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Abstract 

In fractures where surface fluctuations are large compared to their aperture (narrow 

fractures) the flow is forced to move in tortuous paths that produce additional viscous friction 

and are subject to inertia effects. We consider the relation between the magnitude of surface 

roughness and the onset of inertial effects in the pressure driving the flow through a single open 

fracture. We performed experiments systematically varying the average aperture of the open 

fracture and covering a wide range of Reynolds numbers. For each aperture, we analyze the 

data in terms of the Forchheimer equation and show that the critical Reynolds number, defined 

as the Reynolds number at which inertial effects contribute 10% of the total pressure losses is 

highly correlated with the roughness of the surface. In particular, we show that significant 

inertial effects appear early as the relative importance of surface roughness increases. Finally, 

we present results showing that the magnitude of the deviations in the pressure field compared 

to a linear profile, taken at different points in the fracture along the flow direction, are directly 

related to the relative surface roughness of the fracture.  
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1 Introduction 

Flow in fractured media is an important process in a broad range of engineering 

applications including hydrocarbon recovery, subsurface waste repositories and geothermal 

reservoir exploitation. When open fractures and fracture networks are present in low 

permeability rocks, they create long-range preferential pathways for fluids that would 

otherwise remain mostly immobile. As a result, for example, hydraulic fracturing is a common 

approach to enhance the flow of natural oil and gas. In general, the presence of fractures is key 

to a variety of phenomena that depend on the underground transport of fluids in rock 

formations, including CO2 sequestration and the dispersion of chemical and radioactive 

contaminants among others (National Research Council, 1996).  

When fractures are narrow, that is, when surface fluctuations (or deviations from a flat 

surface) are large compared to the average aperture, both the magnitude of such surface 

fluctuations (surface roughness) and the contact area between the two surfaces distort the flow, 

forcing it to move in tortuous paths that produce additional viscous friction. In principle, the 

information on the characteristic aperture and surface roughness of the fractures could be 

inferred from outcrops or samples collected from the field. However, these methods require the 

reconstruction of the fracture void geometries - which generate uncertainties - and a flow model 

to relate the geometry of the fracture to its hydraulic properties. Alternatively, hydraulic tests 

can be performed in the field, but information is typically limited to macroscopic flow rates 

and global pressure drops along the fractures. Therefore, it would be a great advantage to be 

able to characterize fracture properties in addition to their hydraulic aperture, in particular, a 

measure of surface roughness and its relation to inertial flow effects, from simple flow rate 

versus pressure drop measurements. The purpose of our work is, in fact, to explore the 

importance of additional pressure losses due to inertial effect on the hydraulic properties of a 

single fracture.  

 At low Reynolds numbers, when inertia effects in the flow can be neglected, the 

relation between the flow rate through the fracture and the pressure gradient driving the flow 

is linear, as given by Darcy’s law (Bear, 1988), 

𝑞 = −
𝑘𝑓

𝜇
∇𝑝 (1) 

where kf is the hydraulic permeability of the fracture, 𝜇 is the fluid viscosity and q is the specific 

discharge or superficial velocity of the flow. In the case of an open fracture, the superficial 

velocity is identical to the average velocity of the fluid u=Q/Af, where Q is the flow rate and 

Af is the cross-sectional area of the fracture perpendicular to the flow direction. Moreover, in 

the case of a completely smooth fracture, the flow corresponds to that between two parallel 

plates with a constant aperture h (the separation between the two plates), and the hydraulic 

permeability can be calculated analytically from the Navier-Stokes equations, 𝑘|| = ℎ2/12. 

Therefore, if we approximate the flow in a fracture as that between parallel plates the 

dependence of the flow rate on the pressure gradient is then given by the so-called cubic-law 

(Witherspoon et al., 1980; Schrauf & Evans, 1986; Brown, 1987), 

𝑄|| = −𝐿𝑦

ℎ3

12 𝜇
∇𝑝|| 

(2) 

where 𝐿𝑦 is the width of the fracture and 𝐴f = ℎ × 𝐿𝑦. 

In real fractures, however, the above expressions do not account for the effects of 

surface roughness on the flow field. When roughness is present and is not negligible compared 

to the aperture, it forces the fluid to follow tortuous paths (Brown, 1987). Clearly, the effect of 
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surface roughness on the permeability depends on its relative magnitude compared to the 

aperture, which in underground fractures depends, in general, on the confining stress (Gangi, 

1978). Numerous experimental and numerical studies have investigated the effect that 

roughness has on the hydraulic permeability of fractures (Drazer & Koplik, 2000, 2002; H. 

