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A new type of flow-induced oscillation is reported for a tethered cylinder confined
inside a Hele-Shaw cell (ratio of cylinder diameter to cell aperture, D/h = 0.66) with
its main axis perpendicular to the flow. This instability is studied numerically and
experimentally as a function of the Reynolds number Re and of the density ρs of the
cylinder. This confinement-induced vibration (CIV) occurs above a critical Reynolds
number Rec ∼ 20 much lower than for Bénard–Von Kármán vortex shedding behind
a fixed cylinder in the same configuration (ReBVK = 111). For low ρs values, CIV
persists up to the highest Re value investigated (Re= 130). For denser cylinders, these
oscillations end abruptly above a second value of Re larger than Rec and vortex-
induced vibrations (VIV) of lower amplitude appear for Re ∼ ReBVK . Close to the
first threshold Rec, the oscillation amplitude variation as (Re− Rec)

1/2 and the lack
of hysteresis demonstrate that the process is a supercritical Hopf bifurcation. Using
forced oscillations, the transverse position of the cylinder is shown to satisfy a Van
der Pol equation. The physical meaning of the stiffness, amplification and total mass
coefficients of this equation are discussed from the variations of the pressure field.
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1. Introduction
Flow-induced oscillations of slender structures facing a flow are of interest in

many domains of engineering, such as the design of tubular structures of offshore
platforms, heat exchangers or chemical reactors (see e.g. Sarpkaya 2004; Williamson
& Govardhan 2004). Most previous experimental and numerical fundamental studies
often considered a rigid circular cylinder transverse to a fluid flow with no lateral
confinement and with only one degree of freedom perpendicular to both the flow and
to the axis of the cylinder (see e.g. Anagnostopoulos & Bearman 1992; Gabbai &
Benaroya 2005; Williamson & Govardhan 2008).

The present work deals, in contrast, with a tethered cylinder strongly confined
between two parallel plane walls: the confinement is characterized by the ratio
between the cylinder diameter D̄ and the cell aperture h̄ which is equal to 0.66. This
configuration corresponds to important recent applications at lower Reynolds numbers,
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such as the enhancement of mixing or heat exchange in microfluidic circuits (see
Meis et al. 2010) or the design of energy-harvesting devices on a chip (Sánchez-Sanz,
Fernandez & Velazquez 2009). It will be shown that, when the cylinder is sufficiently
confined, it oscillates spontaneously above Re ∼ 20 (where the Reynolds number Re
is defined using the mean velocity and the aperture h̄). This value is well below the
threshold for Bénard–Von Kármán vortex shedding (ReBVK = 111 for this particular
geometry). This result and the variation of the characteristics of the oscillations with
the control parameters imply that these oscillations – referred to in the following
as confinement-induced vibrations (CIV) – strongly differ from the vortex-induced
vibrations (VIV) studied by previous investigators. The latter usually considered dense
cylinders constrained elastically: their transverse position satisfies a forced damped
harmonic oscillator equation in which the driving force term is associated with the
fluctuating lift induced by vortex shedding.

Other recent studies have investigated related effects either at Reynolds numbers
below the vortex shedding threshold or for structures without a natural frequency.
In the first case, oscillations have been predicted numerically by Cossu & Morino
(2000) and Mittal & Singh (2005), but only if an external elastic restoring force
is present. In the second, Shiels, Leonard & Roshko (2001) considered a massless
cylinder with no restoring force: however, the Reynolds number was higher than here
(100) so that vortex shedding took place. Still, at high Reynolds numbers and with
no restoring force, experiments by Govardhan & Williamson (2002) demonstrated
that large-amplitude vibrations occur below a critical value of the mass; the same
observation was made by Horowitz & Williamson (2006) on transverse motions of the
trajectory of light cylinders rising in a stationary fluid.

The effect of a weak confinement has been studied numerically by Prasanth et al.
(2006) in the case where the fluid is allowed to slip at the walls, and by Lazarkov
& Revstedt (2008) in the no-slip case. In the latter study, a slight amplitude decrease
and a large frequency variation were observed. In a recent work, Sánchez-Sanz &
Velazquez (2009) investigated numerically the effect of the confinement by studying
the displacement of a square cylinder strongly confined between two parallel walls
(ratio between the side of the cylinder and the distance between walls equal to 0.4).
Regular oscillations are observed for dense enough cylinders and are accounted for by
vortex shedding; below a critical mass, there is a second regime in which the motion
is highly irregular with a near-continuum spectrum. No quantitative interpretation of
these results was attempted, however.

The present study is focused on a thorough experimental and numerical description
and modelling of the instability of a tethered circular cylinder in a strongly confined
Hele-Shaw cell geometry and at Reynolds numbers below the vortex shedding
threshold. The experimental setup is described in § 2 and the numerical procedure in
§ 3. The characteristics of the oscillations, in both the permanent and transient regimes,
are discussed in § 4. A convenient approach for analysing the onset of the oscillations
is to use a simple dynamical model with a small number of parameters: in § 5, the
force on the cylinder is determined as a function of the transverse position of the
cylinder and its derivatives, for forced oscillations. In § 6, this expression of the force
is used to show that the transverse position of the cylinder satisfies a nonlinear Van der
Pol equation when it is free to oscillate. This approach provides a good understanding
of the permanent and transient regimes and of the influence of the control parameters
(Re and cylinder reduced density ρs) on their occurrence. Still, for free oscillations,
the domains of observation of the two types of oscillations (CIV and VIV) in the
(Re, ρs) plane are determined and the variations of their frequency f and amplitude A
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FIGURE 1. Schematic view of the experimental setup.

with Re and ρs are discussed. Finally, § 7 is devoted to the physical interpretation of
the dynamical parameters defined in the Van der Pol model: the coexistence of viscous
and inertial effects is found to have a key influence on the onset of the oscillations.

