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Abstract We study the mixing dynamics of a dyed and a clear miscible fluid by an oscillating
flow inside an Hele-Shaw cell with randomly distributed circular obstacles. A transparent
setup allows us to analyze the distribution of the two fluids and the reversible and irreversible
mixing components. At the lower Péclet numbers Pe (based on the averaged absolute fluid
velocity), geometrical dispersion due to the disordered flow field between the obstacles is
dominant: the corresponding dispersivity is constant with Pe and, at constant Pe, increases
with the amplitude of the oscillations and is negligible at small ones. Compared to echo
dispersion with only one injection–suction cycle, oscillating flows are shown to provide
additional information when the number of oscillations and, as a result, the distance of trans-
verse mixing are varied. Geometrical dispersion is dominant up to a limiting Pe increasing
with the amplitude. At higher Pe′s, the results are similar to those of Taylor dispersion in cells
with smooth walls.
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Oscillating flows in porous media are encountered in many areas of applied science (Leong
and Jin 2006; Dey and Raja 2014; Ashorynejad et al. 2016), as well as in our natural envi-
ronment (Sanz-Prat et al. 2016; Ping Wang 2015). One of the open questions concerns the
influence of a time periodic flow on the performance of processes such as thermal or electri-
cal diffusion, species separation or, as in the present study, mass transfer. To our knowledge,
relatively little attention has been paid to the effect of oscillating flows on the dynamics
of the spreading of concentration fronts. Apart from references Scotter et al. (1967), Scot-
ter and Raats (1968) and Cirkel (2015) dealing, respectively, with the dispersion of a gas
inside another one and with nonlinear exchange processes, most studies consider very sim-
ple geometries like parallel planes or Hele-Shaw cells with plane walls (Watson 1983; Roht
et al. 2015).

Mixing and dispersion in porous media are controlled by the interplay between convec-
tion and molecular diffusion of the solute. The Péclet number Pe = U H/Dm characterizes
the relative weight of the two processes (U is the average flow velocity, H the character-
istic microscopic length of the medium, and Dm the molecular coefficient of diffusion of
the solute). The different dispersion regimes are presently well understood in the case of a
constant fluid flow. Several mechanisms have been identified: for Pe < 1, mixing is con-
trolled by molecular diffusion. At larger Pe values, the disorder of the pore space and the
spatial correlation of the velocity of the tracer particles along the trajectories are the key
elements influencing dispersion (Saffman 1959; Fried 1971; Bear 1972): this mechanism is
often referred to as geometrical dispersion and its contribution to the dispersion coefficient is
proportional to Pe. In the particular case of flow between two continuous walls (like inside
fractures of rocks or building materials), Taylor dispersion is generally dominant at large
Péclet numbers (Boschan et al. 2008) with a contribution to the dispersion coefficient pro-
portional to Pe2: it reflects an equilibrium between tracer spreading due to the flow velocity
gradient perpendicular to the walls and transverse molecular diffusion across the gap (Tay-
lor 1953; Aris 1956). However, natural fractures have generally rough walls: then, in this
case, the flow field is disordered due to fluctuations of the fracture aperture and geometrical
dispersion is again dominant at low Péclet numbers (Ippolito et al. 1994; Roux et al. 1998).

Oscillations (with zero mean displacement) introduce two new characteristic parameters:
the amplitude A and the period T of the displacement. For dispersion in an oscillating flow
between smooth parallel walls, Watson (1983) and Roht et al. (2015) have shown that Taylor
dispersion can develop only if the ratio τm/T is below a threshold value (τm = H2/Dm is the
characteristic diffusion time between the walls and H is the distance between them). In this
case, the dispersivity ld = D/U is proportional to the amplitude A and ld/A ∝ τm/T . At
higher values of τm/T , spreading is still diffusive macroscopically, but ld/A varies instead
as (τm/T )−1. This is due to a partial reversibility of the process: after a change of the flow
direction, spreading initially decreases instead of continuing to increase as is the case for low
values of τm/T . However, the average over several periods of the variation is still increasing.

While Taylor dispersion in oscillating flows in simple geometries is now well understood,
little is known on the influence of flow oscillations on the geometrical dispersion mechanism.
Dispersion measurements in oscillating gas flows of zero mean value inside random sphere
packings have been reported by Scotter et al. (1967) and Scotter and Raats (1968): these
authors showed that both the Péclet number and the normalized amplitude of the oscillations
had a major influence on the dispersion coefficient. However, due to experimental limitations,
their study is restricted to small amplitudes with respect to the size of the spheres and to long
periods. These authors adapted Saffman’s theory to unsteady flows, but theoretical laws
obtained in this way did not fit fully the experimental data. They explained this difference
(Raats 1969; Nowamooz et al. 2013) by memory effects due to the incomplete diffusive
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homogenization of concentration gradients induced by the flow before its reversal. This leaves
open the problem of the scaling laws followed by the dispersion coefficient as a function of
the control parameters of the flow, particularly for large amplitudes of the displacement which
are of interest in the present work.

