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Combining experiments and numerical simulations with a mechanical-statistical model of twisted yarns,
we discuss the spinning transition between a cohesionless assembly of fibers into a yarn. We show that
this transition is continuous but very sharp due to a giant amplification of frictional forces which scales
as exp θ2, where θ is the twist angle. We demonstrate that this transition is controlled solely by a
nondimensional number H involving twist, friction coefficient, and geometric lengths. A critical value of
this numberHc ≃ 30 can be linked to a locking of the fibers together as the tensile strength is reached. This
critical value imposes that yarns must be very slender structures with a given pitch. It also induces the
existence of an optimal yarn radius. Predictions of our theory are successfully compared to yarns made
from natural cotton fibers.
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Yarns made from natural fibers are one of the first
materials ever processed by humans, including
Neanderthals [1]. They are done by making bundles of
initially aligned fibers which are then stuck together by
twisting. The fact that many individual fibers of a few
centimeters may form yarns of tens of meters drew early
attention from scientists. Galileo [2] argued that the twist
“binds” the filaments together, but did not discuss the
origin of this cohesion. We now know that the binding
forces are created by the tension throughout the filaments
which creates normal forces due to the curvatures of the
fibers, and that tangential frictional forces prevent sliding of
fibers [3–5]. If the twist is large enough, the relative sliding
of fibers is totally blocked, and the rupture of the yarn is
then a problem of statistic of rupture of individual fibers
[6,7]. The description of the transition between fibers
which are “free to slide” without spinning, to “blocked
by spinning” is still an open problem. Experimentally, only
very few studies addressed the dependence of yarn strength
with twist level [8]. Theoretically, despite numerous
attempts, the mechanism linking twist and strengthening
has not been clearly understood [9–13]. Recently, an
analogy with the percolation transition had been suggested
[14]. Assembly of fibers is an example of assembly of
objects that interact through numerous frictional contacts.
For such systems, the geometrical arrangement of the
contact points may generate huge stress throughout the
system. Some examples of such systems are granular
materials in proximity to a solid wall (Jansen effect
[15,16]), assembly of parallel sheets in contact (interleaved
phone book experiment [17,18]), or contact points distrib-
uted around a cylinder (capstan). In all of those examples,

the proportionality between the tangential and the normal
stress at contact means that the mechanical stress in the
system decreases exponentially with the distance to the
applied load, and then has drastic effects of the mechanical
equilibrium of such a system.
We show in this Letter that an assembly of fibers belongs

to the same class of system. For this, we consider model
yarns made of entangled twisted fibers. The tension
necessary to unravel the fibers is shown to vary continu-
ously, but very rapidly with the twist. This sharp evolution
of the disentanglement force creates a phase transition like
the transition between the free fiber and stuck fiber phases.
A simple mechanical model of frictional helicoidal fibers
allows us to define a nondimensional number whose value
characterizes this transition. These results can be success-
fully applied to real yarns.
Experimental model yarn system.—Our starting point is

the demonstrating experiment of friction force in yarns as
proposed by Bouasse [4]. We consider two brushes of N=2
identical fibers [see Fig. 1(a)]. The fibers are passed through
rings which are connected to puller jaws (N=2 fibers in each
jaw). The model fibers are of flexible strings of cotton
(diameter d ¼ 1 mm, linear density λ ¼ 0.48 gm−1, friction
coefficient μm ¼ 0.35, bending modulus B ∼ 10−6 Nm2),
or flax (d ¼ 1 mm, λ ¼ 1.03 gm−1, μm ¼ 0.53, B∼
4.10−6 Nm2). The twist of the elementary yarns composing
each string is always very large compared to the twist that we
apply. We first prepare the entanglement by alternately
aligning the brushes roughly parallel. The brushes are then
zipped together with two plastic cable clamps, and twisted
by a angle θ [Figs. 1(b) and 1(c)]. The puller jaws are
attached to a traction measurement apparatus (Instron 5965,
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5 kN force sensor) and elongated at fixed velocity
50 mmmin−1. Figure 1(d) shows the force variations for
two different twist angles. If the twist angle is low enough,
the force first increases, reaches a peak value (noted TM),
and then decreases slowly. Such variations are associated
with a smooth relative sliding of the two brushes. For large
enough twist, a force drop is measured after the maximum
force (noted Tr). This is associated with the rupture of one or
many strings that we may observe by postmortem inspec-
tion. Figure 1(e) shows the evolution of TM as a function of
the twist angle. This value is likely constant up to θ=2π ≃ 5
revolutions for this yarn, and increases rapidly up to nine
revolutions where TM reaches Tr at point C.
Scaling laws for maximum traction.—We first limit our

analysis to the maximum force TM and we do not discuss
rupture. Since we expect that the maximum force is
dependent on friction, TM should depend on μm and of
geometric characteristics of the yarn: θ, L, R, and N. We
define the twist rate γ ¼ Rθ=L ≪ 1.
We first discuss the γ dependence of TM. Noting T0 the