2. Experimental setup
The experimental setup is shown in figure 1: it consists of a Hele-Shaw cell made

of two transparent parallel Plexiglas plates, inside which a fluid flows vertically
downwards. The lateral sides of the cell are also transparent, allowing for the
visualization in the gap of the cell. It has a constant aperture h̄ = 4.9 ± 0.1 mm and
width W̄ = 90± 0.1 mm. Note that, in this article, dimensional variables are displayed
with an overbar (W̄, h̄, . . .) in contrast with dimensionless ones.

A Plexiglas cylinder of diameter D̄= 3.2± 0.1 mm is placed horizontally in the gap.
Its density ρ̄s = 1190 kg m−3 is close to that of water in order to reduce buoyancy
effects (see § 4 for a detailed discussion of the gravity effects). In order to minimize
the bypass flow at the ends of the cylinder, its length L̄ is almost equal to the width of
the cell (L̄/W̄ > 0.98) (see Semin, Hulin & Auradou 2009). The ends of the cylinder
are attached by nylon threads of diameter 0.1 mm to a fixed suspension point located
close to the inlet (see figure 1). The constant distance between this point and the
cylinder is L̄s = 150 mm, i.e. much larger than the aperture h̄ of the cell. The cylinder
can only translate along the y direction and rotate around the x axis. The influence
of the length of the threads has been tested by performing a few experiments with
L̄s = 65 mm.

The motion of the cylinder in the aperture of the Hele-Shaw cell is analysed by
a Pixelink computer-controlled video camera at a constant frame rate of 22 frames
per second (the resolution is 20 pixels mm−1). The displacement of the centre of
the cylinder is determined using the method of virtual image correlation (see Semin,
François & Auradou 2011). A virtual image of a disc is first created, with a radius



348 B. Semin, A. Decoene, J.-P. Hulin, M. L. M. François and H. Auradou

x

y

h D
U y

FIGURE 2. Schematic two-dimensional representation of the numerical configuration.

larger than the one of the cylinder in the experimental image and with a grey level
varying continuously from 1 (maximal value) at the centre to 0 at its border. The
location of the centre of the cylinder is then assumed to correspond to that of the
virtual disc when the correlation between the experimental image and the virtual image
is optimal. In some experiments, a second video camera was placed on the other
lateral side of the cell to verify that the axis of the cylinder remains parallel to the
z axis. The absence of rotation around the cylinder axis z has also been verified by
observing the motion of defects of the cylinder end.

The fluid is sucked at the bottom of the cell at a constant flow rate by a gear pump
(Ismatec MCP-Z) and is then reinjected into the open bath at the top. The flow rate of
the pump varies slowly with the counter pressure and can be considered as constant
due to the small pressure drop in the present setup; moreover, no oscillation of the
level of the free surface of the upper bath is observed. The mean flow is perpendicular
to the axis of the cylinder (x direction) and the maximal flow rate is 500 ml min−1.
Two fluids are used: water and an aqueous solution containing 1 g l−1 of natrosol.
The fluids have the same density but different viscosities. The viscosity of water was
estimated using a temperature measurement and tabulated values (see Weast & Astle
1982), and is equal to µ̄ = 0.88 ± 0.05 mPa s. A Contraves low shear 30 viscosimeter
was used to measure the viscosity and to check the Newtonian nature of the natrosol
solution. In the range of shear rates accessible by the rheometer, i.e. 1–100 s−1, the
viscosity was found to be constant and equal to µ̄ = 1.28 ± 0.05 mPa s. In order to
increase the optical contrast between the fluids and the transparent cylinder, a small
amount of dye (nigrosin, 0.1 g l−1) is added to the fluids.

3. Numerical procedure
The velocity and pressure fields as well as the forces on the cylinder were computed

by two-dimensional numerical simulations. A schematic view of the numerical
configuration is shown in figure 2.

The fluid is modelled using the incompressible Navier–Stokes equations with no-slip
boundary conditions on the walls and on the surface of the cylinder (reduced to a
disc in these two-dimensional simulations). A parabolic, constant-in-time, Poiseuille
velocity profile is imposed at the inlet and a stress-free condition at the outlet. In most
simulations, the motion of the cylinder is restricted to a rigid-body translation in the y
direction: it is then determined by the component along y of Newton’s second law. In
a few simulations, threads with a finite length (L̄s = 150 mm) have been modelled in
order to evaluate the influence of L̄s: this case will be discussed later.