The objective of the present work is to investigate experimentally these issues by using
optical dispersion measurements of tracer dispersion in oscillating flows inside a transparent
model representing a rough fracture. This allows us to study both the spatial distribution of
the tracer in the model and its variation with time during the oscillations of the flow. The
scaling laws satisfied by the dispersion process and the different dispersion mechanisms at
work will now be investigated from measurements taken in a broad range of Péclet numbers
and oscillation periods and amplitudes.

1 Experimental Setup and Procedure

Like previous works by these authors and by Boschan et al. (2008) and Nowamooz et al.
(2013) using stationary flows, the experiments were performed in a transparent model of
rough fractures. It has the geometry of a Hele-Shaw cell of length and width, respectively,
equal to 400 and 50 mm (i.e., similar to those of the cell used by Roht et al. (2015)). The cell
contains 2372 circular obstacles of height H = 0.42 mm equal to the cell gap (see Fig. 1)
and distributed at random in the gap: the diameter of the obstacles is d = 1.4 mm and the
minimum and mean values of the distance between their centers are, respectively, 2.1 and
2.4 mm. The layout of the obstacles is generated by computer, and they cover 20% of the area
of the cell walls: the latter are carved on plexiglas blocks by means of a computer-controlled
milling machine. One of the walls is plane, and the obstacles protrude out of the other: the
two walls are then assembled with the top of the obstacles in contact with the smooth plane
wall.

The fluids used in the experiments are aqueous solutions of glycerol with a relative mass
concentration of 21% and a viscosity µ = 1.8 mPa s (at 22 ◦C). All the experiments were
performed at a constant temperature of 22 ◦C. Water Blue dye (Horobin and Kiernan 2002) at

Programmable
syringe pump

M

N

P

Light box Electronic
scales

CCD
camera

Side view
of set-up

Top view
(cell only)

N'

N

M P
mylar spacer

(a)

(b)

Hele-Shaw cell

Rough wall 

x

z

x
y

Field of view 

Fig. 1 Schematic views of the Hele-Shaw cell and of the global experimental setup. a Side view, b top view.
The rectangle bounded by a dashed white line corresponds to the field of view of the images used in the
analysis
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a concentration of 2.0 g/l is added to one of the solutions as a passive tracer. The molecular
diffusion coefficient Dm of the dye, as determined through independent measurements and
from the literature (Charette et al. 2007; Russel et al. 1995), is Dm = 4.06 × 10−4 mm2/s
for the 21% glycerol solution. The characteristic diffusion time across the cell gap is then:
τm = H2/Dm = 434 s.

During the experiments, the inlet M of the cell is connected to a NEMESYS™ pro-
grammable syringe pump. Both the driving system of the pump and the syringe can work
in the injection and suction modes, i.e., fluid can be made to flow either into or out of the
syringe. This allows to generate oscillating flows of zero time-averaged flow rate. Before the
experiments, the empty cell is first placed vertically and a flow of CO2 is imposed between M
and P (Fig. 1). Once the cell is saturated, CO2 is replaced by water which is also circulated
between M and P . Trapped CO2 bubbles get quickly dissolved into the water which allows
for a full saturation of the cell with liquid.

Then, the dyed and clear fluids are injected separately at a same constant rate (0.5 ml/min),
respectively, through ports M and P and flow together out of the cell through ports N and
N ′ at equal flow rates. The symmetry of this setup (and, therefore, of the flow field) insures
that each half of the cell is saturated with one of the fluids and separated from the other by
a straight front (Fig. 2a): its deviation from a straight line is of the order of the radius of an
obstacle (0.7 mm). The local thickness remains of the order of 0.5 mm (Fig. 2d) due to the
flow of the fluid toward the sides which limits broadening by molecular diffusion due to the
finite transit time of the fluid particles along the front.

After the saturation of the cell, a flow rate varying sinusoidally is applied at the inlet M .
For a given setting of pump, the amplitude of the oscillations of the fluid may be estimated
from the cross section of the cell transverse to the flow and from manufacturer’s data on the
calibration of the pump for a given type of syringe: in this work, A ranges from 2 to 40 mm.
This latter upper value is set by the length and the need to keep at all times the whole front
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Fig. 2 Maps of the relative concentration C(x, y, t) at different times t1 = 0 (a), t2 = 10T = 80 s (b) and
t3 = 20T = 160 s (c) during an experiment with T = 8 s and A = 8 mm (t = 0 is the time at which the
pump is started). Color scale at the left: relative concentration C (red: C = 0; blue: C = 1). Obstacles appear
in white (their elliptical shape on the graph is due to different magnifications in the x and y directions). d
Variations with x of the average of C(x, y, t) over the interval of y values defined by parallel black lines in
Figs. (a,b,c) at times t1 = 0: (+) symbols and continuous red curve, t2 and t3: respectively, black dotted and
green dashed-dotted curves. Vertical dashed lines in all graphs: initial mean location of the front
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inside the cell. For checking these values of A, the outlet P of the cell is connected to a beaker
placed on a scale of resolution ± 0.01 mg. The total variations of weight corresponding to the
fluid volume swept by the displacement A range between 35 and 700 mg and are, therefore,
measured precisely by the scale. The amplitude A determined in this way is equal within 5%
to the first estimations, and its variation with time is well fitted by a sine wave.

