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bstract

Flow and transport are studied in transparent model fractures with rough complementary self-affine walls with a relative shear displacement
�. The aperture field is shown to display long range correlations perpendicular to �u: for flow in that direction, the width and geometry of the
ront of a dyed shear-thinning polymer solution displacing a transparent one have been studied as a function of the fluid rheology and flow rate.
he front width increases linearly with distance indicating a convection of the fluids with a low transverse mixing between the flow paths. The
idth also increases with the flow rate as the fluid rheology shifts from Newtonian at low shear rates towards a shear-thinning behaviour at higher

hear rates. The width also increases with the polymer concentration at high flow rates. These results demonstrate the enhancement of the flow

elocity contrasts between different flow channels for shear-thinning fluids. The relative widths at low and high shear rates for different polymer
oncentrations are well predicted by an analytical model considering the fracture as a set of parallel ducts of constant hydraulic apertures. The
verall geometry of the experimental front geometry is also predicted by the theoretical model from the aperture map.

2007 Elsevier B.V. All rights reserved.

p
c
b
f
m
h

t
d
i
s
r
i

eywords: Fractures; Dispersion; Shear thinning; Heterogeneity; Self-affine

. Introduction

Transport and flow in porous media and fractured rocks are
ncountered in many engineering fields [1] and complex fluids
uch as polymer gels or surfactants are often involved. Appli-
ations include enhanced oil recovery (EOR), drilling muds
nd heavy oil recovery. In EOR, for instance, polymer flood-
ng reduces viscosity-driven instabilities (a polymer solution is
njected in the reservoir and followed by a water flood). When
hese complex fluids have shear-thinning properties, experimen-
al flow measurements (see [2]) display specific features such
s an enhancement of the effective hydraulic conductivity (or
reduction of the apparent viscosity) compared to the case of

ewtonian fluids.
These effects may be strongly influenced by fractures which

re frequently encountered in many reservoirs and generally dis-
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lay a broad range of characteristic length scales. While it is
ustomary to visualize the fractures as parallel plates separated
y a constant distance [3], this representation is rarely accurate:
racture wall surfaces are indeed rough and do not perfectly
atch [4]. This creates voids of various sizes resulting in spatial

eterogeneities of the flow field [5,6].
The objective of the present work is to analyze experimen-

ally and analytically the fluctuation of the flow velocity and its
ependence on the fluid rheology and on the mean flow veloc-
ty for shear-thinning solutions flowing in transparent models of
ingle fractures with rough walls. The experiments have been
ealized in a configuration in which flow is strongly channel-
zed as is frequently the case in natural fractures [1]: this will be
hown to allow for analytic predictions of the relation between
he flow distribution and the apertures and, also, of their depen-
ence on the rheological characteristics of the fluids used in the

xperiments.

We have sought particularly in this work to reproduce the
oughness of natural fractured rocks which is characterized by
broad distribution of the characteristic length scales [7]. More

mailto:hulin@fast.u-psud.fr
dx.doi.org/10.1016/j.jnnfm.2007.11.008
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measuring the spatial correlation of the aperture field between
two points separated by a lag vector �δ. Orientations of �δ perpen-
dicular (x-direction) and parallel (y-direction) to the shift are of

Fig. 1. Upper figure, gray scale representation of the aperture field. Field of view:
4 H. Auradou et al. / J. Non-Newt

recisely, these surfaces can often be considered as self-affine
8], this means that they remain statistically invariant under the
caling transformation:

(λx, λy) = λζh(x, y), (1)

here h(x, y) is the surface height and ζ is the roughness or self-
ffine exponent. For most materials including granite, ζ is close
o 0.8 [9] but it is close to 0.5 for materials such as sandstone and
intered glass beads [10,11]. Many experiments suggest that ζ is
ndependent on the orientation of profiles measured on the sur-
ace with respect to the direction of crack propagation (a slight
nisotropy has however been recently observed experimentally
n some materials [12]).

The rough surfaces used in the present work are transparent
illed plexiglas plates with an isotropic self-affine geometry

f characteristic exponent ζ = 0.8: they allow for optical flow
bservations by means of dyed fluids (practically, a transparent
olution is displaced by a dyed one and the geometry of the front
s determined by image analysis). For each fracture, two such
omplementary surfaces are realized and match perfectly when
rought in contact: in the model, both a spacing normal to the
ean fracture surface and a relative lateral shift �u are introduced

n order to create a mismatch and to obtain a variable aperture
eld [13].

