.50.250 ρs/ρf Fr

FIG. 8. Main graph: variation of the horizontal amplitude AM of the fluttering motion of the cylinder as a
function of the Froude number Fr. Insert: variation of the dimensionless amplitude AMf/Vf as a function of√

ρs/ρf Fr (insert) for the same experiments and using the same symbols as in Fig. 5.
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may be due to the residual influence of the Reynolds number which is mostly important at lower
values of Re.

V. DISCUSSION AND PERSPECTIVES

The present work demonstrates the decoupling between the characteristics of the average motion
and of the fluttering instability for cylinders sedimenting in a Hele-Shaw cell: these differences deal,
particularly, with the influence of confinement and with the key parameters of each process.

The mean velocity Vs is determined by the drag which balances the weight of the cylinders and
is, in the present cell geometry, significantly larger than in the nonconfined case [15]. The Reynolds
number ReD influences strongly here Vs due to the influence of the viscous contribution to the drag
which varies as 1/ReD . Also, the global drag coefficient Cd increases with the length of the cylinder
due to the increased blockage of the flow. Instead, results from the literature in the nonconfined
case indicate that Cd is smaller (for a given cylinder) and varies only slowly with the length: the
sedimentation velocity is then higher, inertial drag forces are dominant, and Cd is constant with ReD .
By modeling the contributions of the viscous and inertial forces to the drag, we have also shown that
the ratio of the inertial by the viscous forces follows a common increasing variation with ReD for all
cylinders and fluids studied. This ratio is equal to 1 for a relatively large Reynolds number ReD � 40.

Unlike for the velocity Vs , our experiments show that the key variable controlling fluttering is not
ReD but the Froude number Fr = Vs/Vg (the characteristic velocity Vg = √

ρs − ρf gL/ρf reflects
a balance between inertial and buoyancy forces). As discussed in Sec. IV A, an alternative control
variable, suggested by theoretical models [14,15] is

√
ρs/ρf Fr. Physically, this latter definition

amounts to assume that the inertia associated to the fluttering motion is determined by the solid
density instead of the fluid density: this will be determined by the amount of fluid entrainment
induced by the fluttering oscillations and should be larger in a confined geometry. In the present
work, ρs/ρj is close to 1 so that further experiments with larger density contrasts are necessary
to select the most relevant parameter; moreover, the experimental results suggest that the fluid
entrainment (and therefore the correct prefactor of Fr) may depend on Fr.

The variation of the fluttering frequency with Fr is, in our experiments, very similar to that in a
nonconfined geometry (unlike for the variation of Vs with ReD). Chow et al. [15] reported indeed that
experimental fluttering frequencies for cylinders sedimenting in a nonconfined fluid satisfied also
Eq. (11) with a proportionality constant equal to 0.126. This is only 15% larger than the value 0.108
deduced from Fig. 6 (insert) by applying the same equation to our data for

√
ρf /ρsFr � 0.25: this

suggests a small influence of confinement on the fluttering frequency. Another important feature is
that, while there is a slight decreasing trend of f L/Vg at low Fr values �0.25, there is no correlation
of this variation with the value of ReD: even data points for which viscous drag is dominant follow the
common trend. A final issue is the choice of the reference variable (Fr or

√
ρs/ρf Fr). As mentioned

above, experiments with larger density contrasts between the fluid and the cylinder are needed to
investigate the relative influence of the fluid and solid densities on the fluttering frequency and the
dependence of this effect on the confinement and the fluid entrainment.