These equations are solved in a strongly coupled way, using a method similar
to the one developed by Janela, Lefebvre & Maury (2005) and Lefebvre (2007).
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FIGURE 3. Circles: experimental variation of the transverse coordinate ȳ of the centre of the
cylinder as a function of time for two different Re: (a) Re = 25 and (b) Re = 50. Continuous
line: fit of the experimental variation by a sine wave. Horizontal dotted lines: maximum
possible amplitude of the oscillation (cylinder coming into contact with the walls).

In order to take suitably into account the fluid–cylinder coupling, a single variational
form is written on the whole domain, including both the fluid and the cylinder. The
constraint due to the rigid motion of the cylinder is handled by penalty, and that
due to the suspension threads by duality (the Lagrange multiplier corresponds to the
thread tension). In order to deal with the moving rigid domain, the problem is written
in an arbitrary Lagrangian–Eulerian formulation (see Hirt, Amsden & Cook 1974).
The advection term is treated using a method of characteristics (see Maury 1996),
and the variational problem obtained is solved by means of the finite element solver
FreeFem++ (see Hecht et al. 2010).

The aperture h̄, the mean velocity of the fluid Ū and the density of the fluid ρ̄f

are used to define the Reynolds number Re = ρ̄f Ūh̄/µ̄ and to make the equation and
the results dimensionless: the dimensionless diameter D is, for instance, equal to the
ratio D̄/h̄, and the dimensionless cylinder density ρs is the ratio of the density of
the cylinder to the density of the fluid. The dimensionless frequency f is defined by
f = f̄ h̄/Ū and is equal to the Strouhal number of the phenomenon when h̄ is used as
the characteristic length.

The size of the domain in the direction of the flow ranges from x = −5h to
x = 7h and it contains more than 6000 nodes. In order to describe the shape of the
cylinder and its evolution in time accurately, the mesh exactly follows the motion
of the cylinder along the y direction. Inside the fluid domain, the mesh is subjected
to a displacement that satisfies the right boundary conditions and ensures the non-
degeneration of mesh cells.

4. Observation and characterization of the instability
Experimentally, when the flow rate is progressively increased from zero, the cylinder

remains in a stable position half-way between the walls. Then, for a Reynolds number
Re above 20, it starts to oscillate spontaneously in the y direction with its axis
remaining parallel to z. Figure 3 displays the experimental variation with time of the
location ȳ of the axis of the cylinder. The oscillation is regular and stable, and well
fitted by the sine function

ȳ(t)= Ā sin(2πf̄ t + ϕ), (4.1)
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FIGURE 4. Dimensionless amplitude A and frequency f measured experimentally and
numerically at ρs = 1.19: experiments using water (◦); experiments using an aqueous
natrosol solution (�); numerical results (solid line); and maximal possible amplitude of the
oscillations (dotted line).

where Ā and f̄ are the amplitude and frequency of the oscillation (the phase ϕ takes
any value depending on the time origin). Even for Re well above 20 (see figure 3b),
the oscillation is still accurately fitted by a sine wave. The same fit is also valid for the
numerical results.

An important issue is the influence of the suspension threads. In order to determine
this, we first compared the results of experiments performed using threads with the
usual length, L̄s = 150 mm, and with a smaller one, L̄s = 65 mm. The measured values
of the frequency of the oscillation in the two cases differed by less than 5 % and
their amplitude by less than 10 %. As a second test, we compared the results of
our usual numerical simulations, in which the cylinder can only translate in the y
direction, to those using a more realistic model, including a 150 mm long thread
with a fixed upstream end point. The difference between the frequency and amplitude
values obtained using these two types of computations is only 6 % at Re= 20. In both
cases, the influence of the threads decreases when Re increases. These results confirm
the minor influence of the suspension threads in the range of Reynolds numbers of
interest (Re> 15).

Figure 4 displays the variations of the dimensionless amplitude and frequency (or
Strouhal number) of the oscillations as a function of Re. The experimental normalized
measurement results obtained with the two fluids of different viscosities collapse onto
a single curve: this confirms the hypothesis that the Strouhal number depends only
on the Reynolds number Re. The numerical threshold and frequency (solid lines in
figure 4) also agree within 25 % with the experimental measurements without requiring
any adjustable parameter. This difference may be partly accounted for by the three-
dimensional effects: the shearing of the thin fluid layer between the lateral wall and
the end of the cylinder results in a viscous force on the latter. Drag forces (along y)
on the suspension threads may also influence the dynamics of the cylinder. Pendular
effects due to gravity and drag on the cylinder only account for a small part of this
discrepancy, as discussed in the previous paragraph.

For the density of the cylinder ρs = 1.19 corresponding to the experiments, the
amplitude of the oscillations increases steeply with Re above the threshold and then
tends towards a constant value due to the presence of the walls (for other densities,
see figure 13). The Strouhal number decreases weakly with Re, which corresponds to a
nearly linear increase of the dimensional frequency f̄ with the mean flow velocity (or
equivalently with the flow rate).
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FIGURE 5. Time variation of the displacement y in the transient regime. Experiments: (a) Re
is reduced from 27 to 17 at t = 0; (b) Re is increased from 17 to 27 at t = 0. Numerical
simulations: (c) Re = 14; (d) Re = 22. The horizontal dotted lines represent the maximal
possible amplitude. The grey dotted lines in (c) and (d) correspond to a fit with (4.2).