While the surfaces are isotropic, previous laboratory mea-
urements and numerical investigations [14–18] show that the
ateral shift introduces an anisotropy of the permeability which
s higher in the direction perpendicular to �u. More precisely,
ow channels perpendicular to �u and with a length similar to the
odel appear as shown in a previous work [19]. As a result, for
ow perpendicular to �u, the overall geometry of the displace-
ent front of a fluid by another of same rheological properties

s well reproduced by modelling the fracture as a set of parallel
ucts with an hydraulic aperture constant along the flow [19]:
he present work deals exclusively with this configuration.

The fluids used here display at low shear rates (γ̇ < γ̇0) a
plateau” domain in which they behave as Newtonian fluids
f constant viscosity η0 while, at higher shear rates γ̇ > γ̇0, η

ecreases with γ̇ following a power law of exponent 1 − n. Com-
aring the velocity contrasts between the different flow paths in
he two regimes allows one therefore to estimate the influence of
he rheology since the velocity contrasts should be enhanced in
he shear-thinning case. Finally, an analytical model predicting
he influence of the parameters η0, γ̇0 and n on the variation of
he fluid velocity fluctuations with γ̇ is derived and compared to
xperimental observations.

. Experimental procedure

.1. Characteristics of the model fracture

The model fracture is made of two complementary rough self-

ffine surfaces without contact points: both surfaces are obtained
rom a transparent material by means of a milling machine and
heir size is 85 mm ×171 mm. A detailed description of the
rocedure is given in [18]: a self-affine surface h(x, y) is first
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enerated numerically using the mid-point algorithm [20] with
self-affine exponent ζ = 0.8 as observed in many materials

9]. A second surface, complementary from the first one, is gen-
rated and then shifted numerically parallel to its mean plane by
.33 mm. The milling tool is computer controlled and a complex
ortuous path may be imposed to obtain the self-affine geome-
ry. Moreover, the borders of two parallel sides of the surfaces
ise above the rough surface: they are designed so that, when
lamped against the matching border of the other surface, there
s a void space in the remaining area. The mean planes of the
acing surfaces are parallel outside these borders with a mean
istance: ē = 0.77 mm.

The local aperture e(x, y) at a location (x, y) in the fracture
lane may be predicted from the mathematical surface h(x, y)
y the relation:

(x, y) = h(x, y) − h(x, y + u) + ē, (2)

here u is the lateral shift. Fig. 1 shows the aperture field of
he fracture considered in this work: the binarized image (lower
art of Fig. 1) displays a clear anisotropy and a large correlation
ength perpendicular to the shift �u. Quantitatively, this effect

ay be characterized by the following correlation function, also
alled semivariance [21]:

(�δ) = 〈(e(�r) − e(�r + �δ))
2〉, (3)
5 mm ×171 mm. Aperture field—mean value: ē = 〈e(x, y)〉(x,y) = 0.77 mm;

nd the aperture fluctuation: σe = 〈(e(x, y) − ē)2〉1/2
(x,y) = 0.1 mm. Shift ampli-

ude: u = 0.33 mm (oriented vertically on figure). In the present work, flow is
arallel to x direction (horizontal on the figure). Lower image: binarized aperture
eld with a threshold value equal to the mean aperture (0.77 mm).
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Fig. 2. Variation of the normalized semivariograms, Γ/(2σ2
e ) as a function of
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Fig. 3. Variation of the effective viscosityη of the polymer solutions as a function
of the shear rate γ̇ for two water-polymer solutions of different concentrations:
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in Table 1. η∞ is too low to be determined within the available
range of shear rates (γ̇ ≤ 87 s−1) and it has been taken equal
to the viscosity of the solvent (i.e. water). In Eq. (4), γ̇0 corre-
sponds to a crossover between two behaviours. On the one hand,

Table 1
Rheological parameters of scleroglucan solutions used in the flow experiments

Polymer n γ̇0 (s−1) η0 (mPa s) a
ag distance ‖�δ‖ (mm) for the aperture field displayed in Fig. 1. Dotted line:
orrelation along the direction y of the shear. Solid line: correlation along the
erpendicular direction x (parallel to the flow in the rest of the paper).