traction force at vanishing twist, we must have TMðγÞ ¼
T0FðγÞ, or lnðTMÞ ¼ lnðT0Þ þ fðγÞwith f ¼ lnðFÞ an even
functionvanishing at γ ¼ 0. The leading term of expansion at
small twist is f ∼ γ2. This dependence is experimentally
verified as shown on Fig. 2(a). It follows that

lnðTM=T0Þ ¼ γ2gðL=R;N; μmÞ; ð1Þ

where g is a nondimensional function of nondimensional
parameters. The L=R dependence of g is obtained by
considering the evolution of traction force at fixed θ, R,
and N and of various lengths L. We found [see Fig. 2(b)]

that gðL=R;N; μmÞ ∼ L=R, so that lnðTM=T0Þ ¼
ðγ2L=RÞhðN; μmÞ.
Numerical yarn.—We use discrete element method

simulations [19] to obtain the function h. Fibers are
modeled as a set of point masses connected with elonga-
tional spring and dashpot without torsional or bending
restoring forces. Successive masses are connected with
cylinders of diameter d. The contact points between
cylinders (belonging to same or different fibers) are
calculated, and the contact forces are calculated considering
normal stiffness and damping, and tangential stiffness with
Coulomb friction coefficient μm. Equations of motion are
integrated using a Verlet algorithm. The steps for making
numerical yarns are depicted in Fig. 2. We first stretch the
N fibers under a force t0 [Fig. 2(d)] such that the strain of
each fiber is 10−4. A torque is then applied to the yarn
by submitting both ends of fibers to orthoradial forces s
[Fig. 2(e)]. During this preloading phase, μm is kept to a
low value 0.05 which ensures a uniform twist along the
yarn [Fig. 2(g)]. Finally, while keeping forces t0 and s
applied, the tension t of half the fibers on the bottom and to
the other half at the top [Fig. 2(f)] is slowly increased until a
value t ¼ tM where the brush separates.
Full symbols of Fig. 2(c) show the evolution of tM=t0 with

the twist angle for different values of μm and N. First, we
obtain that ln ðtM=t0Þ ∼ θ2 as for experimental data. We have
also checked (data not shown here) that g ∼ L=R. The friction
coefficient μm is varied, and the N dependency is obtained
from simulations of N fibers of radius aN such that R ¼
aN

ffiffiffiffiffiffiffiffiffiffi
N=ϕ

p
(with ϕ ¼ 0.80 the packing fraction) ensuring

fixed string radiusR.Wedidnot identify significant variations
with N between N ¼ 20 and N ¼ 100 [Fig. 2(c)].
Finally, Fig. 2(c) shows that all the experimental and

numerical data may be collapsed using the single law:

TM=T0 ¼ exp

�
0.75μθ2

R
L

�
; ð2Þ

with μ ¼ 0.63 μm for laboratory and μ ¼ 1.13 μm for
numerical experiments. The experimental dependence on
μm may be viewed on Fig. 2(c) where data for flax and
cotton collapse when plotted as a function of μθ2R=L.
Finally, the amplification of the tension in the yarn is thus
exponential, and only related to a dimensionless number
H ¼ μθ2R=L that we name the “Hercules twist number.”
Mechanical model.—We develop a mechanical model

for deriving (2). We consider a yarn made of N helicoidal
fibers [Fig. 3(a)] with some rising and descending fibers.
We consider first a twisted fiber at a distance r from the
axis: r ¼ reρ þ zez in cylindrical coordinates ðρ;φ; zÞ
[Fig. 3(b)]. The geometry of the helix of constant pitch
P gives φ=2π ¼ z=P and we define the reduced pitch as
p ¼ P=2π. For pitch large compared to r, the tangent
vector of the fiber is etðzÞ ≃ r=peφ þ ez. The tension is
tðzÞ ¼ tðzÞetðzÞ, and
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FIG. 1. (a),(b) Preparation of the model yarn before (a) and after
(b) twisting. (c) Photo of a yarn made from cotton strings after
twisting. (d) Traction forces as a function of displacement for
cotton yarn L ¼ 800 mm: (blue) θ=2π ¼ 11, (red) θ=2π ¼ 3.
(e) Symbol: maximum traction force as full twist angles (cotton
yarn, L ¼ 800 mm), dotted line is a guide for the eye, and dashed
line is the rupture force.
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dt
dz

¼ dt
dz

et −
r
p2

tðzÞeρ ≃
dt
dz

ez −
r
p2

tðzÞeρ: ð3Þ

We first consider the force equilibrium, in a section of the
yarn, for a portion of fiber between z and zþ dz. The force
−ðrdz=p2ÞtðzÞeρ is a linear restoring force toward the
axis of the yarn: the torsion of the yarn is then equivalent
putting the fiber into a twist-controlled harmonic potential
VðrÞ ¼ tðzÞdzðr2=2p2Þ. At mechanical equilibrium, con-
tact forces must balance this confining force. The equilib-
rium of forces in the plane perpendicular to the fiber writes

r
p2

tðzÞeρ ¼
Xj¼N

j¼1

fðjÞn eðjÞn ; ð4Þ

with N the number of contacts, fðjÞn dzeðjÞn the contact force

between z and zþ dz exerted by fiber j, and eðjÞn the normal
vectors at contact points. Let fn be the order of magnitude of