The dynamics of the instability has been investigated by decreasing or increasing
the flow rate (and therefore Re) stepwise and studying the subsequent transient regime
(see figure 5a,b). Equivalent information is obtained from the numerical simulations
by assuming that the cylinder is released from an off-centre position at a Reynolds
number Re < Rec (see figure 5c) or in the mid-plane of the cell for Re > Rec (see
figure 5d).

Below Rec, damped oscillations of the cylinder are observed and it finally comes
to rest half-way between the walls. At a Reynolds number larger than Rec, the
cylinder oscillates spontaneously with an amplitude increasing initially with time
before reaching a constant value. In the experiments, there is, in addition, a small
(still unexplained) overshoot at the end of the initial phase (see figure 5b).

When the amplitude is small (i.e. less than 10 % of the aperture), the variation of y
during the initial phase during which the amplitude varies can be fitted by

y(t)= A0 sin(2πflt + ϕ) exp(ξ t), (4.2)

in which fl and ξ are, respectively, the frequency in the linear regime and the growth
rate. The coefficients A0 and ϕ depend on the choice of the time origin and have no
physical meaning.

The variations of the parameters fl and ξ as a function of the Reynolds number
have been obtained from the numerical simulations described above and are shown
in figure 6 (as O symbols). The frequency fl is almost independent of Re, while the
growth rate increases monotonically with Re from negative to positive values. These
different features show that, close to Rec, the system can be considered as a weakly
nonlinear oscillator with a well-defined instability threshold.



352 B. Semin, A. Decoene, J.-P. Hulin, M. L. M. François and H. Auradou

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

fl

2220181614

Re
2220181614

Re

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4(a) (b)

FIGURE 6. Variation of (a) the frequency of the transient regime fl and (b) the growth
rate ξ of the free oscillations as functions of Re as obtained from numerical simulations:
direct simulation of free oscillations (O); values deduced from the characteristics of forced
oscillations (N). The vertical dashed line shows the resonance frequency. Density of the
cylinder ρs = 0.01.
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FIGURE 7. (Colour online available at journals.cambridge.org/flm) Comparison of
visualizations from (a) the side of a fixed cylinder and (b) the side of a tethered cylinder
free to oscillate, placed in a flow (from left to right in both panels) perpendicular to their axis,
with respective Reynolds numbers (a) Re = 60 and (b) Re = 50. The axis of the cylinders is
perpendicular to the figure and the flow is illuminated by a laser sheet. Fluorescent dye is
injected upstream of the cylinder.

The best-known mechanism of flow-induced oscillations in open geometries is the
Bénard–Von Kármán vortex shedding instability. The possibility of its occurrence
has been tested in the present case by keeping the cylinder at a fixed position and
visualizing the flow by means of a fluorescent dye injected in a half-section. In
figure 7 by means of such visualizations we compare flows behind a fixed and a free
cylinder at similar Reynolds numbers Re ∼ 50–60 > Rec: no perturbation of the flow
is visible behind the fixed cylinder, while distortions of the dye streaks due to the
oscillations are clearly visible in the second case.

Actually, for experiments using fixed cylinders, flow oscillations only occur above
a threshold Reynolds number ReBVK = 120 ± 10. Numerically, the corresponding
threshold is equal to 111, which is similar to the value ReBVK = 116 inferred from
the interpolation of the numerical data obtained by Chen, Pritchard & Tavener (1995).
The confinement therefore significantly increases the threshold of the Bénard–Von

http://journals.cambridge.org/flm
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function of the frequency f obtained from numerical simulations of the forced oscillations of
the cylinder. The slope of the thick straight line is 2. The dashed lines are guides for the eyes
(horizontal, values 0 and π of the phase; vertical, resonance frequency). The amplitude of the
forced oscillations is A= 5× 10−4 and Re= 20.

Kármán instability compared to the classical value of 47 in open flows; this confirms
previous results by, for instance, Shair et al. (1963), Zovatto & Pedrizetti (2001) and
Rehimi et al. (2008). To conclude, ReBVK is much larger than the threshold values
Rec ∼ 20 measured here; in §§ 6 and 7 we confirm that the instability is not due to
vortex shedding.

5. Dynamical system approach in forced oscillations regime
In this section, we use a dynamical system approach to account for these

observations. More precisely, we establish a differential equation satisfied by y and
depending on a small number of parameters: these are determined by the results of
numerical simulations of forced oscillations at different frequencies. This technique
has been widely used both experimentally (see e.g. Carberry, Sheridan & Rockwell
2005; Morse & Williamson 2009) and numerically (see e.g. Leontini et al. 2006;
Placzek, Sigrist & Hamdouni 2009). Practically, the displacement of the centre of
the cylinder is forced to vary sinusoidally with time (y(t) = A sin(2πft)) and the
simulations allow one to compute the total hydrodynamic lift force Fy(t) on the
cylinder (Fy is actually a force per unit length since the simulations are performed
in two dimensions). All numerical simulations are performed at the same Reynolds
number Re= 20 (slightly above the numerical value of Rec).