pecial interest. Fig. 2 displays variations of the semivariance
n both directions. When the lag modulus ‖�δ‖ is larger than the
orrelation length of the aperture field, one expects Γ to reach
constant value equal to 2σ2

e , where σ2
e = 〈e(x, y) − ē〉2 is the

ariance of the aperture. The semivariance Γ reaches this limit,
ut in a very different way for the two orientations of �δ. In the
irection y parallel to the shift, Γ becomes of the order of (and
ometimes larger than) 2σ2

e for ‖�δ‖ > 8 mm. In the perpen-
icular direction x, Γ never exceeds the saturation value and
lowly increases towards it: these differences reflect the large-
cale anisotropic structure of the aperture field. They can be
haracterized by defining a correlation length as the distance at
hich Γ/(2σ2

e ) is equal to 0.5: this length is respectively of the
rder of 0.25 mm and 0.5 mm in the parallel and perpendicular
irections.

Semivariograms have been computed on surface maps of
poxy casts of a fractured granite sample in a previous work
19] and display similar features: moreover, normalized curves
/(2σ2

e ) corresponding to different values of u displayed a uni-
ersal variation as a function of the normalized lag δ/u. This
uggests that results obtained in the present work might be
xtrapolated to other values of u.

Finally it should be noted that the ratio S of the standard
eviation of the aperture σe to the mean aperture ē is only of 0.13
Fig. 1). This implies, as discussed by [22], that the fracture can
e considered as “hydraulically” smooth with relatively small
elocity contrasts between and along flow lines. This keeps the
rajectories of the preferential flow channels relatively straight
nd simplifies subsequent analysis.

.2. Experimental set-up and procedures

The plexiglas model fracture is held vertically in a fixed posi-

ion between a light panel and a 12-bit digital CCD camera with
high stability and dynamical range. Flow is induced by suck-

ng a dyed solution from the topside while the lower side is
lightly dipped into a bath containing a clear fluid. An appro-

c

1

00 ppm (�) and 1000 ppm (©). Dashed lines: Carreau functions corresponding
o the sets of parameters of Table 1; continuous lines: truncated power law
pproximation corresponding to a = ∞ in Eq. (4).

riate calibration, described in Ref. [18], allows one to obtain
rom all pictures of each experiment the corresponding con-
entration map c(x, y, t). Here, we focus on the geometry of
he isoconcentration front c/c0 = 0.5 which is determined by
hresholding the concentration maps and which depends strongly
n the heterogeneity of the flow field.

.3. Rheological characteristics of shear-thinning solutions

In this work, we used shear-thinning polymer solutions, more
pecifically water–scleroglucan solutions; they have been char-
cterized using a Contraves LS30 Couette rheometer for shear
ates γ̇ ranging from 0.016 s−1 up to 87 s−1. Two different poly-
er concentrations equal to 500 ppm and 1000 ppm have been

sed. The rheological properties of the dyed and transparent
olutions have been verified to be constant with time within
xperimental error over 3 days; the variation of the effective vis-
osity η as a function of the shear rate γ̇ is displayed in Fig. 3.
he variation of η with γ̇ is well adjusted by the Yasuda–Carreau

unction (dashed line):

= 1

(1 + (γ̇/γ̇0)a)(1−n)/a (η0 − η∞) + η∞. (4)

he values of the corresponding rheological parameters for the
olymer solutions characterized in the present work are listed
oncentration (ppm)

000 0.26±0.02 0.026±0.004 4490±400 2
500 0.38±0.04 0.077±0.02 410±40 2
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Fig. 4. Maps of the relative concentration C(x, y, t) and corresponding dis-
placement fronts (in white) at three different flow rates. (a) Q = 0.01 ml/min
(v̄/vc � 1); (b) Q = 0.1 ml/min (v̄/vc � 10); (c) Q = 1 ml/min (v̄/vc � 100).
The velocity vc corresponds to the transition between Newtonian-like (v < vc)
and shear-thinning (v > vc) flows (see Section 4). Polymer concentration:
1000 ppm. Pure injected fluid appears in white and displaced fluid in black.
x scale: distance from left side of model; y scale: distance from injection
line. Correlation length of aperture field in the direction parallel (respec-
tively perpendicular) to the flow (as defined in Section 2.1) = 0.5 (respectively)
0.25 mm; amplitude of the relative shift of the walls (see orientation on figure):
u = 0.33 mm.
6 H. Auradou et al. / J. Non-Newt