Auradou et al., 2005, 2006; L. Talon et al., 2010; Laurent Talon et al., 2010; Mourzenko et al., 

2018).  In analogy with the cubic-law, a simple way to characterize the effect that surface 

roughness has on the permeability of the fracture is to define the hydraulic or effective aperture, 

heff, 

𝑄 = −𝐿𝑦
ℎeff

3

12 𝜇
∇𝑝, 

(3) 

where heff is therefore the aperture between two parallel plates that would have the same 

permeability as the fracture under consideration. The effect of surface roughness can then be 

quantified by the ratio of the effective aperture to the average one, heff,/hm, where the average 

aperture is the mean separation between the surfaces of the fracture. A recent study also looked 

at spatial fluctuations of the local pressure and its connection with the tortuosity of the flow 

(Aminpour et al., 2018).  Most of the studies characterizing roughness effects are intrinsically 

focused on low Reynolds number flows, also called Darcy flows or Stokes flows, in which 

inertia effects are negligible, and Darcy’s law is valid.  

On the other hand, the presence of tortuous paths induced by the roughness of the 

fracture may also result in an early onset of inertia effects in the flow field, and a nonlinear 

relation between the pressure gradient and the flow rate. More than a century ago, Forchheimer 

proposed an empirical quadratic relationship to describe the pressure gradient as a function of 

flow rate in porous media when inertia effects are present (Bear, 1988; Macdonald et al., 1979). 

The same relationship has been used in numerous studies to describe the flow in fractures at 

Reynolds numbers greater than one, and it is usually written as, 

∇𝑝 = 𝐴𝑄 + 𝐵𝑄2, (4) 

where A and B constants independent of the flow rate. Clearly, 𝐴 = 12 𝜇 𝐿𝑦 ℎeff
3⁄  and the 

second term is the correction to Darcy’s law to account for inertia effects in the flow. We note 

that we are assuming that Eq. (4) is valid for the entire range of Reynolds numbers (Skjetne et 

al., 1999; Zimmerman et al., 2004). We can re-write the equation in dimensionless form in 

terms of the Reynolds number of the flow Re = 𝜌𝑄 𝜇𝐿𝑦⁄ , where 𝜌 is the density of the fluid, 

and the Forchheimer number Fo, 

∇𝑝

(𝜇2/𝜌ℎ𝑘||)
= ∇𝑝̃ = (

ℎ

ℎeff
)

3

Re (1 + Fo) = (
ℎ

ℎeff
)

3

Re (1 + 𝛽 Re), (5) 

where the Forchheimer number, Fo, is defined as the ratio between the quadratic and linear 

terms, which can be interpreted as the ratio of non-linear, inertial contributions to the pressure 

drop, to the linear term accounting for viscous resistance (Macdonald et al., 1979). In any case, 

it is clear that the Forchheimer number gives the magnitude of the relative deviation from the 

linear regime and it is possible to use it to define the onset of non-linear flow (Javadi et al., 

2014). In the previous equation, we have also introduced the dimensionless Forchheimer 

coefficient 𝛽 (Zimmerman et al., 2004), which, in principle, only depends on the geometry of 

the fracture and not on the flow conditions or the fluid properties. 

 As we mentioned, we can use the Forchheimer number to define a critical Reynolds 

number, Re𝑐, as the value of the Reynolds number at which the pressure drop due to the 

nonlinear inertial contribution reaches a given fraction 𝛼 of the total, 
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𝛼 =
Fo

1 + Fo
=

𝛽Rec

1 + 𝛽Rec
 , (6) 

where a 10% deviation is typically used, that is 𝛼 = 0.1; Fo = 1/9 and Rec = Fo/β. Therefore, 

the critical Reynolds number is expected to depend only on the geometry of the fracture and it 

could provide information on fracture roughness and flow tortuosity besides the reduction in 

permeability characterized by the ratio of effective to average apertures.  

Only in recent years some work has focused on exploring the values of the critical 

Reynolds number in fractures, and in many cases, its correlation with surface roughness was 

not considered. In Table 1, we present a summary of representative results from the literature. 

Zimmerman et al. performed experiments with a rough fracture brought to contact and obtained 

a critical Reynolds number Rec ∼ 10, but mentioned that this value would decrease with 

increasing fracture roughness (Al-Yaarubi, 2003; Zimmerman et al., 2004). Similar values of 

the critical Reynolds number (Rec ∼ 5 − 30) were observed by Rajith and Darlington (2007), 

Ji et al. (2008) and Radilla et al. (2013) in granite fractures, by Konsuk and Kueper (2004) in 

a dolomite limestone fracture, by Nowamooz et al. (2009) in a sandstone fracture and by 

Zoorabadi et al. (2015) using artificial 2D profiles. These studies considered a single aperture 

of the fractures, and did not consider the effect that variations in the relative roughness could 

have on the critical Reynolds number. In contrast, Qian et al. (2015) presented data suggesting 

smaller values of the critical Reynolds number and, more importantly, reported a reduction in 

the critical values as the aperture value increases with a constant surface roughness.  However, 

they mentioned that they could not accurately determine the values of the critical Reynolds 

numbers.  

