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Abstract. We present a molecular dynamics study of the subsequent dissipation-free motion of
a ball dropped onto a self-affine profile characterized by the Hurst expéheihe distribution

of sizes of the energetically accessible intervals to which the ball is confined as a function of the
heighth at which the ball is dropped has been determined. Furthermore, the correlations between
the distribution of slopes of the profiles and the distribution of directions of the velocity vector at
impact were studied. We found that the distribution of angles the velocity vector makes with the
normal of the profile is independent of bath and the roughness amplitude. The distribution of
horizontal lengths of the parabolic trajectories of the ball between impacts were further studied,
and we found it to be a power law with exponéiit— 2 for small lengths and Gaussian-like for
large lengths. Finally, we discuss the scaling of the parameters of the particle trajectory with
respect to rescaling of the self-affine surface on which the ball bounces.

It is only recently that the physics community has taken on the challenge posed by the
dynamics of granular materials, despite its obvious technological importance. One reason
for this may be found in the great difficulties of gaining a theoretical understanding of the
phenomena involved when only analytical tools were at hand. The situation is, however,
rapidly changing as computers become more and more powerful. As a result, one is not
only seeing a rapidly advancing theoretical understanding of the phenomena involved, but
new phenomena are discovered at a high rate, see e.g. [1-3].

Through this surge of interest in this field, it has become clear that even the seemingly
simple problem of the dynamics of one single grain interacting with a set of boundaries is
far from completely understood. For example, it came as a surprise that the effective force
felt by a ball rolling on an inclined bumpy surface is proportional to the velocity of the ball
[4]. A theoretical explanation of this effect has only recently been suggested [5]. Since the
mid 1980s, it has been recognized that the motion of a single grain dropped onto a flat but
oscillating surface may give rise to very complex chaotic behaviour, see e.g. [6-16].

In this paper, we study the problem of a single grain dropped onto a static but rough
surface. This is the ‘quenched disorder’ version of the bouncing ball on a vibrating surface
problem, in the sense that the impact point between the ball and the surface depends here
only on the horizontal coordinate of the ball and not on time. More generally, the energy
exchange between a rough wall and an ensemble of particles is a central problem in granular
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flow and this study may be regarded as being one step in the direction of understanding this
complex problem.

Naturally occurring rough surfaces normally have long-range correlations built into
them. These correlations typically manifest themselves through the surfacessedfing
affing meaning that they are statistically invariant under the transformatien Ax and
y — Afly. Here H is the Hurst exponentand where O< H < 1 [21]. This invariance
leads to, for example the correlation functianss, sx), giving the probability density to
find a height differencéh over a horizontal distancgx, scaling as

M aWHSh, A8x) = w(8h, 8x). (1)

The prefacton.” is found by the normalization of (87, 8x).

The surfaces that we consider in this paper are self-affine. Our emphasis is on the
geometrical constraints of the motion of the ball rather than on its detailed dynamics such
as is the case in the analysis of the chaotic motion of a jumping ball on a vibrating surface.
We note how problems with quenched disorder are notoriously much more difficult to treat
theoretically than those with annealed disorder.

We consider a one-dimensional self-affine profile consisting of facets ofl sideen
projected onto the horizontal plane. The facets have a ldng#asured along the horizontal.
Furthermore, the height difference between consecutive corners of the profile is Gaussian of
width € and zero mean. The radius of the balljsand we assume « . The gravitational
field g points downwards, i.e. in the negatiuedirection. There is no inclination of the self-
affine surface. This means that we orient it in such a way that its two endpoints are at the
same vertical height. Our numerical studies are based on molecular dynamics simulations
using an event-driven algorithm.

In the following, we construct the probabiliyAN (A, k) that a horizontal interval of
size A is energetically accessible to a ball dropped from a helghbove the self-affine
surfacey(x) at x = xo. We defineA more precisely: If, for a given profilex_ is the
largestx smaller thanxg such thaty(x_) = y(xo) + &, andx, is the smallesk larger than
xo such thaty(x,) = y(xo) + h, thenA = x, — x_, see figure 1.

We assume thaW (A, k) has the structure

hP h
N(A,h) = BG (N> 2

where the functiorG(z) tends towards a constant for small values aind falls off faster
than any power law for large. Whenh — 0, N is simply the first return probability of
the profiley(x). It was shown in Hanseat al [18] that the first return probability density
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Figure 1. This figure defines\ and other relevant quantities.
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Figure 2. hVH)N(A, h) plotted against/A# for differenth. The slope of the straight line is
2/H — 1.