or γ̇ < γ̇0, the viscosity η tends towards the limiting value η0,
nd the fluid behaves as a Newtonian fluid. On the other hand,
f γ̇ > γ̇0, the viscosity follows a power law variation reflect-
ng its shear-thinning characteristics with η ∝ γ̇ (n−1). For each
xperiment, the flow rate is kept constant at a value between
.01 ml/min and 5 ml/min (corresponding mean flow veloci-
ies: 0.0003 mm s−1≤v≤0.14 mm s−1). Under such conditions,
he typical shear rate at the surface of the fracture walls γ̇ = 6v/ē

see Section 4.1) ranges between 2.5 × 10−3 s−1and 1.1 s−1.
he latter value is far below the shear rate corresponding to the
econd Newtonian plateau (η = η∞) and this limit will not be
onsidered in this work. On the contrary, the lowest values of
he typical shear rate are much lower than γ̇0: the Newtonian
plateau” in the rheological curves may therefore have a crucial
nfluence of the flow properties.

In order to obtain a simple expression accounting for the
ffect of the fluid rheology on the velocity fluctuations, the rhe-
logical law of the fluids is approximated in Section 4 by a
runcated power law which corresponds to the limiting form of
q. (4) for a = ∞ (continuous line in Fig. 3). When γ̇ < γ̇0,

he viscosity η(γ̇) is considered as constant and equal to η0; for
˙ > γ̇0, η(γ̇) is assumed to follow a power law η(γ̇) = mγ̇n−1 in

hich m = η0/γ̇
n−1
0 . The parameters n, γ̇0 and η0 are obtained

rom Table 1. While this expression does not reproduce accu-
ately viscosity variations in the transition zone, it captures well
he essential features of the rheology of the fluid at low and high
hear rates. Its key feature is to allow for analytical computations
f the effect of the fluid rheology on the velocity fluctuations:
his allowed us to demonstrate the enhancement of the channel-
ng effects for shear-thinning solutions which is the topic of the
resent work.

. Flow velocity dependence of front geometry

The distribution of the two fluids during the displacement
epends significantly on the flow rate: this is observed clearly in
ig. 4 which displays three maps of the relative concentration C
in gray levels) corresponding to different flow rates (increasing
rom (a) to (c)) and to similar injected volumes (in all cases, the
olymer concentration is equal to 1000 ppm). The geometry of
he mixing zone will be characterized in the following by that
f the displacement front (white lines) assumed here to coincide
ith the isoconcentration line C(x, y, t) = 0.5. Two important

eatures of the displacement front have been observed: (a) its
eometry depends on the flow rate Q and (b) its width parallel
o the flow increases linearly with the distance from the injec-
ion side. The first point is illustrated by Fig. 4 which displays
hree isoconcentration fronts overlaid on the corresponding con-
entration maps and measured during fluid displacements at
hree different flow rates, but for a same polymer concentra-
ion (1000 ppm): the front width parallel to the flow direction is
learly larger at the highest flow rate.
The broadening of the displacement front may be character-
zed quantitatively from the variation of the mean square front

idth, σx(t) = 〈(x(t) − x̄(t))2〉1/2
, as a function of the mean dis-

ance x̄(t) of the front from the injection side (Fig. 5). For all

Fig. 5. Variation of the mean front width σx(t) = 〈(x(t) − x̄(t))2〉1/2
as a function

of the mean distance x̄(t) from the inlet side of the model. Polymer concentration:
1000 ppm. Flow rates (Q): (�) 2.0 ml/min, (+) 0.5 ml/min, (©) 0.1 ml/min, (�)
0.02 ml/min.
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alues ofQ, σx(t) increases linearly with x̄(t). In the next section,
his will be shown to result directly from the underlying channel-
zed structure of the aperture field. The width of the front after a
ransit time t corresponds then directly to the product t	v where
v is the velocity difference between the different channels (the

ransverse exchange between channels is too small to allow one
o reach a diffusive spreading regime).

At all distances, the width σx(t) increases with the flow rate Q
ut with a particularly sharp variation between Q = 0.1 ml/min
nd 0.5 ml/min. It will be seen that, at this transition flow rate, the
hear rate at the fracture walls becomes of the order of γ̇0 (the
hreshold value above which the fluids display shear-thinning
haracteristics).