There are also differing results in experiments studying nonlinear flow in field fractures. 

Quinn et al. (2011) reported critical Reynolds number mostly below Rec ∼ 1, and a clear trend 

showing an increase in the critical Reynolds number as the hydraulic aperture of the fractures 

increases. However, there is no information available on the roughness of the fractures. Chen 

et al. (2015) reported much larger critical values of the Reynolds number Rec ∼ 25 − 66, in 

an extensive investigation of nonlinear flow in field experiments. We note that field 

experiments pose significant challenges and limited information is available about the 

geometry of the fractures. In addition, these studies measure the flow in fracture networks and 

a direct comparison with results obtained in individual fractures is not possible. 

 Some studies considered the effect of confining stress on the onset of nonlinear flow. 

Ranjith and Darlington (2007), for example, mentioned that an increase in the confining 

pressure acting on the fracture would shift the response to an earlier onset of nonlinear effects. 

Although no information is provided on the change in the aperture and relative roughness of 

the fracture it is reasonable to assume that an increase in the confining pressure would reduce 

the average aperture of the fracture and increase the relative effect of roughness. More recent 

studies, have investigated the effect of confining pressure more systematically. Zhang and 

Nemcik (2013) studied nonlinear flow in mated and non-mated sandstone fractures. They did 

not observe non-linear behavior in the case of mated fractures, possibly due to the small 

Reynolds numbers studied.  
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In the case of unmated fractures, however, they obtained a range of critical Reynolds numbers 

Rec ∼ 3.5– 25, depending on sample and confining pressure, but no clear trend was observed. 

In addition, the sample with the largest values of relative roughness exhibited intermediate 

values of the critical Reynolds number (see Table 1.)  

Zhou et al. (2015) investigated different granite and sandstone fracture specimens and found 

an initial increase in the critical Reynolds numbers with confining pressure, followed by a 

decrease in the critical Reynolds numbers at higher confining pressures. They speculated that 

plastic deformation or brittle damage of the of surface asperities could be responsible for the 

initial increase in critical Reynolds numbers with increased confining pressure due to a 

reduction in surface roughness. A similar increase in critical Reynolds numbers at increasing 

but moderate confining pressures was observed by Rong et al., (2017). Also unexpected are 

the results reported by Chen et. al (2019) obtained in sandstone fractures, showing that the 

critical Reynolds number decreases with increasing hydraulic aperture. Overall, the effect of 

increasing the confining pressure on the fracture geometry is complex, which makes it difficult 

to isolate the effect of relative roughness, or other geometric parameters, on the onset of 

nonlinear flow. 

In real cases, the aperture and the tortuosity of the flow paths are also affected by shear 

displacements between opposite surfaces of the fracture, and a few studies have considered the 

effect of such shear displacements on the onset of nonlinear flow. The observed relation 

between the magnitude of the shear displacement and the critical Reynolds number is complex, 

probably due to the non-monotonic change in the average aperture with shear displacement 

(Javadi et al., 2014; Rong et al., 2016). Javadi et al. (2014) reported a large increase of several 

orders of magnitude in the critical Reynolds numbers as the shear displacement increases, 

reaching a value Rec ∼ 15– 25 for large displacements. They also observed an initial decrease 

in the critical value with small shear displacements in one case. Rong et al. (2016) also reported 

an initial decrease in the value of the critical Reynolds number for small shear displacement 

followed by a significant increase, with values ranging from 1.5 to 13.  

In summary, a wide range of values of the critical Reynolds number in fractures have 

been reported, depending on the geometry of the fracture. Some systematic studies considered 

two of the main mechanisms affecting the fracture geometry directly, the confining stress 

acting on the fracture and the presence of a shear displacement between opposite surfaces of 

the fractures. However, the effects of contacts, deformation and possible damages to the 

surfaces complicates the analysis of the results. Here, in a departure from most of the previous 

studies, we performed a series of experiments using open fractures, in which we control the 

separation between two identical fracture surfaces and systematically investigate the onset on 

nonlinear flow. Therefore, we eliminate any possible influence of large surface deformations 

or fracture damage, on the characteristics of the flow. In this way, we focus on the effects of 

inertia on the flow and its importance depending on the relative magnitude of the surface 

roughness. As a result, we are able to demonstrate a direct relationship between the relative 

magnitude of the roughness of the surface fractures and the critical Reynolds number indicating 

the onset of nonlinear flow. 