Since, by definition, the average over the section of the displacement of the fluid varies
with time as A sin(ωt) with ω = 2 π/T , the corresponding mean fluid velocity at the time t
is:

〈vx (y, z, t)〉y,z = ω A cos (ω t) = (π/2) U cos (ω t) . (1)

U = 4A/T is selected as the characteristic velocity of the oscillating flow because it rep-
resents the average of the absolute value of 〈vx (y, z, t)〉y,z over an oscillation period (the
maximum mean velocity during a period is πU/2).

The cell is illuminated from below, and the relative concentration field C(x, y, t) is deter-
mined from images acquired by a digital CCD camera (Roper Coolsnap FX) located above
the cell as described by Roht et al. (2015), Boschan et al. (2007, 2008) and Charette et al.
(2007). C is the concentration of dye averaged over the gap H of the cell and divided by its
value for the pure dyed solution (C varies therefore between 0 and 1). The images used in the
following for the analysis are regions of interest of size 1250×152 pixels inside the full field
of the camera and correspond to a field of view of 305 × 37 mm (the resolution of the image
is 4.1pixels/mm). In order to reduce interpretation errors due to wall effects, two bands with
a width of 2.5 mm each are removed at both sides parallel to the flow of the image of the cell.
For each experiment, a set of 20 images is acquired during each oscillation. Typical maps
of the relative concentration at different times (starting with t = 0) are shown in Fig. 2a–c,
together with a profile of its variation with the distance x parallel to the flow (Fig. 2d).

For characterizing the heterogeneity of the model fracture, we performed experiments
(referred to in the following as ‘transmission” ones) in which the fluid flows always in the
same direction at a constant velocity. The tracer concentration is measured by the same optical
technique as for oscillating flows and is expected to follow the classical convection-diffusion
equation:

∂C
∂t

+ U
∂C
∂x

= D
∂2C
∂x2 . (2)

For a step like injection, the analytical solution is:

C(x, t) = 1
2



1 − erf



 x − x̄(t)
√

2 ∆x2(t)







 , (3)

where x̄(t) = Ut is the average front location and ∆x2 =
〈
(x − x̄)2〉 = 2Dt characterizes

the width of the front. For given values of the transverse distance y and of the time t , the
profiles C(x, y, t) have been fitted from Eq. (3) by adjusting the two parameters x̄(y) and
∆x2(y) using a least squares method. The averages of these two parameters with respect to
y provides the mean front location x̄(t) and the mean square width ∆x2(t).

A typical variation of ∆x2(t) with time is shown in the insert (a) of Fig. 3 (continuous line).
After an initial transient phase, ∆x2(t) increases globally linearly with time. The dispersion
coefficient D is equal to half the slope of this curve in an interval ∆t inside this long time
limit so that the dispersivity l trans

d (t) = D/U satisfies:
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Fig. 3 a Variation of ∆x2 with time t (continuous line) for a “transmission” dispersion measurement during
which the direction of the flow is kept constant (Pe = 18). Dashed line: linear fit at long times from which
the dispersivity l trans

d is computed by means of Eq. (4). b, c Variation of ltrans
d with Pe in linear coordinates

(b) and for a logarithmic horizontal scale (c). Dashed lines: fit with a linear variation of ltrans
d with Pe; dotted

lines: limiting value at Pe = 0. Error bars: see explanation in the description of the data analysis in Sect. 1

l trans
d (t) = ∆(∆x2(t))

2 U∆t
= ∆(∆x2(t))

2 ∆(x̄(t))
. (4)

Each experiment has been repeated three times for a same set of control parameters. The
corresponding values of ld are then averaged and plotted in the graphs. We estimated the
relative error by computing for each set of control parameters the maximum difference
between the corresponding values of ld and dividing by the mean value. For all data sets
± 15% has appeared as a maximum of the relative error and this value is, therefore, used
to estimate the errors in the rest of the paper. Error bars corresponding to these values are
shown in Fig. 3b, c.