. Modelization

.1. Flow between parallel plates with a constant gap

We compute the flow of the polymer solutions between par-
llel plates using the same approach as in Ref. [23]. The relation
etween the longitudinal pressure drop and the velocity profile
n the gap is obtained by using the truncated power law model
iscussed in Section 2.3. The flow field is unidirectional and par-
llel to x so that vx(z) is the only non-zero velocity component.
he strain rate is given by γ̇(z) = dvx/dz.

At low pressure gradients, the fluids behave like a Newto-
ian fluid with a constant viscosity η0 and the resulting velocity
rofile is parabolic and symmetrical between the walls. Then,
he shear rate is zero half way between the fracture walls and
eaches a maximum at their surface where γ̇ = 6v/e (e is the
istance between the plates). This value of γ̇ is proportional to
he mean flow velocity or, equivalently, to the pressure drop.

As the flow rate keeps increasing, γ̇ becomes larger than γ̇0
nd the non-Newtonian characteristics of the fluid modify the
elocity profile. The mean flow velocity vc corresponding to the
ransition between the two regimes satisfies: vc = eγ̇0/6 and the
orresponding pressure gradient is ∇Pc2η0γ̇0/e.

As v increases above vc, the layer where the shear rate is
igher than γ̇0 becomes thicker and the velocity profile vx(z) is
o longer parabolic: the full expression may be derived analyti-
ally and is given in Eq. (5) of Ref. [23]. The mean velocity, v,
an then be computed by integrating vx(z) over the fracture gap,
eading to

= e2

12(2n + 1)η0
∇P

[
(1 − n)

( ∇P

∇Pc

)−3

+3n

( ∇P

∇Pc

)(1−n)/n
]

. (5)

e consider now the case of shear-thinning fluids such that
> 0 and (1 − n)/n > −1. Then, the leading term in Eq. (5)

s (∇P/∇Pc)(1−n)/n and, therefore, when ∇P � ∇Pc, Eq. (5)

ecomes:

� e2

12

(∇P

ηeff

)1/n

, (6)

i
a

m
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here ηeff = η0(2γ̇0/e)1−n((2n + 1)/3n)n. This is similar to the
eneralized version of Darcy’s law often applied to the flow of
on-Newtonian and, more specifically, to power law fluids in
orous media [24–27].

.2. Flow in rough fractures

In this part, we focus on the variations of the velocity in
he plane (x, y) of the fracture and we assume therefore a two-
imensional flow field �v(x, y) equal to the average of the fluid
elocity profile over the gap with �v(x, y) = 〈�v(x, y, z)〉z.

The development with time of the front (represented by the
soconcentration lines c/c0 = 0.5) will now be analyzed by
ssuming that its points move at the local flow velocity �v(x, y)
nd an analytical model predicting the global front width will
e developed.

This model is based on the results of a previous work [19]
emonstrating that, in such systems, the aperture field is struc-
ured into channels perpendicular to the lateral shift �u of the
urfaces. For a mean flow parallel to these channels, the paths
f the tracer particles have a weak tortuosity; also, the veloc-
ty variations along these paths are small compared to the
elocity contrasts between the different channels. Under these
ssumptions, the velocity of a particle located at a distance y,
erpendicular to the mean velocity, satisfies:

(x, y) ≈ v(y)�ex, (7)

here �ex is the unit vector parallel to the mean flow. Note also
hat, in the geometry discussed in this section, there are no con-
act points between the walls of the fractures: this avoids to take
nto account the large tortuosity of the flow lines in their vicinity.

If the fluid is Newtonian with a constant viscosity, then, for
ach channel, the velocity is related to the pressure gradient ∇P

y relation (6) with n = 1; e is now an equivalent (or hydraulic)
perture associated to each channel and noted e(y) and the equa-
ion represents the classical linear equivalent of Darcy’s law for
ractures. Previous studies have shown that, for relatively small
perture fluctuations, this hydraulic aperture is well approxi-
ated by the geometrical aperture [5,22]: this suggests that e(y)2

an be taken equal to the mean of the average of the square of
he local apertures along the direction x, i.e. e(y)2 = 〈e(x, y)2〉x.
he validity of this assumption has been tested numerically pre-
iously for a similar geometry [19] in the case of a Newtonian
uid: these simulations used the lattice Boltzmann method to
etermine the 2D front geometry at all times: except for fine
cale details, the profile x(y, t) of the distance of the front from
he inlet at a given time t follows very closely the variations of
(y)2.