Ny (A) ~ A=@H Thus,
a=2-—H. 3)

Self affinity demands that/AN(A, h) is invariant under the rescaling — ix and
h— Ah e

dAN(A, h) =d(A)NOA, A h). (4)
Combining this equation with (2) and (3), we find
1-H
p= H (5)
and
y = H. (6)

SettingH = % so that the profiley = y(x) corresponds to a random walk,(A, h) is

readily found to be [19]
—h?/2A
NA W)= —> 7

which is consistent with (2), with the exponents given in (3), (5) and (6).

In order to test (2) numerically, we measurddA, 4) from 1000 samples of length
L = 10* facets andH = 0.7f using the Mandelbrot—Van Ness algorithm to generate the
profiles [20, 21]. In figure 2 we showY? N(A/h) as a function ofi/A¥. The slope of
the straight line is 2H — 1 = 1.86 which is consistent with (2).

1 We have chosen to study = 0.7 since it is this value that is found for two-dimensional fractures, see [24-27].
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The average size ok in a system of sizd. is
L
(A) =/ AN(A, h)dA = CL"hP (8)

in the limit of largeL. Thus, the average divergesas—> co. We have thus the interesting
situation that a ball dropped from any height above an infinitely long self-affine profile will
be trapped in a finite-sized interval, sin¥&A, h) — 0 for L — oo without discontinuities.
It will be localized However, the average size of the interval in which the ball is trapped is
infinite. This illustrates well the point made by Anderson [22] in connection with localization
of electrons: If one searches for localization after averaging over samples, none are found.
However, reversing the order leads to localization. In our case, the ball is always trapped.
However, when posing the question whether the ball is trapped or not after averaging over
samples, one will be led to the opposite conclusion.

The distribution of the tangent of the anglebetween the facets of our surfaces and
the horizontalg = tan(«), is

e—a2/2€2

gla) = )

2me?

Using an event-driven molecular dynamics algorithm, we drop the ball from a height
above the profile at = xo. The initial velocity of the ball is zero. Let, andv, be the
horizontal and vertical components of the velocity. At the point of impact between the ball
and the profile ak, we have

(2 +v2) = 2g(h — y(x)). (10)

We note that this is the equation of a circle with a radius given by the height The
largest radius corresponds to the minimum of the profile reachable by the ball, and the
minimal radius, which is zero, correspondsxto andx.. In figure 3 we plotv, againstv,

for a sequence of impacts on a given profile. We note that some levels are ‘visited’ more
often than others. In fact, those radii correspond to local minima, which tend to capture the
ball.

We defineg = arctar{v,/v,) at impact, see figure 4. It is interesting to study the
distribution p(B) for profiles generated with different, which is defined in equation (9).

A larger € corresponds to a more pointed profile, i.e. its amplitude is larger. In figure 5
we showp(g) for differente. We note in this figure how the maximum of the distribution
splits into two for largere. This is caused by the ball having an increasing tendency to
jump between opposite slopes of deep valleys.

We now ask the question: What is the distribution of the angles of the facets that is
hit by the ball, compared with the distribution of all the facets, (9)? In figure 6 we show
the distribution of tafw) of the facets that were hit by the ball. Clearly, it is very far from
a Gaussian. Moreover, it changes character quite dramatically with different values of the
parameters and H. In particular, we note that for the smaller= 0.274 andH = 0.5,
the distribution of tangents has a single maximum at the origin, while for the sano¢
H = 0.7, the single maximum is split into two. This is a reflection of the persistence
of self-affine surfaces wittH > 0.5: they have a tendency to move in the direction they
were already heading. This creates ‘valleys’ in which the ball jump from one slope to the
opposite one. On the other hand, toe 1.6, there seems to be little effect of the change of
Hurst exponent. The reason for this is that the large value moduces a similar ‘valley’
effect, but on a scale which is so small that difference in large-scale features of the profiles
implied by the different Hurst exponents is not visible.
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Figure 3. v, as a function ofv, at each of the 5000 contacts for a given profile with= 0.7
ande = 0.5.

Figure 4. This figure defines angles, «; and 8.