The experimental variation of l trans
d with the Péclet number is shown in Fig. 3b, c. From

previous experiments in similar systems (Ippolito et al. 1994; Boschan et al. 2008) and taking
into account the fact that pure molecular diffusion is negligible, l trans

d /H may be expected to
vary with the Péclet number like:

l trans
d

H
= D

U H
= αG + αT Pe. (5)

The first term corresponds to the geometrical dispersion mechanism (ld = cst (Pe)) and the
second one to the Taylor dispersion one (ld ∝ Pe). A good fit of Eq. 5 with the experimental
values is obtained for αG = 1.10 ± 0.03 and αT = 0.0046 ± 0.001 (dashed lines in Fig. 3b,
c): geometrical dispersion is dominant (and ld ( cst (Pe)) for Pe ! 30 while Taylor
dispersion is dominant at higher Péclet numbers. One notes that the experimental value of
αT is close to the analytical value for flow between parallel walls (1/210 ( 0.00476).

In the following section, we report dispersion measurement results obtained with oscil-
lating flows and compare them to the above transmission measurements and to those of echo
experiments in which the fluid is first injected into the model and then sucked back at the
same absolute velocity.
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2 Experimental Results

2.1 Front Width Variations Induced by an Oscillating Flow

When the flow rate oscillates with a period T , the mean square front width ∆x2 still increases
globally linearly with time over long time intervals &t ) T , but oscillations are superim-
posed onto the linear trend (main graph and insert of Fig. 4). The mean front displacement
δx(t) varies sinusoidally with the motion of the pump (dashed blue curve in the insert); note
that the pump is set so that, at t = 0 or t = N T (N integer), δx(t) is maximum.

When the direction of the flow is reversed (both at t = T = 8 s and t = 3T/2 = 14 s), the
width ∆x2 of the mixing front starts to decrease after having increased before the reversal.
This shows that the interpenetration of the two fluids is reduced by the reversal of the flow
and is therefore partly reversible: this trend lasts for a quarter period or so (intervals 2 and 4).
Then, during interval 3 before the next reversal, ∆x2 increases again. These alternate zones
of positive and negative slope are visible at all distances in the main graph. The origin of
the partial reversibility is discussed in more detail in Sect. 2.3. By analogy with transmission
experiments, an oscillating flow dispersivity is defined by:

losc
d = ∆x2/2 xtr . (6)

Like for transmission experiments, this ratio varies with xtr , particularly at short distances
but reaches asymptotically a limit at large distances xtr . We study first the variation of this
limit with the experimental parameters, and the dependence of losc

d on xtr will be discussed
in Sect. 2.3.

2.2 Influence of Wall Roughness on Dispersion in Oscillating Flows

In order to investigate the influence of the obstacles on the characteristics of Taylor dispersion,
we first compare the present results to those for an Hele-Shaw cell with smooth walls (Roht
et al. 2015). Subsequently, we compare the variation with Pe of losc

d /H for oscillating flows to
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Fig. 4 Variation of ∆x2 with the travelled distance xtr for A = 8 mm and T = 8 s (U = 4A/T ∼ 4 mm s−1,
Pe = 4100 and τm/T = 54). Dashed red line: linear variation for losc

d = (1/2)∆x2/xtr = 0.121 mm

(ld/A = 0.0151). Insert: enlarged view of the variations with time of ∆x2 (continuous curve) and of the front
displacement δx(t) from its mean location (blue dashed curve). Vertical dotted lines: times corresponding to
(from left to right): t = 3T/4, T, 5T/4, 3T/2, 7T/4
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Fig. 5 Variation of the normalized dispersivity losc
d /A as a function of τm/T = H2/(Dm T ). Oscillating

flows of amplitudes: A = 2 mm ("); A = 4 mm (#); A = 8 mm (•); A = 40 mm ($). Solid lines: analytical
predictions (Watson 1983) in smooth fractures for the same values of A (the colors correspond to those of
the symbols). Dotted line: slope 1 for the Taylor regime. Dashed-dotted lines: slopes − 1 (Pe % 200) and
− 0.7 (10 ! Pe ! 70) for the partly reversible Taylor regime (analytical values). Dashed line: slope of the
trend of the experimental data (10 ! Pe ! 70). Horizontal dotted lines: geometrical regimes for A = 8 and
A = 40 mm. Error bars: see Sect. 1

the results of transmission dispersion measurements. We determine, in this way, the influence
of the oscillations on the geometrical dispersion at low Pe’s.

Partly Reversible and Classical Taylor Dispersion Regimes

For τm/T % 8, losc
d /A is predicted analytically (Watson 1983) and numerically (Roht et al.

2015) to decrease as τm/T increases unlike for classical Taylor dispersion (Fig. 5). In this
regime, the period T is too short compared to τm to allow for the diffusion of the tracer
across the gap, while the orientation of the flow remains the same. Tracer spreading is still
induced by the transverse velocity gradients inside the gap, but its partial reversibility after
flow reversals reduces ld . In this partly reversible Taylor dispersion regime, this result may
be retrieved by the following scaling argument (Roht et al. 2015). During a half period,
tracer diffuses over a transverse distance ∆z ∼ √

Dm T < H : multiplying by the transverse
velocity gradient estimated by A/(T H) and by the period T provides the order of magnitude
∆x ∼ A

√
Dm T /H of the irreversible increase in the local front width during the period

T . On the other hand, ∆x must also be of the order of
√

DT : which leads to the estimate
D T/A2 = ld/A ∼ (τm/T )−1.