For a power law fluid such that n < 1, the velocity satisfies the
on-linear generalized relation (6). We seek now to generalize to
his case the relation between the front geometry and the aperture
ariation established for the Newtonian fluids: the aperture field

s still assumed to be strongly correlated in the flow direction,
llowing one to consider the fracture as a set of parallel ducts.

We consider particles starting at t = 0 from the inlet of the
odel at different transverse distances y and moving at different
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elocities v(y). Then the distance x of the particles from the inlet
t time t after the injection satisfies x(y, t) = v(y)t so that the
ean distance of the front from the inlet side is x̄(t) = 〈v(y)〉yt =

¯ t and

x(y, t)

x̄(t)
= v(y)

v̄
. (8)

oreover, the mean square deviation σx(t) = 〈(x(y, t) − x̄)2〉1/2

hould satisfy: σx(t) = σvt where σv is the mean square deviation
f the velocities in individual channels from their mean value v̄.
ombining the previous relations leads to

σx(t)

x̄(t)
= σv

v̄
. (9)

his equation shows that there is a direct relation between the
ront geometry and the variations of the velocity from one chan-
el to another: for power law fluids, the latter are related to the
ariations of the hydraulic aperture by Eq. (6). In order to esti-
ate these variations, we introduce a modified reduced aperture

eviation Sh defined as the ratio between the standard deviation
f the hydraulic aperture e(y) to its mean. The parameter Sh is
quivalent to the reduced aperture deviation S defined in Sec-
ion 2.1 but the geometrical aperture is replaced by the hydraulic
ne. Here, we are interested in weakly fluctuating systems, i.e.
or which both S and Sh are small compared to one. In addition,
he hydraulic aperture e(y) is observed to follow a Gaussian
istribution. Moreover, Eq. (6) shows that, for a given pressure
radient ∇P , v scales as en+1/n: together with the above assump-
ions, this leads to the following relation between the reduced
elocity fluctuations σv/v̄ and Sh:

σv

v̄
= n + 1

n
Sh. (10)

ombining Eqs. (9) and (10), leads to

σx(t)

x̄(t)
= n + 1

n
Sh. (11)

. Quantitative comparison between the experiments
nd the model

In the present experiments, the polymer solutions are
xpected to behave like Newtonian fluids as long as the shear rate

˙ is everywhere lower than the critical value γ̇0 (see Table 1). As
he flow rate increases, the critical shear rate γ̇0 is first reached at
he wall of the fracture where γ̇ is highest. If the fracture is mod-
led as two parallel plates separated by the mean aperture ē, then

˙ = γ̇0 at the walls when the mean flow velocity is vc = ēγ̇0/6.
bove this velocity, the shear-thinning properties of the fluids

nfluence the flow and enhance the velocity fluctuations.
Fig. 6 displays the experimental variations of the normal-

zed velocity fluctuations (equal to the normalized front width

x(t)/x̄(t)) as a function of the reduced velocity v̄/vc for both
olymer solutions. The values predicted by Eq. (11) for a New-
onian fluid (n = 1) and for power law fluids with the same index
s the two solutions are also plotted.

e
t
s
f

ian fluid (n = 1) and for 500 ppm (respectively 1000 ppm) polymer solutions
n = 0.38, respectively 0.26). Solid and dashed lines: variations of σv/v̄ as a
unction of v̄/vc computed by integrating Eq. (5).

For v̄/vc < 1 the experimental values are similar for both
olutions and close to the theoretical prediction for n = 1 (hor-
zontal dashed line). For v̄/vc � 1, σx(t)/x̄ tends toward values
f the order of those predicted by Eq. (11) and increasing with
he polymer concentration.

Eq. (11) provides therefore a good estimate of the veloc-
ty fluctuation inside the fracture both for low, i.e. v̄/vc < 1,
nd high flow rates corresponding to v̄/vc � 1. The increase of
x(t)/x̄ between the Newtonian and shear-thinning regimes and
lso, at high velocities, with the polymer concentration confirms
he enhancement of the velocity contrasts between the channels
or shear-thinning fluids.

Between the limiting values v̄/vc < 1 and v̄/vc � 1, fluid
elocity variations within the fracture may be estimated by
pplying Eq. (5) to each channel (assumed to be of constant
ydraulic aperture): this equation takes into account the coexis-
ence in the fracture gap of layers where the fluid has Newtonian
nd non-Newtonian properties. The normalized velocity fluctu-
tions σv/v̄ obtained by this computation are displayed in Fig. 6
or the two polymer concentrations together with the experimen-
al variations of the normalized front width σx(t)/x̄(t).