5.1. Force response to a small-amplitude excitation
We first study the case in which the amplitude A is small enough (5× 10−4) to remain
in the linear regime. In this case, the lift force Fy also varies sinusoidally, with

Fy = F1 sin(2πft + φ1). (5.1)

The phase φ1 is chosen such that F1>0. The variations of the amplitude F1 and of the
phase φ1 of the force Fy as a function of the frequency f are displayed in figure 8.
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In the low-frequency limit, the instantaneous lift force Fy tends towards that of
a fixed cylinder at the same location. The limiting value φ1 = π of the phase (see
left-hand side of figure 8) implies that, for small amplitudes A, Fy is in a direction
opposite to the displacement and proportional to it. In this case, the relation between
Fy and y may be written as

Fy =−ky. (5.2)

The parameter k represents the effective stiffness of the system and its value deduced
from the numerical simulations is equal to 95. Figure 9 displays the variation of Fy

with y obtained from a set of simulations for a fixed cylinder: it confirms the above
results and shows that (5.2) is valid up to y ∼ 2 × 10−2 (vertical lines). For larger
displacements, the modulus of the force levels off and then decreases.

In the opposite high-frequency limit, F1 is approximately proportional to f 2 (thick
solid line in figure 8) while the phase shift φ1 becomes zero. In the linear regime, Fy

is therefore proportional to the second derivative of y, i.e. to the transverse acceleration
of the cylinder, with

Fy =−maÿ. (5.3)

The proportionality coefficient ma in (5.3) represents an added mass associated with
the kinetic energy of the fluid; ma is related to F1 and A by F1 = ma (2πf )2 A. Using
a regression on the last four high-frequency points in figure 8 leads to ma = 0.68 or
equivalently to an additional density ρa = 2.0.

The mass and stiffness force terms do not induce any net exchange of energy
between the flow and the cylinder: the average over one period of the product of either
of these terms with ẏ (representing the mean power exchanged) is indeed equal to
zero. If no other term is present, the phase φ1 can only be equal to 0 or π, which
is not in agreement with figure 8: additional dissipative force terms must therefore be
introduced. A natural choice is to add a term proportional to the velocity ẏ. We assume
therefore the following expression for the global lift force:

Fy =−maÿ− α0ẏ− ky. (5.4)



New oscillatory instability of a confined cylinder in a flow 355

1.0

0.5

0

–0.5

(× 10–3)
706050403020100

A

FIGURE 10. Variation of the amplification coefficient α with the amplitude A of a forced
oscillation of the cylinder: numerical simulation results (N) and parabolic fit (solid line).
Oscillation frequency f = 1.46 and Re= 20.

The coefficient α0 is determined by equating the expressions of the average energy
exchange over one period deduced from (5.4) and (5.1). One obtains

α0 = F1

2πfA
sin(φ1), (5.5)

in which F1 and φ1 are given by the simulations of forced oscillations. The sign of α0

is therefore the same as that of sin(φ1) and characterizes the stability of the system.
For α0 > 0, the energy of the cylinder increases during one period (unstable case),
while, for α0 < 0, it loses energy (stable case). In the phase variation curve in figure 8,
one sees that sin(φ1) (and therefore α0) is negative at high frequencies (above f ∼ 1.4)
and positive at lower ones.

5.2. Force response to a large-amplitude excitation

As the amplitude A is increased, the response of the lift force becomes nonlinear
and (5.4) is no longer valid. In order to analyse its variation with time, the force is
decomposed into a Fourier series,

Fy(t)=
∞∑

q=1

Fq sin(2πqft + φq), (5.6)

in which the phases φq are chosen so that Fq>0.
As for the linear regime, the coefficient α generalizing α0 is estimated numerically

by computing the average power transferred to the cylinder over one period. Using
the decomposition of Fy into a Fourier series leads to α = (F1/2Aπf ) sin(φ1). The
variation of α with A, determined by numerical simulations for a fixed frequency, is
displayed in figure 10 and is well fitted by

α = α0 − (β/4)A2, (5.7)
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in which α0 is the value in the low-amplitude regime. The force term α0ẏ of (5.4) then
becomes, still for sine-wave forced oscillations,

Fy = (α0 − βy2)ẏ. (5.8)

At different frequencies, the variation of α with respect to the amplitude A is similar:
in all cases, the coefficient characterizing the gain of energy decreases with the
amplitude up to a critical value above which energy must be input externally to keep A
constant.

As the amplitude A increases, the stiffness k also varies. Figure 9 shows that,
outside the linear domain sketched by the two vertical dotted lines, the effective
stiffness k decreases with A. However, this variation is small enough to change the
dynamics of the cylinder quantitatively but not qualitatively. We verify in the following
sections that the characteristics of the oscillation are well approximated by assuming a
constant stiffness k in the following sections.

6. Free oscillations
6.1. Equation of motion of a free cylinder and Van der Pol oscillator

For a free cylinder, the global hydrodynamic force Fy on the cylinder is related to its
acceleration ÿ by Newton’s second law:

msÿ= Fy. (6.1)

Moreover, the relations (5.4) and (5.8) between Fy and the displacement y and its time
derivatives remain valid. Equation (6.1) then becomes

(ma + ms)ÿ− (α0 − β (y)2)ẏ+ ky= 0, (6.2)

which shows that the transverse position y of the cylinder satisfies the classical Van
der Pol equation (see e.g. Nayfeh & Mook 1995; Manneville 2004). Close to the
threshold, the oscillation is quasi-sinusoidal. The frequency fl and the growth rate ξ of
the oscillations predicted by (6.2) are then related to its parameters by

fl = 1
2π

√
k

ma + ms
(6.3)

and

ξ = α0

2(ma + ms)
. (6.4)

Note that, owing to the influence of the mass ms of the cylinder, the frequency fl of the
free oscillations is lower than the resonance frequency fr = √(k/m)/(2π) for forced
oscillations and decreases with ms.