From this prediction, in the case of smooth walls, the values of losc
d /A corresponding to

different amplitudes collapse onto a single decreasing trend for τm/T % 20 when plotted as
a function of τm/T (continuous curves in Fig. 5). We have plotted in this same figure the
data obtained in the present work for a rough fracture at different amplitudes: for τm/T % 3,
these points collapse onto a curve similar to the theoretical predictions but with 20% lower
values. The slope of this curve is: − 0.65 ± 0.05 (dashed line) in the range 10 ! Pe ! 70 to
be compared with − 0.7 for the analytical curves.

Geometrical Dispersion Regime

For τm/T ! 0.7, instead, losc
d /A no longer follows these analytical predictions for A = 8

and 40 mm: we discuss now this new regime. Figure 6 compares the dispersivities losc
d from
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Fig. 6 Variations of ld/H as a function of the Péclet number Pe = U H/Dm for transmission, echo and
oscillating flow experiments. Dark symbols: losc

d /H for oscillating flows of amplitudes: A = 2 mm (");
A = 4 mm (#); A = 8 mm (•); A = 40 mm ($). Error bars: see Sect. 1. Solid lines: analytical predictions
(Watson 1983) in fractures with smooth walls for the same values of A. Dotted horizontal lines: geometrical
dispersion regime for A = 8 and A = 40 mm. (+×) symbol: value of leco

d /H from echo measurements for
t = 2Tinv and xtr /d = 150 (see Sect. 2.3). (&) symbol: dispersivity l trans

d /H for transmission experiments.
Dashed line: adjustment of the transmission data by ltrans

d /H = αG + αT Pe with αG = 1.10 ± 0.03 and
αT = 0.0046 ± 0.0005

the same oscillating flow experiments as in Fig. 5 and l trans
d from the “transmission” experi-

ments discussed in Sect. 1: in order to make this comparison possible, losc
d /H is plotted as a

function of the Péclet number: Pe = U H/Dm = 4AH/(Dm T ). The analytical predictions
for oscillating flows between smooth walls (Watson 1983) are also plotted in the graph (con-
tinuous curves). Only data corresponding to the lower range of Péclet numbers are shown.
One observes for A = 8 and 40 mm, at the lowest Péclet numbers explored, a domain where
losc
d /H is constant with Pe (and, therefore, with T ). For A = 40 mm, losc

d /H = 0.72 ± 0.08
(20 ≤ Pe ≤ 200) and, for A = 8 mm, losc

d /H = 0.29 ± 0.04 (20 ≤ Pe ≤ 80). At lower
amplitudes A = 2 and 4 mm, the geometrical regime is not visible.

These results imply that Eq. (5) becomes:

losc
d (A, Pe)

H
= αG(A) + αT Pe, (7)

in which αG depends on the amplitude A (but not on T or Pe), while, from the previous
section, αT may still be assumed to be constant. The analytical curves of Fig. 6 display a
region of negative slope below Pe ( 10 corresponding to a dominant influence of pure
molecular diffusion for smooth fractures: all data obtained for oscillating were obtained at
higher values of Pe so that Eq. 7 remains valid. Figure 6 shows that, in the geometrical
dispersion regime, ld/H increases strongly with the amplitude A of the oscillations (this
effect will be discussed below).

2.3 Reversibility of Geometrical Dispersion and Large-Scale Heterogeneities

Echo Dispersivity Measurements

The lower value of the dispersivity losc
d compared to l trans

d suggests that there is a partial
reversibility of the dispersion with respect to the reversals of the flow during the oscillations.
This is reminiscent of “dispersion echo” measurements in 3D porous media in which tracer is
injected into the samples and then sucked back through the inlet where the tracer concentration
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Fig. 7 Variations of the mean square front width ∆x2 as a function of time for dispersion echo experiments
corresponding to Pe = 20 and to: Tinv = 400 s (green curve), Tinv = 1000 s (red), Tinv = 2000 s (brown)
and Tinv = 5000 s (blue). Two experimental curves are shown for each of the inversion times Tinv = 1000
and 5000 s in order to demonstrate the repeatability of the experiment. Black curve: transmission experiment
performed at Pe = 18. Dispersivities at Tinv (injection) and 2 Tinv (echo) are computed from the slopes of the
two dashed lines (shown for Tinv = 1000 s)

is measured (Hulin and Plona 1989). In these experiments, the relative values of the echo and
transmission dispersivities were shown to depend on the heterogeneities of the permeability
field.

In order to investigate the partial reversibility of the dispersion and its relation to flow
heterogeneities, we took such echo dispersion measurements in which the absolute flow rate
is constant with time and is the same in the injection and suction phases. The measurement
of the concentration is again taken optically, and the initial location of the front is the same
as for oscillating flow and transmission measurements. All these experiments are performed
at Pe = 20 (U ∼ 0.019 mm s−1) corresponding to the geometrical regime; we investigated
the influence of the amplitude of the displacement of the front by varying the duration Tinv
of the injection phase.