2 Materials and Methods 

2.1 Fracture model setup and surface roughness 

The model fracture is first generated numerically from a 2D set of uncorrelated, 

Gaussian distributed, random numbers, representing an 𝑁 × 𝑁 discretization of the height of a 

fracture surface without overhangs (Brown & Scholz, 1985). The Fourier transform of this 

discretized representation of a surface is then modulated by a decaying function of the 
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frequency, that is, a high wave-number filter. The Fourier transform is then inverted to obtain 

a fracture surface that presents long-range spatial correlations introduced by the filter. Finally, 

the surface height is scaled with a constant factor that controls the amplitude of the surface 

height variations, i. e. the magnitude of the surface roughness. A number of different 

parameters have been used to characterize the roughness of (fracture) surfaces (Barton & 

Choubey, 1977; Poon & Bhushan, 1995; Wang et al., 2016). Two common parameters are the 

peak asperity height 𝜉, defined as the peak-to-valley distance, that is the difference between 

the maximum and minimum heights of the surface (similarly the peak-to-mean distance, 𝑅𝑝, is 

also used) and the root-mean-square (rms) roughness 𝜎𝑧, given by the standard deviation of 

surface heights (Poon & Bhushan, 1995; Wang et al., 2016). For our surface fracture, we scale 

the peak asperity height to 𝜉 ≃ 15mm, resulting in a rms roughness 𝜎𝑧 = 2.8 mm. The 

dimensions of the surface main plane are 100mm× 100mm. A contour map of the generated 

surface is presented in Figure 1a. In our discussions, we shall consider the relative magnitude 

of the surface roughness, as characterized by 𝜉 (𝑅̃𝑝) and 𝜎̃𝑧, corresponding to the peak asperity 

height (or peak-to-mean distance) and the rms roughness, respectively, and both normalized by 

the hydraulic aperture of the fracture ℎeff.  

It is important to note that the above statistical parameters may be scale dependent in 

real fractures that present long-range spatial correlations (Brown & Scholz, 1985). On the other 

hand, they provide a means to compare our work with previous studies, as can be seen from 

the summary presented in Table 1. Alternatively, a fractal characterization can be provided for 

some fractures, particularly those exhibiting self-affine surfaces (Brown, 1995; Drazer & 

Koplik, 2000). Such self-affine fracture surfaces can be generated using a power-law filter 

(Drazer & Koplik, 2000). We used a power-law high wave-number filter to generate our 

surfaces with an exponent 𝛼 = 2.6. The final matrix of surface heights used to obtain the 3D-

printed fracture surface as well as the corresponding power spectral density showing the high 

wave-number filter are provided in the supplementary information).  

The numerically generated surface is then 3D printed with a total length 𝐿𝑥 = 150mm, 

after adding a periodic replica of a portion of the original surface along what would be the flow 

direction, and a total width 𝐿𝑦 = 100mm (see Figure 1b). A silicon mold of the printed surface 

is then made, and is used to create a transparent epoxy cast of the surface. A silicon casting is 

then made from the silicon mold and used to obtain an opaque epoxy cast that mates the 

transparent epoxy surface. As a result, two mating, epoxy replicas are obtained for the flow 

experiments. In the experiments the two surfaces are separated by a normal displacement, 

resulting in a nominally uniform aperture. We note that small deformations could come from 

the epoxy polymerization process and, as a result, the two surfaces are not expected to perfectly 

match at small scales (Harold Auradou et al., 2001). In fact, we shall see that contact probably 

occurs when the vertical separation between the surfaces is of the order of ℎ𝑚 ≈ 200𝜇𝑚, or 

smaller. On the other hand, the two surfaces do behave as highly correlated, mating surfaces at 

larger length scales. 

2.2 Flow experiments setup 

A schematic view of the setup used to perform the flow experiments is presented in 

Figure 2. The opposite surfaces are placed inside an aluminum housing that creates a channel. 

Surfaces are machined to fit the housing and the final dimensions of the fracture are  𝐿𝑥 × 𝐿𝑦 =

143.5mm × 79.5mm. The average aperture is controlled by using flat shims of specified 

thickness, with the largest value around ℎ = 500𝜇𝑚. This is nominally the constant aperture 

in our fracture but not necessarily the average aperture, due to possible imperfections in the 

fabrication of the mating surfaces. We note that our model fractures are narrow fractures, 
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where the vertical variations in height are significantly larger than the average aperture in all 

the experiments considered here. The flow is driven either by a pressure drop imposed using 

either a Mariotte bottle or a syringe pump, depending on flow rate. We continuously monitor 

the flow rate, measuring the liquid weight using a collection cup at the outlet of the fracture 

channel, and the pressure drop, using pressure sensors. We also measure the local pressure 

inside the fracture with a 5 × 8 rectangular array of pressure sensors, with 5 lines of 8 sensors 

each, parallel to the average flow direction. The parallel lines of sensors are separated a distance 

Δ𝑦 = 14 mm in the direction perpendicular to the flow. The sensors in each line are separated 

a distance Δ𝑥 = 20.5mm in the direction of the average flow. Each pressure sensor is 

connected to a small pressure tap drilled through the upper surface of the fracture (see 

supplementary information for additional drawings). 