The frequency fl and the growth rate ξ can then be predicted by using in (6.3)
and (6.4) the values of k, ma and α0 deduced in § 5 from the simulations of forced
oscillations. These values are compared in figure 6(a,b) to those obtained from direct
simulations of free oscillations in transient regimes (see figure 5c–d). The two sets of
values are in good agreement without requiring any adjustable parameter; this confirms
the validity of the above description.

In the Van der Pol equation, the sign of α0 determines whether the system tends
towards a fixed point or a limit cycle in the permanent regime: if α0 < 0, the
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FIGURE 11. Amplitude of the free oscillations in the stationary regime as a function of Re
for ρs = 0.01: numerical simulation results for free oscillations (O); predictions of (6.5) from
the Van der Pol equation (N); and fit by a square-root variation (solid line).

cylinder remains motionless half-way between the walls, and if α0 > 0, it oscillates
spontaneously. In this latter case, the amplitude A of the oscillation is then limited by
the nonlinear term −β (y)2 ẏ of (6.2). In the quasi-sinusoidal stationary regime, A is
given by

A= 2
√
α0/β. (6.5)

Like fl and ξ , the amplitude may therefore be computed by using in (6.5) values
of α0 and β obtained from numerical simulations of forced oscillations. In the same
range of Reynolds numbers as above, these values have a similar variation as those
corresponding to free oscillations (figure 11). Above the threshold, the variation of A is
well fitted by a variation proportional to

√
Re− Rec.

Overall, the free oscillations of the cylinders display several clear-cut features: weak
variation of the frequency near Rec, continuous increase of ξ from negative values
below Rec to positive ones above, and amplitude increasing as

√
Re− Rec. These

features are all characteristic of a supercritical Hopf bifurcation, which is the usual one
for a system described by a Van der Pol equation.

The expressions of the frequency, growth rate and amplitude given above are only
valid in the quasi-sinusoidal regime. It is possible to verify that the oscillations are
quasi-sinusoidal directly from the Van der Pol equation, by computing the quality
factor Q = 2πfrma/α0. Near the threshold, the quality factor is very high (Q = 23
at Re = 20) as expected and the oscillation is quasi-sinusoidal at the frequency fl

in both the transient and permanent regimes. For Re farther from the threshold, the
quality factor decreases (Q = 2.4 at Re = 30) but remains large enough to obtain
quasi-sinusoidal oscillations.

It must finally be pointed out that the Van der Pol equation involves directly the
transverse displacement y from equilibrium and its first and second time derivatives
instead of a typical velocity of the wake as e.g. in the study of vortex-induced
vibrations by Facchinetti, de Langre & Biolley (2004).
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FIGURE 12. Variation of the amplitude F1 (•) and the sine of the phase φ1 (�) of
the hydrodynamic force as a function of the forced oscillation frequency f at different
Reynolds numbers Re: (a) Re = 14, (b) Re = 16.5, (c) Re = 30 and (d) Re = 50. Amplitude
A= 5× 10−4.

6.2. Influence of the mass of the cylinder on the stability of the free oscillation
As mentioned above, a free cylinder oscillates spontaneously at the frequency

fl = √k/(ma + ms)/(2π) only if α0 > 0 (or equivalently sin(φ1) > 0). The range of
values of Re for which this condition is satisfied and its dependence on ms (or
equivalently ρs) may be inferred from figure 12, representing sin(φ1) as a function of
frequency at different Reynolds numbers.

For Re = 14 (figure 12a), sin(φ1) is always negative even if the frequency fl is
shifted towards lower values by increasing the mass ms: the cylinder therefore remains
at rest regardless of ms.

For Re = 16.5 (figure 12b), one still has sin(φ1) < 0 at fr, and thus a massless
cylinder does not oscillate. However, when fl is reduced by increasing ms, sin(φ1)

becomes positive and the oscillations appear. This means that the increased inertia of
denser cylinders reduces the threshold Reynolds number Rec.

Increasing again Re to 20 (figure 8) or 30 (figure 12c), sin(φ1) is positive at all
frequencies lower than fr: the cylinder oscillates regardless of its density.

For Re = 50 (figure 12d), sin(φ1) is positive for f = fr and negative at low
frequencies. In contrast with case (b), dense cylinders remain stable while the massless
one oscillates.

6.3. Free oscillation regime map as a function of ρs and Re
In view of the above results, a systematic study of the variations of the amplitude
and frequency of the oscillations has been performed over a broad range of values of
Re (0 < Re < 130) and of relative density ρs (0 < ρs < 15). The results are plotted in
figure 13(a,b).
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FIGURE 13. Influence of the mass of the cylinder on the variation of (a) the amplitude and
(b) the frequency (only defined if the amplitude is not vanishing) of the free oscillations as
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possible amplitude. Also shown is the frequency of the instability of the flow downstream of a
fixed cylinder (•).