Figure 7 displays the variations of ∆x2 as a function of time in several echo experiments
corresponding to flow reversal times Tinv: the fluid is injected between t = 0 and Tinv and
sucked back between Tinv and 2Tinv. As expected, the variations corresponding to different
values of Tinv overlay well for t < Tinv and get separated with a lower value when t > Tinv. In
the injection phase, all curves remain close to that (in black) corresponding to a transmission
experiment (black curve) at a similar Péclet number (Pe = 18).

For Tinv = 1000 s (red curve), for instance, ∆x2 increases initially approximately linearly
before displaying an upward bump (pink shade) above t ∼ 2 Tinv/3. After the flow inver-
sion, this additional component disappears and one retrieves the initial linear trend above
t ∼ 4 Tinv/3. Therefore, at the time t = 2Tinv at which the front has moved back to its
initial position, the mean square width ∆x2(2 Tinv) reflects purely irreversible dispersion; for
t = Tinv, instead, ∆x2(Tinv) combines reversible and irreversible contributions. The corre-
sponding dimensionless dispersivities leco

d /d (&) and l inj
d /d (©) are plotted in Fig. 8 as a

function of the respective dimensionless travelled distances xtr/d = 2U Tinv/d and U Tinv/d .
Both l inj

d /d and leco
d /d increase with distance, as could be expected from the upward

curvature of the curves of Fig. 7. Moreover, leco
d /d is always significantly lower than l inj

d /d .

In view of the type of variation of leco
d /d an l inj

d /d with xtr and in spite of the small number
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Fig. 8 a ("): variations with 2A/d of the limiting value of losc
d /d at long times at Pe = 20. (©), (&)

and (•): respective variations of the dispersivities linj
d /d, leco

d /d and l trans
d with the dimensionless trav-

elled distance xtr /d. Dotted lines: fits by exponential variations: ltrans
d /d = 0.31 − 0.19 exp(−xtr /(18d)),

linj
d /d = 0.29 − 0.18 exp(−xtr /(25d)), leco

d /d = 0.17 − 0.13 exp(−xtr /(19.5d)) and losc
d /d = 0.215 −

0.20 exp(−2A/(20.8d)). Horizontal lines: limits of the dispersivities at large values of A/d and xtr /d. Error
bars: see Sect. 1. Dispersivity values losc

d plotted in the figure correspond to long time limits

of data points available, we attempted to determine a characteristic distance of this variation
by fitting it by an exponential relaxation toward an asymptotic value. The results of the fit
(see caption of Fig. 7) lead to characteristic distances, respectively, equal to xtr = 25 ± 5 d
and 19.5 ± 4 d (the relative error on the relaxation distance is of the order of ±20%).

As expected, the variation of l inj
d /d is similar to that of l trans

d /d (•). The difference between
the limiting values at the largest xtr (0.291 and 0.302) is within the error bars (see Sect. 1),
and the differences between their variations with xtr are also within these error bars except
for xtr ∼ 30 where they are slightly outside. Both values are significantly larger than the
asymptotic limit ( 0.17 d of leco

d . There remains therefore, even at large distances, a large

reversible contribution to dispersion which can be characterized by the ratio leco
d / l inj

d ( 0.65.
Comparing echo and transmission dispersion in heterogeneous and stratified porous media

(Hulin and Plona 1989; Leroy et al. 1992) provided similar results which were accounted
for by permeability heterogeneities of size larger than the characteristic microscopic length.
In order to determine whether such heterogeneities are present here, we estimate now the
velocity field from the time dependence of the tracer concentration distribution in the echo
experiments.

Flow Heterogeneities and Channelization in the Model Fracture

For estimating the flow field vx (x, y), we used the map, in the (t, y) plane, of the first moment
x̄(t, y) of the distribution of the tracers at a time t and a transverse distance y. For a pair
of values (t, y), the ratio (x̄(t + ∆t, y) − x̄(t, y))/∆t provides an estimation of the velocity
component vx at the time (t +∆t)/2 and at the point of coordinates ((x̄(t +∆t)+ x̄(t))/2, y).
Since the velocity component vx (x, y) is constant with time during either the injection or the
suction phase, one obtains, in this way, velocity maps for each phase. Such maps computed at
the end of the injection phase is shown in Fig. 9a, b for Tinv = 1000 and 2000 s, respectively.
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Fig. 9 Maps of the estimated local velocity component vx (see color scale) of the front at the end of the
injection phase (t = Tinv) of two echo experiments with Tinv = 1000 s (a) and 2000 s (b) (Fig. 7). Continuous
red curve at left of the maps: front contour at t = 2 Tinv. The scales in the x and y directions are different.
b Transverse profiles of the absolute front velocity component |vx | across the width of the cell at distances
x = 10 mm (c) and 24 mm (d) [vertical red dashed lines in (a) and (b)] during the injection (blue curve) and
suction (red curve) phases [respectively, for maps (a) and (b)]

The zones where data points are available are bounded to the left by the initial location of
the front and to the right by its contour at t = Tinv.