2.3 Properties of the liquids 

 

In all the experiments, we used mixtures of water and glycerin (99% Glycerin, McMaster-

Carr). The viscosity of these aqueous solutions was controlled by setting specific ratios of 

glycerin and water (Segur & Oberstar, 1951; Cheng, 2008). We also measured the viscosity 

and density of the fluid before each experiment, and those are the values used to report the 

results. The viscosity of the different solutions ranged from 𝜇 = 0.95  to 77 mPa∙s and the 

density of these solutions ranged from 𝜌 = 995 to 1210 kg/m3. We performed experiments 

over a wide range of Reynolds numbers, covering several orders of magnitude 0.001 ≤ Re ≤
500. For example, in Figure 3 we present the case where no separation is added between the 

two fracture surfaces, that is, when the fractures are nominally in full contact, ℎ = 0. For 

perfectly mating fracture surfaces this would result in a closed fracture and zero flow. However, 

as discussed above, our surfaces do not perfectly mate and the fracture is effectively open to 

flow. We present different sets of results corresponding to experiments performed with 

different glycerol aqueous solutions. We use different solutions in order to cover a wide range 

of Reynolds numbers. The results reported in the figure correspond to approximately 100 

independent experiments obtained for a single aperture of the fracture. From these sets of data, 

we obtain a single value of the effective aperture and critical Reynolds numbers. Similar sets 

of data are obtained for each of the apertures investigated here. 

 

3 Results and discussion 

3.1 Average and effective apertures 

As discussed in the introduction, we performed experiments systematically varying the 

aperture and, as a result, modifying the relative magnitude of the surface roughness. We also 

mentioned that the nominal separation between the surfaces is not necessarily the same as the 

average aperture. Therefore, we first determine the average aperture, calculated from the 

volume inside the fracture, as a function of the nominal aperture. The volume is measured by 

injecting dyed water and monitoring the advancing front until the entire fracture, placed 

vertically, is filled with the fluid. The results are presented in Figure 4. First, it is clear that the 

average aperture ℎ𝑚 is slightly larger than the nominal separation ℎ. Specifically, a nearly 

constant difference of approximately 120 𝜇𝑚 is observed for nominal separations ℎ ≥
250 𝜇𝑚. We can therefore assume that the magnitude of the mating error in the process used 

to create the fracture model is of the order of 100 𝜇𝑚. In fact, we also observe a clear change 

in behavior for nominal separations ℎ ≈  250 𝜇𝑚. Specifically, the change in the average 

aperture becomes shallower with a decrease in nominal separation bellow ℎ ≈  250 𝜇𝑚. This 

suggests that contact between the two surfaces occurs at ℎ ≈ 250 𝜇𝑚. In what follows, we use 
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the measured average aperture as a better indication of the fracture aperture compared to the 

nominal separation between the surfaces. 

 

We then characterize the permeability of the fracture in the linear regime and its corresponding 

effective aperture. First, the data obtained for a given aperture in multiple experiments using 

different fluids are made dimensionless as shown in Eq. (5), but using the average aperture ℎ𝑚 

instead of the nominal aperture value ℎ, that is:  

𝜌ℎ𝑚
3

12𝜇2
∇𝑝 = ∇𝑝̃ = (

ℎ𝑚

ℎeff
)

3

 (Re + 𝛽 Re2). 
(7) 

The data obtained for each aperture value with different fluids now collapses into a single 

curve, as expected. This is shown in Figure 5, which corresponds to the same data already 

presented in dimensional form in Figure 3 above, but now plotted in nondimensional variables. 

We fit a linear dependence of the pressure gradient on the Reynolds number for relatively small 

values of the Reynolds number, Re < 0.5. The data in this range of Reynolds numbers and the 

corresponding linear fit are shown in the inset in Figure 5. The linear fit determines the effective 

hydraulic aperture of the fracture and the results are presented in Figure 4. First, we observe 

that the effective hydraulic aperture is smaller than the average aperture, as usually observed 

in porous media. Then, it is also clear that the trend of the hydraulic aperture as a function of 

the nominal aperture closely follows that of the average aperture. That is, the effective 

hydraulic aperture also shows a nearly constant region for ℎ ≲  250 𝜇𝑚, consistent with the 

presence of contacts between the opposite surfaces of the fracture, and a clear linear increase 

above that value. The relation between the effective and average apertures is shown explicitly 

in the inset to Figure 4 and shows a nearly linear relation over the range of nominal separations 

considered in this work. 

3.2 Spatial variations in pressure 

We also looked into the spatial fluctuations of the pressure field at the local level. In Figure 6a 

we first present the local deviations from a linear profile along the central line of sensors. 