In agreement with the theoretical curves, σx(t)/x̄(t) starts to
ncrease when the velocity v̄ becomes larger than vc (v̄/vc > 1)
or both polymer solutions. However, although the limiting value
or v̄/vc � 1 is the same as predicted, the increase of σx(t)/x̄(t)
bove vc is slower than expected: actually, the theoretical pre-
ictions represent an upper bound for the observations.

This difference may be due in part to the use of a simpli-
ed model of the rheological curve which displays a sharper

ransition than the actual one between the Newtonian and shear-
hinning regimes: this will, in turn, smoothen the variation of
x/x̄. Numerical computations using a = 2 instead of a = ∞

n Eq. (4) will be necessary to estimate the magnitude of this

ffect. Also, the aperture of the parallel channels introduced in
he model is assumed to be constant: this also leads to a tran-
ition between the Newtonian and power law regimes which is
aster than the actual one.
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Fig. 7. Thick solid line: experimental normalized front profile x(y, t)/x̄(t) as
a function of the transverse distance y (mm) for v̄/vc = 200 for a 1000 ppm
shear-thinning polymer solution. Dotted line: theoretical variation of the normal-
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zed velocity v(y)/v̄ in the parallel flow channel model. The front is displayed
ust before the displacing fluid starts to flow out of the fracture. Dashed lines:
haracteristic deviations of the distance x(y) from its mean value x̄.

A step further in the interpretation is the comparison of
he experimental shape of the fronts with that estimated from
he channel model. In Section 4.2, the normalized distance
(y, t)/x̄(t) of the front from the inlet has been predicted to
e equal to v(y)/v̄ (see Eq. 8). An experimental front profile
ormalized in this way is plotted in Fig. 7 as a function of the
ransverse distance y together with the variation of the theoret-
cal normalized velocity v(y)/v̄. The velocity v(y) is estimated
rom Eq. (6) in which the aperture e is replaced by the mean
alue e(y) defined in Section 4.2.

The most remarkable observation is the fact that both the
xperimental and theoretical fronts have not only the same width
ut also nearly the same geometry. These results are very similar
o those of numerical simulations for Newtonian fluids [19]: they
emonstrate the validity of the generalization in Eq. (6) to non-
ewtonian fluid. Fine scale details predicted by the theoretical
odel are however not observed in the experimental front: this

ifference may be due in part to viscous drag forces between par-
llel layers of fluid moving at different velocities in the fracture
lane. These forces may smoothen the local velocity gradients
nd rub out small-scale features of the front without changing
he large-scale velocity variations: this results in a bumpy front
ith a typical width of the structures of the order of 10 mm.
his latter value is of the order of the correlation length in the
irection perpendicular to the channels.

. Discussion and conclusions

In the present work, the enhancement of velocity fluctuations
or shear-thinning fluids has been studied in a single fracture
ith rough, self-affine walls. The two wall surfaces are perfectly
atched and are positioned with both a normal and a lateral shift.

his results in an anisotropic aperture field well characterized
uantitatively by the semivariograms of the aperture both in the
irection of the shift and perpendicular to it. The characteristics
f these semivariograms are in agreement with previous exper-

e
f
t
m
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mental measurements on granite samples [19]. Parallel to the
hift, the correlation length of the aperture field (as defined is
ection 2.1) is equal to 0.25 mm and the correlation cancels out
i.e. Γ/(2σ2

a ) becomes equal to 1) at a distance of the order of
0 mm. In the other direction, the correlation length is higher
0.5 mm) and some correlation subsists over the full fracture
ength.

This observation has allowed us to model the fracture as a set
f parallel ducts perpendicular to the shift and with an hydraulic
perture constant along their length. These assumptions lead to
pecific predictions on the dependence of the width and of the
eometry of the front on the velocity of the fluid and its rheology:
hese predictions deal with the case of a mean flow parallel to
he channels which was the configuration used in the present
xperiments. This model generalizes a previous one developed
or Newtonian fluids and which has been validated by numerical
imulations [19].