At all values of the density ρs investigated, the CIV appear at a low critical
Reynolds number Rec decreasing slowly from 19 to 15 as ρs varies from 0 to 15.
Right above the threshold Rec, the frequency f decreases with Re and then becomes
almost constant. As could be expected from (6.3), the frequency f at the threshold
increases at low values of ρs. The amplitude rises as

√
Re− Rec right above the

threshold in a similar way for all densities.
Consistently with the results of § 6.2, for large densities ρs (symbols 4, +

and �), CIV disappear above a value of Re decreasing as ρs increases. If Re is
increased further, the cylinder oscillates again slightly below the critical value ReBVK
corresponding to the appearance of vortex shedding (ReBVK ∼ 111 for this geometry).
The amplitude of the latter oscillations is very small (A < 0.01), and the frequency is
almost independent of the density and equal to the frequency of the vortex shedding
behind a fixed cylinder. This indicates that these oscillations are not of the CIV type
but are due to vortex shedding.
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For small densities, i.e. approximately for ρs < 4, the variations of both A and f
with Re are continuous. No feature of the corresponding curves in either figure 13(a)
or 13(b) suggests an influence of vortex shedding; for example, f differs from the
frequency behind a fixed cylinder. For such values of ρs, we conclude that the CIV
mechanism is dominant even at Reynolds numbers high enough for the occurrence of
VIV.

The phase diagram of figure 14 displays the different behaviours of the cylinder
observed as a function of Re and ρs. For densities ρs > 4, CIV and VIV were observed
in distinct domains: these are separated by a region of width 1Re increasing with ρs

and inside which there are no oscillations. For ρs < 4, only CIV occurred. For ρs = 4,
the oscillations shifted abruptly from the CIV to the VIV regime as Re increased.

7. Hydrodynamic interpretation of the dynamical parameters of the instability
Equation (6.2) accounts well for the growth (or decay) of the oscillations with time

and for the relation between measurements on forced and free oscillations. However,
this global dynamical system approach does not provide information on the physics
of the flow at the local scale. In this section, we investigate the relation between the
coefficients of the equation and the characteristics of the flow field.

7.1. Origin of the stiffness coefficient
The stiffness coefficient – defined by (5.2) – characterizes the restoring force exerted
on a fixed cylinder away from the centre of the Hele-Shaw cell. As seen in figure 9,
the total force Fy is mainly due to the pressure component: its value can be interpreted
from the pressure field displayed in figure 15 for Re = 20. The pressure variation is
particularly important in the region separating the cylinder and the walls, referred to as
channels in the following.

For Re = 1, there is a fore–aft symmetry of both the velocity and the pressure
gradient (see figure 15a,b) because the viscous effects are dominant. Owing to this
symmetry, the lift force Fy vanishes (almost), regardless of the position of the cylinder
in the gap. This is no longer the case for Re = 20 (see figure 15c,d). In that case, the
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FIGURE 15. (Colour online) Numerical simulation of the flow (from left to right) around a
fixed cylinder at (a,b) Re = 1 and (c,d) Re = 20. In (a) and (c) the colour bar (greyscale)
represents the velocity component vx; and full lines are streamlines. In (b) and (d) the colour
bar (greyscale) represents the pressure field.

pressure on the surface of the cylinder is higher in the upper (narrower) channel than
in the lower (larger) channel, for all values of x (between −D/2 and D/2). As a result,
the global resultant force is non-zero and oriented downwards: it acts as a restoring
force, in agreement with figure 9.

Because the pressure is almost uniform upstream and downstream of the cylinder,
the higher pressure at a given x in the upper (narrower) channel can be explained by
the fact that the pressure gradient is more symmetrical about the axis x = 0 in this
latter channel. The asymmetry along y in a channel is indeed due to inertial effects,
and is more pronounced when Re increases. The local Re is significantly higher in the
lower (larger) channel than in the upper (narrower) one due to larger local width and
velocity, which explains the observed pressure field at Re= 20.

At lower values of the dimensionless diameter D, the result might have been
different as shown by Zovatto & Pedrizetti (2001) for D = 0.2. In this case, a
contribution to the force due to the curvature of the velocity profile leads to two
symmetrical additional equilibrium positions that are not in the mid-plane between the
walls.

7.2. Added mass
Forces proportional to the acceleration of a solid body in a fluid are classical in
fluid dynamics. Such forces are partly due to the acceleration of the fluid, and are
thus observed even in irrotational flows. For an irrotational fluid without base flow,
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FIGURE 16. (Colour online) Maps of the pressure perturbation δp(x, y) induced by an
upwards motion of the cylinder at a velocity ẏ = 0.013, as a function of Re (from numerical
simulations of forced oscillations at f = 0.2): (a) Re = 1, (b) Re = 20, (c) Re = 50, and
(d) Bernoulli’s pressure difference term for Re= 20.

the additional density can be estimated numerically, and is equal to ρa = 1.44 at
y = 0. This is lower than the values ρa = 3 calculated from the stiffness and the
resonance frequency. It also differs from the value ρa = 2 deduced from the forced
oscillations at f = 10, using ma = F1/(A (2πf )2). These differences may be due to the
relatively low value of Re or to the influence of the base flow. Other authors have also
reported values of the added mass differing from the potential case for vortex-induced
vibrations (see Williamson & Govardhan 2004).