Specifically, if 𝑝𝑖 is the pressure at the i-th sensor in the central line, we normalize the pressure 

such that 𝑝1 = 𝑝inlet = 1 and 𝑝8 = 𝑝outlet = 0, and subtract a linear profile between inlet and 

outlet from the pressure values measured at each sensor. We observe that the relative magnitude 

of the deviations from a linear profile decreases as the aperture increases. 

In order to get a representative magnitude of these spatial fluctuations of the pressure, we 

calculate the variance in the local pressure gradient, represented by the pressure drop between 

consecutive sensors in a given line. Specifically, from the 𝑛 = 8 pressure sensors in a given 

line along the flow direction, we first calculate the local pressure drops between sensors, Δ𝑝𝑖 =

𝑝𝑖+1 − 𝑝𝑖. Then, we calculate the variance σp
2 = 〈Δ𝑝𝑖

2〉𝑖 − 〈Δ𝑝𝑖〉𝑖
2
, where 〈∙〉𝑖 is the spatial 

average along the line of sensors.  In order to average the variance over different experiments 

we normalized it by the average local pressure drop,  𝜎𝑝/Δ𝑝, where Δ𝑝 = 〈Δ𝑝𝑖〉 is the average 

pressure drop between two consecutive sensors. Note that, in principle, the normalized variance 

is constant in the linear regime at low Reynolds numbers. Therefore, we calculate the average 

over all experiments with relatively small values of the Reynolds numbers (Re < 0.5),  𝜎̃p =

〈𝜎𝑝/Δ𝑝〉, where 〈∙〉 now indicates the average over independent experiments.  

In Figure 6b, we present the results on the spatial fluctuations of the local pressure drops as a 

function of the aperture for the central line of sensors. We observe a trend that is analogous to 

the variation in the effective aperture, in that the change in pressure drop fluctuations is 
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relatively small for nominal apertures ℎ ≲  250 𝜇𝑚. This corresponds to the range of nominal 

apertures in which the effective aperture is relatively constant, possibly due to contacts. In 

contrast, for larger values of the nominal aperture (ℎ >  250 𝜇𝑚), there is a significant decrease 

in the pressure drop fluctuations. 

 

This is confirmed in Figure 7, where the normalized spatial fluctuations of the local pressure 

drop are plotted as a function of the effective aperture. In this case, we observe a clear decrease 

in the fluctuations over the entire range of values of the effective aperture. We also show a 

linear decrease that compares well with the measurements. The same trend is observed for all 

5 parallel lines of sensors along the flow direction. Although some of these lines of sensors 

present a smaller magnitude of the relative fluctuations in pressure, they all present a clear 

reduction in the fluctuations as the effective aperture increases. 

These results show that, as the aperture becomes larger, the tortuosity of the flow become 

smaller and the relative fluctuations in the pressure drop are reduced. Although these 

measurements provide valuable insight into the flow field, it is important to point out their 

limitations. First, the length scale over which the pressure drops are measured is arbitrarily 

fixed by the experimental setup and, second, the measurement is intrinsically one-dimensional.  

3.3 Nonlinear flow and critical Reynolds number 

The flow data in the entire range of Reynolds numbers is fitted with a quadratic equation 

as given in Eq. (7). First, we only fit the coefficient to the nonlinear term, using the same 

effective hydraulic aperture as determined by the linear fit, i. e. only fitting the parameter 𝛽 in 

Eq. (7). Second, we fit the data with a quadratic equation and determine both ℎeff and 𝛽 in Eq. 

(7).  Both fits are shown in Figure 5 for the data corresponding to nominally mated surfaces. It 

is clear that both quadratic fits describe the dependence of the pressure gradient on the 

Reynolds number reasonably well and both give similar results. The corresponding values of 

the critical Reynolds number for each aperture are presented as a function of the relative rms 

roughness in Figure 8. A clear trend is observed, with the critical Reynolds number rapidly 

decreasing as a function of the relative rms roughness. In fact, a decrease proportional to 𝜎̃𝑧
−2 

is presented in Figure 8 and compares well with the reduction in critical Reynolds number 

observed in the experimental data. 

These results show that the critical Reynolds number changes significantly depending 

on the relative magnitude of the surface roughness, decreasing an order of magnitude as the 

relative surface roughness triples. The range of relative surface roughness considered here 

complements the values found in the literature (𝜎̃𝑧 > 15 in Table 1) and the results are 

consistent (e. g. in Table 1 we estimate Rec ~ 5 − 10 for a relative roughness of 𝜎̃𝑧 ≈ 15).  

4 Conclusions 

We have designed and performed a large number of independent flow experiments to 

characterize both the Stokes regime as well as the onset of inertial effects in an open fracture. 