We now definey; to be the angle made between the normal of the facets and the velocity
vector at impact. Thus,

o =p—a. (11)

In figure 7 we plot the distribution af; as determined from several values of the parameters
€ andH. Surprisingly, we find that the different distributions collapse well to a single curve:
the dependence anand H seems very weak, if indeed there is any. We see at present no
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Figure 5. Distribution p(B8) for H = 0.5 differente: circles correspond te = 0.547, squares
correspond ta¢ = 1.66, and triangles correspond ¢o= 11.
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Figure 6. Distribution of tangents of the facets that were hit by the ball: circles correspond to
€ = 0.274 andH = 0.5, diamonds correspond to= 0.274 andH = 0.7, squares correspond
toe = 1.6 andH = 0.5, and triangles te = 1.6 andH = 0.7.

convincing argument that explains this independence.
We now study the distribution of distances covered by the ball between impacts. We
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Figure 7. Distribution of«; obtained for different and H: full circles correspond te = 2.19
and H = 0.5, open circles correspond to= 2.19 andH = 0.7, triangles pointing upwards
correspond toe = 0.274 andH = 0.5, and triangles pointing downwards correspond to
€ =0.274 andH = 0.7.

note the correspondence between this problem and that of a random walker in one dimension
in the vicinity of an absorbing moving wall. WheH = % the profile may be seen as a
one-dimensional random walker along thlirection, while thex-direction corresponds to

the time axis. The parabolic trajectoFy(x) of the ball,

2
Ym=%+mu—m—gﬁ “) (12)
Ux0 2 Ux0

then corresponds to a moving wall, and we are asking the question when the two curves
(profile and trajectory) cross for the first time. In (12)o, yo) and (vyo, vy0) are the
coordinates and velocities at last impact. No analytic solution to this problem exists.
However, if the ball were moving along a straight trajectoryx) = Y (xo) + c¢(x — xo),

which is a good approximation as long as

2
x —x0 K gvxovyo (13)

and

D0 _ 0(e) (14)

Ux0
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the distribution is of the jump size
e—cz(x—xo)/Ze

(4re(x — x0))%? (10)

n(xp, X)

wherec = v,0/vy0. FOr c?(x — x) <K 2€, n(xo, x) ~ (x — x0)~>/2, which generalizes to
n(xo, x) ~ (x — xg) @ (17)

for generalH in the same limit by the same arguments that led to equations (2) and (3)
being a generalization of (7).

Equation (16) is a good approximation as long as there is a large horizontal velocity
component and a small enough vertical velocity component so that there the ball hits the
profile again before the parabolic component of its trajectory is becoming significant. Let
us now assume the opposite limit, namely thgf is small andv,o is large so that the
parabolic component in (12) dominates, and that the amplitude of the roughness of the
profile is small compared with the maximum height the ball reaches above the profile. In
this case, the distribution(xg, x) is well approximated by a Gaussian (m — xg) with
a well-defined average and variance. We demonstrate this in figure 8, where we use the
parametersA = g/2vf0 and B = v,o/vy. The initial power-law behaviour with slope
2 — H is clearly visible, as is the Gaussian-like hump for large intervals.

Figure 8 also demonstrates the scaling properties of the trajectory of the ball, equation
(12), vis-a-visthe self-affine surface(x), which essentially behaves agx) = ex”. Thus,
by rescaling

X —> AX
(18)
€ —> ne
we have
y = nifly. (19)
If we now demand that the particle trajectaryx) is to scale in the same way as
Y — gafly (20)
we must rescale the parameters of the trajectory as follows
g— g
V0 = AUy0 (21)

H
Vyo —> NA7 vyo0.

Thus, parameterd and B defined above scale as — nA—24 and B — nA#~1B. We
may interpret this scaling as follows. Given two trajectorigéx) and Y»(x) characterized

1 The probability density that a random walk startingyat= 0 andx = 0, for the first time hits the absorbing
boundaryY (x) = Yo + cx is

Yoe—ym?/z;c

n(0, x) = W

(15)

see, for example, [28]. In our casg0) = 0. However, our profiles are not continuous random walks, but consist
of facets of finite size. Thus, the factor that should replE¢@ — O in our case is of the order of the size of the
facets.
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Figure 8. Distribution n(xp, x) of distance(xp — x) between two consecutive contacts along a
series of self-affine profiles wit/ = 0.7. There are four sets of data: (1) = 0.01, B; = 0.5

€1 = 0.4, (2) A2 = 0.0742, B, = 1.83 andez = 0.12, (3) A3 = 0.07, B3 = 5 andez = 20,

and (4)A4 = 0.0939, B4 = 5.35 andeg = 20. Sets 1 and 2 are related through equation (21)
with n = 3 andx = 0.5, and sets 3 and 4 are related through equation (21) yith1 and