Figure 9a, b shows macroscopic regions of low velocity (in blue) and high velocity (in
yellow-red), with a width ∆W of the order of 10 mm marked, respectively, by troughs and
peaks in the geometry of the fronts. As expected, similar regions are found in graphs (a,b)
at distances ! 15 mm appearing in both graphs. Also, the amplitude of the troughs and
peaks of the front is significantly larger in graph (b) than in (a), due to its development.
These macroscopic spatial variations of the velocity are confirmed by the transverse velocity
profiles obtained at x = 10 and 24 mm and in Fig. 9c and d: the amplitude of these velocity
variations is comparable in both graphs. For a same value of Tinv, these profiles are also similar
in the injection and suction phases (blue and red curves): this supports the assumption of a
reversibility of the macroscopic flow structure. The continuous red lines at the left of maps
(a) and (b) correspond to the contour of the front at the end of the suction phase at t = 2 Tinv:
in both cases, although the lines are broader than the initial front (left border of colored area),
their width is smaller than at the end of the injection phase (right border).

The macroscopic high and low velocity channels observed in Fig. 9 induce large-scale
distortions of the displacement front which are partly reversible when the flow direction is
reversed. These channels may therefore account for the difference between l inj

d /d and leco
d /d

observed in the experiments. Similar channels were also observed in other types of model
fractures (Boschan et al. 2007) and put in evidence in natural fractures by field experiments.
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Fig. 10 Variation of the instantaneous dimensionless dispersivity ld/d = ∆x2(t)/(2xtr (t) d) as a function of
xtr (t) (continuous green line) for the oscillating flow experiment corresponding to Pe = 20 and 2A/d = 57.
(#) and ("): respective maxima and minima of the continuous curve. Horizontal dashed red lines: asymptotic
values at large xtr /d of l inj

d /d (upper line) and leco
d /d (lower line) in Fig. 8. Horizontal dashed green line:

asymptotic value of losc
d /d in Fig. 8. Error bars: see Sect. 1

Comparing Dispersivities in Echo and Oscillating Flow Experiments

The variations of leco
d /d and of losc

d /d , respectively, with xtr and 2A provide complementary
information on the influence of the distance explored by the front. In echo experiments,
indeed, the total distance travelled xtr is always twice the amplitude of the motion of the
front. In oscillating flows, instead, the travelled distance is 4 A N in which N is the number
of periods of oscillation: for a same Péclet number Pe and global amplitude 2A of the front
displacement, one may therefore still increase xtr by increasing N . The dispersivity losc

d /d for
N large enough to reach a constant asymptotic value of losc

d is plotted in Fig. 8 as a function
of the dimensionless parameter 2A/d (2A/d is used in the plot instead of A/d because it
represents the global displacement of the front).

The variation of losc
d /d with 2A/d is qualitatively close to those of leco

d /d or l inj
d /d with

xtr/d: it can be fitted by an exponential relaxation with a similar characteristic length (
20.5 d . The limiting dispersivity at long distances losc

d ( 0.215 d is intermediate between

leco
d and l inj

d .
A remaining important issue in the oscillating flow experiments is the influence of the

number N of oscillations on the dispersivity losc
d /d . It is analyzed in Fig. 10 by plotting

the local maxima (#) and minima (") of the variation of losc
d /d as a function of xtr . The

experiment is that corresponding to the rightmost (") symbol in Fig. 8. At short times, i.e.,
after one or two oscillations, the maximum and minimum values are quite different. They
are, respectively, of the same order of magnitude as l inj

d and leco
d for similar travelled distances

(red dashed lines). This was to be expected since the variation of the flow with time during
one period is similar to that during an echo experiment: however, this variation is a sine wave
instead of a square one which may account for the small differences of the values. At large
distances xtr the amplitude of the oscillations is reduced and the mean value (averaged over
a period) corresponds to that plotted in Fig. 8 (green horizontal dashed line).
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3 Discussion–Conclusion

The experiments discussed above have shown that dispersion in oscillating flows inside a
Hele-Shaw cell with obstacles is controlled by geometrical dispersion at low Péclet numbers
and by normal or partly reversible Taylor dispersion at high ones. The transition between
the two regimes takes place at a Péclet number increasing with the amplitude A of the
oscillations and the geometrical regime is only visible above a minimum amplitude A (∼
8 mm). In contrast to low Pe’s (no geometrical dispersion occurs in smooth cells), results at
high Pe′s % 200 are well accounted for by models and simulations developed for smooth
cells (Watson 1983). The agreement is better in the partly reversible Taylor and transition
regimes (τm/T % 3) where the dispersivities are only 20% lower than the numerical ones.
Classical, irreversible, Taylor dispersion is only fully established in smooth cells (Roht et al.
2015) for τm/T ! 2 and, in the present rough cells, only observable for A = 40 mm and
around τm/T ∼ 1.3. This implies that disorder introduced by the obstacles has only a small
influence on the different types of Taylor dispersion: their characteristics are indeed mostly
determined by the velocity profile and by transverse molecular diffusion which are both
weakly influenced by the roughness of the walls.