The plots of the variations of the angular fluttering amplitude θM as a function of Fr and of√
ρs/ρf Fr both display a good collapse for almost all data points (Fig. 7). Those which do not follow

this common trend correspond to PMMA cylinders and to viscous solutions (♦ and � symbols):
then ReD is low enough so that viscous drag forces are dominant. The angular fluttering amplitude
decreases therefore at low values of ReD while the frequency f remains constant. However, at
least in the inertial regimes, the threshold of the instability is not determined by ReD but by Fr
(or equivalently

√
ρs/ρf Fr) as shown by the clear cutoff on the variation of θM at Fr � 0.07 (or√

ρs/ρf Fr � 0.08). These values correspond generally to long cylinders. At large Froude numbers
corresponding to the shortest cylinders (Fr � 0.3), θM reaches a plateau value θM � 0.63 rad (i.e.,
�35◦) which is the same for the carbon and PMMA cylinders. The linear variation of θM with
Fr (or

√
ρs/ρf Fr) predicted from Eq. (12) is actually followed (dashed line) only in the range

0.1 � Fr � 0.25.
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The variation of θM discussed above is also largely similar to that reported by Chow et al.
[15] for sedimenting cylinders in a nonconfined geometry. These authors plot their experimental
values of θM as a function of

√
ρsD/(ρf L): this expression is proportional to

√
ρs/ρf Fr with a

constant factor (∼1) provided Eq. (11) is valid and that the flow regime is inertial (Cd = const):
their results can therefore be compared to the variations shown in the insert of Fig. 6. Data points
corresponding to different materials of the cylinder collapse onto a same trend of variation: like
in our experiments, θM rises initially steeply from zero above a cutoff value

√
ρsD/(ρf L) ∼ 0.25

and then increases roughly linearly up to θM � 0.87 rad (50◦) and levels off before rising again for√
(D/L)(ρs/ρf ) � 1.5 with a transition to a tumbling regime. The initial part of the variation of the

amplitude θM in the nonconfined case is very similar to what we observed but the tumbling regime
was not observed in our experiments. Here, indeed, the largest plateau angle that was reached (35◦)
did not allow for a transition to tumbling.

Belmonte et al. [4] studied the case of a plate sedimenting between parallel walls perpendicular
to it at Reynolds numbers between 3 × 103 and 4 × 104: they reported a linear variation of sin θM

as a function of a Froude number with a good collapse of data corresponding to fluids of different
viscosities (like for Chow et al., their definition is equivalent to Fr

√
ρf /ρs). This variation is therefore

similar to ours at low values of θM while they report a transition to tumbling at a Froude number of
the order of 0.67. This suggests that confinement does not play a major part in this transition.

The present experiments have been performed for moderate density contrasts between the solid
and the fluid: at most, the ratio ρs/ρf is of the order of 1.5; the transition towards the tumbling regime
was instead generally observed for higher density contrasts between the falling object and the fluid
[4,15]. This represents an additional motivation (in addition to the evaluation of the entrainment of the
fluid) for performing experiments for larger density contrasts (for instance using metal cylinders):
this will allow us to increase the range of values of θM in order to see whether the transition to
tumbling is observed and whether the previous laws remain valid.

The variations with Fr of the angular and linear amplitudes (Figs. 7 and 8) are quite different,
although both become zero below the cutoff Froude number Fr � 0.07: while θM increases towards a
plateau value as Fr increases, AM decreases continuously to one tenth of its maximum value reached
after rising sharply just above the cutoff. A qualitatively similar difference has been reported in the
literature for nonconfined fluids [11,15]. Otherwise, the two amplitudes share features: in the inertial
drag regime, both of their variations with Fr are independent of the viscosity and density of the fluid
and of the density of the solid. Instead, when the viscous drag force become dominant (ReD � 40),
both amplitudes are reduced compared to the common trend in the inertial regime.

As a result and from the different models which we discussed, it seems that the cylinder diameter
D influences (directly or through ReD) the velocity Vs and the fluttering amplitude (only in the
viscous drag regime) but not the frequency. This influence may be expected to rise as the ratio
of D to the cell thickness becomes close to 1. This will have to be investigated by varying in a
broader range the value of D (there was only a 10% difference between the two types of cylinders).
Going back to our initial objective of investigating the the flow of elongated particles in porous
and fractured media, the present work shows that gravity has a major influence on fluttering: the
latter should therefore only be observed in vertical or near-vertical fractures and if there is a contrast
between the densities of the fluid and of the particles.
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