Systematically varying the separation between the two mating surfaces of the fracture we 

investigated the effects that the relative magnitude of surface roughness has on the 

characteristics of the flow field, including spatial fluctuations of the pressure and the onset of 

nonlinear flow due to inertia.  

First, we performed static measurements of the average aperture while controlling the 

nominal separation between the two surfaces of the fracture and concluded that small nominal 

apertures probably result in contact (ℎ < 250 𝜇𝑚). This conclusion was supported by the trend 

observed in the average aperture, which shows a nearly constant value for small separations, 
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with a weak dependence of the average aperture on the nominal separation for ℎ ≲ 250 𝜇𝑚. 

This is consistent with the trend observed in the measurements of effective aperture, that shows 

a nearly constant effective aperture ℎeff~200 𝜇𝑚 for small nominal apertures. In fact, the 

effective aperture shows an almost linear dependence on the average aperture over the range 

of nominal separations considered in this work. We observe a similar change in behavior in the 

spatial fluctuations in pressure. We considered the normalized variance in the local pressure 

drops and observed that it remains nearly constant for small nominal separations (ℎ < 250 𝜇𝑚) 

and decreases for larger separations. Moreover, the normalized variance shows a linear 

decrease for the entire range of separations when plotted as a function of the effective aperture. 

Local pressure deviations from a linear profile exhibit a similar behavior, in that they decrease 

as the relative magnitude of surface roughness decreases. Although expected, this confirms that 

increased surface roughness results in larger deviations in the local pressure gradients from a 

uniform and linear profile. 

For all nominal apertures, we also explored the nonlinear regime, when pressure 

gradient grows faster than linear due to inertial effects. In all cases, the Forchheimer equation 

describes the experimental data reasonably well and provides an empirical value of the critical 

Reynolds number for each nominal aperture. The advantage of the Forchheimer description is 

that the critical Reynolds number is a dimensionless number that depends only on the geometry. 

Our results show that the critical Reynolds number decreases significantly as the relative 

roughness of the fracture increases. In fact, a factor of 3 increase in roughness results in an 

order of magnitude decrease in the critical Reynolds number.  

Overall, all the results point in the same direction: as the relative roughness decreases, 

the fracture approaches the geometry of two parallel plates, the pressure gradient approaches a 

uniform value throughout the fracture and the inertial effects are not present until larger 

Reynolds numbers are reached. Although our work was performed on a single fracture, an 

indication of the generality of our results is that similar behavior for the pressure fluctuations 

was observed along independent lines of pressure sensors. However, more work is clearly 

needed to investigate the behavior of the pressure fluctuations and critical Reynolds numbers 

in different fracture surfaces, including experiments that, in contrast to our work, maintain the 

average aperture while exploring different magnitudes of the surface roughness.  

The results presented in this paper suggest that identifying the onset of inertial effects 

in fracture flows offers a relatively simple and non-invasive characterization method that can 

be performed above ground. The critical Reynolds number provides complementary 

information to that given by the effective aperture. In particular, the critical Reynolds number, 

in combination with the hydraulic aperture could be used as a sensitive metric for assessing the 

relative magnitude of the surface roughness in underground fractures. This characterization can 

then be incorporated into transport models used to study such systems. 
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Table 1: Representative summary of previous work on the critical Reynolds numbers in fractured rocks (F: field fractures; S: simulated model 

fracture; R: real laboratory fractures). * The values are estimated based on available information. ** The reported value is an estimated upper bound. 
† The reported aperture is the maximum vertical displacement measured upon shearing the fracture. At small shear displacements small negative 

vertical displacements are typically observed. ‡ The aperture range as well as the range of relative roughness values and critical Reynolds numbers 

corresponds to increasing confining pressures. 