The variation of the front width with the velocity could first be
redicted. At low flow rates, the viscosity of the solutions is con-
tant (Newtonian “plateau”) but non-Newtonian effects become
mportant for faster flows: this results in an increase of the veloc-
ty fluctuations—and of the front width. This variation occurs
hen the shear rate at the fracture wall becomes larger γ̇0, i.e. the

hear rate corresponding to the crossover between the Newto-
ian plateau and the power law regimes: γ̇0 is reached for a mean
ow velocity vc = ēγ̇0/6. At still higher flow velocities of the
rder of 100vc, both the normalized velocity fluctuations and the
ormalized front width reach a new constant value with a good
greement between the experimental results and the theoretical
xpectations.

These results validate the prediction of an enhancement of
elocity contrasts for shear-thinning channelized flows in frac-
ures. The experimental increase of the front width with the mean
elocity v right above the threshold value vc is however slower
han the predictions. The origin of this discrepancy might be
nvestigated by using a more refined theory taking into account
oth the full rheological characteristics of the fluid (in the present
ork, the rheology is approximated by a truncated power law)

nd the aperture variations along the flow.
Another possible origin of the difference is viscoelasticity

ffects. These are related to the value of the Deborah number
efined as the ratio between the typical relaxation time of the
olymer λ and a time characterizing the flow field. For a dilute
olymer solution, the relaxation time τ may be estimated as the
nverse of the value of the shear rate γ̇0 corresponding to the
pper limit of the Newtonian plateau. This leads to respective
alues τ = 38 s and 13 s for the 1000 ppm and 500 ppm solu-
ions (a relaxation time τ � 10 s of the same order of magnitude,
lthough lower, has been obtained for 1000 ppm scleroglucan
olutions from G′ and G′′ measurements [28]). In the present
eometry, the characteristic time associated to the flow field may
e taken equal to the transit time over the correlation length of
he aperture in the direction the flow: this length has been taken

qual in Section 2.1 to the value δc � 0.5 mm of the lag distance
or which the normalized correlation function Γ/(2σ2

e ) is equal
o 0.5 (See Fig. 2). Note that this length is also of the order of

agnitude of the shear displacement (u = 0.33 mm).
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The Deborah number is therefore taken equal to De = v/γ̇0δc
n which v is the mean fluid velocity. The relation vc = γ̇0ē/6
eads then to De ∼ (ē/(6δc)(v/vc)) or De ∼ 0.25v/vc. In the
resent work, the ratio v/vc ranges from 1 to 300 so that De

s larger than 1, except at the lowest flow rates: viscoelastic
ffects may therefore be important. As a result, the adjustment
o aperture variations along the flow of the fluid velocity profiles
and more specifically of the fraction of the aperture corre-
ponding to a shear-thinning behaviour) may be incomplete.
he spatial fluctuations of the apparent viscosity (and there-

ore of the velocity) will then be smaller than expected from the
odel.
The theoretical model also allows one to predict the geometry

f the experimental front down to length scales of the order of
0 mm. Future work should investigate the influence of trans-
erse velocity gradients on the shape of the front for different
ypes of fluids.

The results obtained in the present work demonstrate there-
ore clearly that approaches developed to analyze channelized
ewtonian flows in fractures can be generalized to non-
ewtonian fluids and allow to predict, for instance, the variation
f the velocity contrasts with the rheology.

Numerical studies in 2D networks [26,27] had similarly
hown that the flow of shear-thinning fluids is localized in

smaller number of preferential paths than for Newtonian
nes. It has been suggested that these effects might account
or the enhancement of the effective hydraulic conductivity
or such fluids mentioned in Section 1: the results obtained
n the present paper may therefore be usefully applicable to
he numerical simulation of non-Newtonian flows in fracture
etworks.

A number of questions remain however open and need to be
onsidered in future studies. First, in the models used here, the
oughness of the fracture surface is smaller than the mean aper-
ure width: this corresponds for instance to the propagation of
hydraulic fracture when its aperture is kept large compared to

he roughness by the hydraulic pressure. The results will how-
ver not be valid in the frequent cases in which contact points
re present in the fracture [29].

Then, the present experiments have been realized with a mean
ow parallel to the channels created by the relative shift of the
all surfaces. It will be important to compare these results with

he case of flow perpendicular to these channels: velocity fluc-
uations in the directions parallel and perpendicular to the flow
hould then be significantly different from those in the present
xperiments. Eq. (5) should, for instance, be modified.

Finally, this work deals with relatively short path lengths such
hat transverse exchange between channels may be considered
s negligible: the results obtained may therefore be different for
onger path lengths. It is also possible that the spatial correlation
f the velocity field will eventually decay at very long distances,
lthough this has not been observed in our experimental model.
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