A = 0.8. The data sets have been shifted along both the horizontal and the vertical axes by a
factor of X,, to demonstrate that there is data collapse between sets 1 and 2, and 3 and 4, but
not between any other combination of data sets.

by parametersA; and B; and A, and B,, complete data collapse is possible between
guantities measured froy and Y, if there exist arp and A such that

& _ )LH—Z
A
(22)
& — n)\‘H—l'
B

This is demonstrated in figure 8, where we show the histogram of the jump lengths for
trajectories based on four sets of parametérsand B; to A4 and B4. Pairs 1 and 2, and

pairs 3 and 4 are related as in (22). We find data collapse between pairs 1 and 2, and 3 and
4, but not between any other combination.

We have presented a molecular dynamics study of the subsequent dissipation-free motion
of a ball dropped onto a self-affine profile. The distribution of sizes of the energetically
accessible intervals to which the ball is confined as a function of the hkightvhich the
ball is dropped was determined. The average size of the intervals diverged. We studied
the correlations between the distribution of slopes of the profiles and the distribution of
directions of the velocity vector at impact, finding that the distribution of angles the velocity
vector makes with the normal of the profile is independent of étland the roughness
amplitude. We studied the distribution of horizontal lengths of the parabolic trajectories of
the ball between impacts. We found it to be a power law with expoient 2 for small
lengths and Gaussian-like for large lengths. Finally, we have discussed how to scale the
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parameters of the trajectories of the ball when rescaling the self-affine surfaces. We found
that if the pairs of parameters could be related as in equation (22), the system, bouncing
ball on a self-affine surface, is statistically invariant.

We have considered here only the simplest case: one-dimensional motion without
dissipation. We are considering generalizations of this work along both of these axes,
dissipation and two-dimensional motion.

Acknowledgments

We thank the CNRS and the NFR for support though the Franco—Norwegjias
programme, ath P C Hemmer for discussions.

References

[1] Bideau D and Hansen A (ed) 19%3¥sorder and Granular MedigAmsterdam: North-Holland)
[2] Metha A (ed) 1994Granular Matter: An Interdisciplinary ApproacfHeidelberg: Springer)
[3] Jaeger H M, NadeS R and BehringeR P 1996Rev. Mod. Phys68 1259
[4] Riguidel F X, Hansen A and Bideau D 19%®urophys. Lett28 13
[5] Batrouni G G, Dippel S and Samson L 1998ys. RevE 53 6496
[6] Tufillaro N B and Albam A M 1986 Am. J. Phys54 939
[7] Eversm R M 1986Physical9D 355
[8] Tufillaro N B, Mello T M, Chd Y M and Albaro A M 1986 J. Physique47 1477
[9] Mello T M and Tufillao N B 1987Am. J. Phys55 316
[10] Wiesenfeld K and Tufillaws N B 1987Physica26D 321
[11] Pierahski P 1988Phys. RevA 37 1782
[12] Metha A and Lu& J M 1990Phys. Rev. Let65 393
[13] Franaszek M and Isoaki H M 1991 Phys. RevA 47 4231
[14] Boissel P 199Bull. Union Physicien86 217
[15] Luck J M and Metha A 199%hys. RevE 48 3988
[16] Devillard P 1994J. Physiquel 4 1003
[17] Schmittbuhl J, Vilote J P and Roux S 1993 Physiquell 4 225
[18] Hansen A, Enggy T and Mgy K J 1994Fractals 2 527
[19] Chandrasekhar S 1943ev. Mod. Physl5 1
[20] Mandelbra B B and van Ness J W 196BIAM Rev.10 422
[21] Feder J 198&ractals (New York: Plenum)
[22] Andersa P W 1978Les Prix Nobel 1977{Stockholm: Almqvist and Wiksell)
[23] Hansen A, Hinrichse E L and Roux S 199Phys. Rev. Leti66 2476
[24] Poirier C, Ammi M, Bideau D and Troade) P 1992Phys. Rev. Leti68 216
[25] Horvath V, Kertesz J and Weber F 1988actals 1 67
[26] Engey T, Malgy K J, Hansen A and Roux S 19%hys. Rev. Letf73 834
[27] Cox D R and Miller H D 1965 The Theory of Stochastic Procesgesndon: Chapman and Hall)