Article Material F S R 𝒉𝒎 [𝜇𝑚]  𝒉𝐞𝐟𝐟 [𝜇𝑚]  𝝈̃𝒉 𝝈̃𝒛 𝝃̃/𝑹̃𝒑 𝐑𝐞𝐜 

Zimmerman et al., (2004) Sandstone   • 148.9 117∗ 0.47 —  ∼  10∗ 

Konzuk & Kueper (2004) Dolomitic Limestone  •  417 332 0.60 —  ∼  5∗ 

Ranjith & Darlington (2007) Granite  •  — 70∗ — 15.8∗  ∼  5∗ 

Ji et al., (2008) Granite   • 760 — — —  ~ 15 

Nowamooz et al., (2009) Sandstone   • — 441 — —  ~ 30∗ 

Radilla et al., (2013) Granite   • — 696 — —  ~ 25∗ 

Qian et al., (2015) Cement and sand  •  500– 2000 — — —  ≾  5∗∗ 

Quinn, et al., (2011) Dolostone •   
— 25 (smallest) — —  0.09 

— 217 (largest) — —  1.59 

Chen, Hu, et al., (2015) Sanstone and Granite •   — — — —  25– 66 

Zhang & Nemcik (2013) Sandstone 

 •  — 265– 200∗,‡ — — 𝜉 ≈ 5.4– 7.1∗ 3.5– 4.5 

 •  — 215– 185∗,‡ — — 𝜉 ≈ 8.6– 9.9∗ 13.1– 17.6 

 •  — 175– 165∗,‡ — — 𝜉 ≈ 14.2– 15.0∗ 19.3– 24.8 

 •  — 210– 170∗,‡ — — 𝜉 ≈ 19.3– 23.7∗ 6.3– 8.6 

Chen, Zhou, et al., (2015) Granite  •  — 49.7– 2.2‡ — 15– 1200∗ 𝜉 ≈ 60– 3700∗ 0.04– 11.74 

Zhou et al. (2015) 

Granite 

 •  — 35– 2.5∗,‡ — 80– 1200∗ 𝑅̃𝑝 ≈ 230– 3300∗ 0.075– 9.24 

 •  — 27.5– 2∗,‡ — — — 0.12– 4.47 

 •  — 30– 2.5∗,‡ — — — 0.16– 5.11 

 •  — 37.5– 2.5∗,‡ — — — 0.039– 4.51 

Sandstone 
 •  — 35– 10∗,‡ — — — 0.19– 4.09 

 •  — 47.5 − 2.5∗,‡ — 40– 730∗ 𝑅̃𝑝 ≈ 15– 245∗ 0.026– 2.98 

Rong et al., (2017) Granite 

 •  — 278 − 211‡ — — — 8.61– 13.35 

 •  — 238 − 176‡ — — — 5.46– 10.11 

 •  — 218 − 174‡ — — — 4.18– 5.98 

Chen et al. (2019) Sandstone  •  — 42.5– 7.5∗,‡ — — 𝜉 ≈ 75– 750∗ 0.05– 3 

Javadi et al., (2014) Granite 
 •  0†(smallest) — — — — 0.001 

 •  1750†(largest) — — — — 25 

Rong et al., (2016) Granite  •   35– 200∗ — — — 1.5– 13.0 
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Figure 1: a) Contour map of the surface height. b) 3D printed surface. 
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Figure 2: Schematic view of the experimental setup used to perform flow experiments. 
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Figure 3: Log-linear plot of the flow rate as a function of pressure gradient for fluids with different 

viscosity values. The results in this figure correspond to the case when the fracture surfaces are 

nominally in full contact, that is ℎ = 0 𝜇𝑚. The measured average aperture is ℎ𝑚 = (270 ± 30)  𝜇𝑚 

and the effective aperture is ℎeff = (190 ± 10)  𝜇𝑚. The open symbols correspond to measurements 

from the central line of pressure sensors (obtained with 7 different glycerol aqueous solutions, 

ranging from pure water (top curve) to ~80% glycerol by volume (bottom curve)). The solid symbols 

correspond to experiments measuring the pressure on the entire array of sensors (obtained with 5 

different glycerol aqueous solutions). In this case, each group of points corresponds to measurements 

of the total pressure drop from each of the five lines of sensors parallel to the flow.  
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Figure 4: Average aperture, ℎ𝑚, and effective aperture, ℎeff, as a function of the nominal aperture 

between the two surfaces of the fracture, ℎ. 
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Figure 5: Nondimensional pressure gradient as a function of the Reynolds number for the case of 

nominally mated surfaces, that is h = 0 𝜇m. The experimental data is the same as that plotted in 

Figure 3, made nondimensional as in Eq. (7). The dashed line corresponds to a linear fit (with no 

intercept) in the region Re < 0.5, shown in detail in the inset. The solid lines correspond to quadratic 

fits. The lighter (blue) line corresponds to a quadratic fit with no intercept. The dark (black) line 

corresponds to a quadratic fit with no intercept and a fixed linear term obtained from the linear fit for 

Re < 0.5. 
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Figure 6: Spatial variation of the pressure field for different apertures. a) Normalized deviation of 

the pressure field along the flow direction with respect to a linear gradient; b) Normalized local 

pressure drop variance as a function of the nominal aperture, ℎ. 
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Figure 7: Normalized local pressure drop variance as a function of the effective aperture, ℎeff. The 

different symbols correspond to results for different lines of sensors along the flow direction. The 

dashed lines are linear fits to the data.  
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Figure 8: Critical Reynolds number (Rec) as a function of the relative surface roughness (𝜎̃𝑧 =
𝜎𝑧/ℎeff). Open circles correspond to the fit with Eq. (7) using the ℎeff value determined from the 

linear regime. Open triangles correspond to a quadratic fit with Eq. (7) and both ℎeff and 𝛽 taken as 

free parameters. The dashed line is a fit with to Rec = 1.6 × 103 𝜎̃𝑧
−2. 
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