7.3. Destabilizing force term
Here, we analyse the origin of the term α0ẏ by considering the variations of pressure
δp(x, y) = p(x, y) − p0(x, y) between the case of a forced oscillation, p(x, y), and that
of a static cylinder, p0(x, y). The frequency f = 0.2 is low enough that the influence
of the added mass is negligible; the pressure field corresponds to a transverse location
y = 0 of the cylinder at which the stiffness term ky becomes zero. Figure 16(a–c)
display the pressure perturbations corresponding to three different Reynolds numbers
(the force Fy on a fixed cylinder at y= 0 vanishes due to the symmetry, and the use of
the perturbation of the pressure δp instead of the pressure p is justified by the clarity
of the figure).

At the lowest Reynolds number Re = 1 (figure 16a), δp is positive above the
cylinder and negative below it: the orientation of the resultant force is therefore
opposite to the cylinder velocity so that α0 is negative and the system is stable. In this
case, owing to the linearity of the Stokes equation, the force is equal to the Stokes
drag on a cylinder moving in a fluid at rest, which always opposes the motion.
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For Re = 20 (figure 16b), two additional lobes appear downstream of the cylinder:
their signs are opposite to that of the previous ones and the magnitude of the
corresponding pressure variation is larger: the resultant force is then in the same
direction as the cylinder velocity. In this case, α0 is positive (for f = 0.2) and the
oscillation is amplified (at least if fl = f ).

For Re = 50 (figure 16c), the downstream lobes disappear while the upstream ones
are still present. The pressure is therefore again higher above the cylinder than below,
leading to a resultant force in the direction opposite to the cylinder velocity. As a
result, α0 < 0 (for f = 0.2) and the cylinder is again stable if fl = f , which corresponds
to a cylinder of large mass. The reduction of the downstream lobes may be due to the
recirculation zone present behind the cylinder in the base flow.

These results show that the pressure distribution strongly depends on the Reynolds
number and, therefore, on the influence of inertia. As a first approach, we tried to
estimate its effect by the Bernoulli pressure theorem, leading to δpB ∼ −Vb · v, in
which Vb and v are the velocities for the base and the perturbed flows, respectively
(this is only a rough approximation because of the influence of viscous forces, in
contrast with the assumptions of the theorem). Low- and high-pressure regions of
the same sign as in the downstream lobes for Re = 20 indeed appear. However, no
upstream lobes are observed and, moreover, this effect should be stronger for Re = 50
instead of disappearing. More refined models taking into account viscous forces are
therefore needed.

We notice that the interpretation of the destabilizing term, like that of the effective
stiffness and the added mass, does not involve vortex shedding.

8. Conclusion
Using experiments and numerical simulations, we have demonstrated the existence

and studied the characteristics of a novel hydrodynamic instability for a tethered
cylinder perpendicular to a flow in a Hele-Shaw cell. We showed that the confinement
of the cylinder is essential to this instability, which we called CIV.

These CIV differ significantly from VIV induced by vortex shedding at the rear of
the cylinder. The CIV appear indeed at a Re value much lower than the threshold for
VIV (15–20 instead of 111). Their amplitude increases sharply above the threshold,
and their frequency decreases with ρs. In contrast, VIV are characterized in our
configuration by small amplitudes and a frequency almost constant with ρs. For
densities of the cylinders ρs smaller than approximately 4, the oscillations remain
in the CIV mode up to the largest values of Re investigated. For higher densities
ρs > 4, an oscillation-free regime exists between the CIV at low Re and the VIV at
higher ones.

Close to the threshold for the CIV, the transverse position of the cylinder satisfies
a Van der Pol equation. This equation characterizes conveniently the dynamics of
the system by a small number of physically meaningful parameters, which were
determined in the forced oscillation mode: a stiffness, a mass and a destabilizing term.
The stiffness term has a purely hydrodynamic origin and results from the confinement
of the flow. The mass term includes the mass of the cylinder, which may be equal
to zero without suppressing the oscillations, and the added hydrodynamic mass. The
frequency can be calculated using the stiffness and the total mass, which provides an
interpretation of the variation of the frequency with ρs. The third term is proportional
to the velocity and determines the stability of the system. It results from tiny variations
of the local pressure distribution in the region between the cylinder and the walls
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and involves a subtle balance between viscous and inertial effects, which cannot be
explained by Bernoulli’s theorem. The Van der Pol model describes the onset of the
CIV as a supercritical Hopf bifurcation in agreement with the observations for the free
oscillations.

Different questions remain open regarding these effects, which may lead to various
applications such as mixers or low-speed flow meters. The onset of the CIV has been
studied here in detail but their disappearance and the transition towards VIV are also
important issues as well as the possible coexistence of the CIV and VIV regimes at
low cylinder densities and high Re. The present study has only investigated CIV for
one value of the ratio of the cylinder diameter to the cell aperture. The variation of the
characteristics of the oscillations as a function of this ratio will have to be investigated
in order to quantify the influence of confinement.
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