In the following, we discuss therefore only novel results obtained at low Péclet numbers
for which geometrical dispersion associated with the disorder of the velocity field (due to the
wall roughness) is dominant. Geometrical dispersion depends very much on the distribution
of the characteristic scales and spatial correlation of the flow heterogeneities induced by
the roughness (Bear 1972). Oscillating flows are particularly well suited to analyze such
structures because one can vary independently the amplitude A of the oscillations (i.e., the
distance explored along the mean flow) and their period T and number N . One may, for
instance, keep A constant while increasing the total distance travelled by the front.

A major issue in the interpretation of these measurements is the reversibility of tracer
or front spreading with respect to flow reversals. A similar problem has been investigated
previously in different porous media by means of echo dispersion measurements (Hulin and
Plona 1989) in which there is only one injection–suction cycle. The degree of reversibility may
be estimated by comparing the transmission and echo dispersivities (for instance for equal
durations Tinv of the injection and suction phases in order to have equal flow paths in both
directions). The result are very different depending on whether one deals with homogeneous
media (i.e., correlation length of the flow heterogeneities small compared to the sample size)
or with heterogeneous ones with large-scale heterogeneities. In the first case, transmission
and echo dispersivities become equal above a very short path length xtr (Rigord et al. 1990;
Borgne et al. 2013, 2015; Anna et al. 2014; Jha et al. 2006, 2009). In the present case, Fig. 9
shows that there are low- and high-velocity channels of macroscopic width ∆W % 10 mm
so that we deal with a strongly heterogeneous medium.

A simplified case of such heterogeneities is provided by media with strata of different
permeabilities parallel to the flow (Leroy et al. 1992); if there is no tracer exchange between
them, transmission dispersion is determined by the velocity contrasts between the strata and
is generally not Gaussian. The effect of the contrasts cancels out in echo experiments because,
at t > Tinv, the fluid particles follow backwards at the same velocity the same macroscopic
paths as for t > Tinv: then, the echo dispersivity is much smaller than the transmission one. In
real samples there is always some exchange between layers by transverse molecular diffusion
or dispersion which reduces the effects of the velocity contrast. Transmission dispersivity is
still larger than echo dispersivity, but the difference is smaller and depends on the transverse
size of the heterogeneities, the Péclet number and on transverse diffusion/dispersion. Such
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characteristics have been observed previously in model stratified media (Leroy et al. 1992)
and natural rock samples (Hulin and Plona 1989). In the present medium, the first oscillation
is equivalent to an echo experiment with Tinv = T/2. One observes indeed that the effective
dispersivity is much larger at t = T/2 than at t = T , as expected by analogy with the above
results.

An important additional feature of oscillating flow measurements is that they allow one
to enhance the effect of transverse dispersion or diffusion by increasing the number N of the
oscillations while keeping A constant. The variation with the travelled distance xtr = 4At/T
of the instantaneous dispersivity losc

d is shown in Fig. 10. In the injection and suction phase of

the first oscillation, one retrieves, as expected, values of the same order of magnitude as l inj
d

and leco
d , respectively. Then, the value of ld oscillates with an amplitude decreasing with the

distance and tends toward a constant value losc
d∞: it represents the final irreversible component

of dispersion after a large number of oscillations when transverse dispersion has allowed the
tracer to reach a quasi-stationary transverse distribution.

The present experiments show that tracer dispersion in oscillating flows provides a broad
variety of information on the mechanisms and degree of reversibility of dispersion. It is a
sensitive and powerful approach for characterizing the heterogeneity of porous media which
has very important practical applications to the study of pollutant propagation, chemical
reactions in catalytic beds or separation processes It complements other techniques such
as transmission and echo dispersion, for instance by using the number of oscillations and
their amplitude for investigating the influence of different heterogeneity scales and transverse
dispersion distances.

The model used in the present work is a simple representation of a rough fracture, and
the same measurement technique may be applied to natural 3D porous media, fractures
or milli- or microfluidic circuits. In small microfluidic circuits, oscillating allows one to
increase the residence time within these circuits (and their effectiveness) without increasing
their size. The present study has been restricted to the dispersion of a passive tracer, but
the oscillating flow technique can also be applied to the flow of reactive species. Interesting
issues are, for instance, the influence of oscillation on the dynamics of processes studied such
as biodegradation or sorption. Applications to the improvement in mixing processes are also
to be envisioned.
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