normal forces fðjÞn . Since vectors eðjÞn have random orienta-
tions, the right-hand side of (4) may be viewed as a 2d
random walk in force space, and we should have
tðzÞr=p2 ∼

ffiffiffiffiffi
N

p
fn. We now consider the force along z of

the rising fiber due to the N =2 fibers that do not rise. Each
contact exerts a sliding force ≃μmfn, and then ðdt=dzÞ≃
ðN =2Þμmfn ≃ ð

ffiffiffiffiffi
N

p
=2ÞμmtðzÞr=p2. We finally obtain

dt
dz

¼ μ
r
p2

tðzÞ; ð5Þ

with μ ¼ ð ffiffiffiffiffi
N

p
=2Þμm. The coordination number for a

random close packing of disks being 4 [20], we should
have μ ≃ μm, in agreement with laboratory and numerical
experiments. Integrating (5) along z gives tðLÞ ¼
t0 exp ðμrL=p2Þ. Using θ ¼ L=p, and dNðrÞ=dr ¼
Nr=R2 the density of rising fibers, the force on the yarn
section is

TM ¼
Z

r¼R

r¼0

t0 exp

�
μθ2

r
L

�
dNðrÞ ð6aÞ

¼ T0

2½ðH − 1Þ expHþ 1�
H2

; ð6bÞ

where T0 ¼ Nt0=2, and with H the Hercules twist number
H previously defined. Since t0 is only in prefactor of the
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FIG. 2. (a) Scaling law fðγ2Þ for cotton yarn at fixed R and L. Line is linear fit. (b) Scaling law gðL=RÞ for flax yarn at fixed twist
θ ¼ 2.5 turns. Line is linear fit. (c) lnðTM=T0Þ as functionH. Dashed line is Eq. (2), plain curve is Eq. (6b). For (a)–(c) Crosses and open
symbols are experimental data. Cotton, N ¼ 20, R ¼ 3.15 mm: L ¼ 200 mm (down pointing white triangle), L ¼ 400 mm (diamond),
L ¼ 200 mm (down pointing white triangle). Flax, N ¼ 20, R ¼ 4.15 mm: L ¼ 400 mm, various θ (solid red square), θ ¼ 2.5 turns,
various L (red cross mark). Plain symbols are numerical data with L=R ¼ 60: μm ¼ 1, N ¼ 40 (up pointing orange triangle), μm ¼ 0.5,
N ¼ 40 (green filled circle), μm ¼ 0.5, N ¼ 20 (left pointing violet triangle), μm ¼ 0.5, N ¼ 100 (right pointing black triangle),
μm ¼ 0.2, N ¼ 40 (down pointing blue triangle). (d)–(f) Schematic drawing of the preparation of the numerical yarn: (d) uniform
tension t0 is applied; (e) Shear force s is applied to twist the yarn; (f) Tension is increased to t on the top of half fibers, and on the bottom
of the other fibers. (g) Snapshot of a brush of fibers after twisting, and during the increase of t (N ¼ 20, L=R ¼ 60). Note the difference
of vertical and horizontal scales.

)b()a(

e
e

ez

r

et

d

r
2R

P

fn
(j)

FIG. 3. (a) Section of a yarn of radius R composed of fibers of
diameter d. Gray fibers go downward and white fibers go upward.
(b) A fiber twisted on a cylinder of radius r.
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exponential amplification, the scaling lnðTM=T0Þ ∼H is
expected to hold if (6a) is extended to a radius dependant
tension t0ðrÞ, as it is the case for dense packing of twisted
fibers [21], or if there is disorder on the values of t0.
Staples yarn.—We now apply our results to a yarn made

of an assembly of fibers of length L as shown in Fig. 4.
Figure 4(c) shows a yarn which separates in two parts
from an arbitrary plane z ¼ 0. A fiber with center located
above this plane rises. Let ze be the distance between
the end of the fiber and the plane, and t0 the tension at the
end of the fiber. Integrating (5) from −ze to 0 gives
tðz ¼ 0Þ ¼ t0 exp ðμrze=p2Þ. By symmetry, the relation
is the same for a descending fiber. Noting PðzeÞdze the
probability that fiber ends at a distance between ze and
ze þ dze, the total separating force is then

TM ¼
Z

r¼R

r¼0

dNðrÞ
Z
ze

t0 exp ðμrze=p2ÞPðzeÞdze ð7aÞ

¼ Nt0
2fexp ðH=2Þ − ½1þ ðH=2Þ�g

ðH=2Þ2 ; ð7bÞ

where H ¼ μRL=p2. We used dNðrÞ ¼ 2Nrdr=R2 with
N the number of fiber in one section, and assumed a
uniform distribution of ends of fibers PðzeÞ ¼ 2=L for
0 ≤ ze ≤ L=2. The tension Nt0 that the yarn may support
without twist is then amplified by a factor AðHÞ ¼
2fexp ðH=2Þ − ½1þ ðH=2Þ�g=ðH=2Þ2. We expect that
the exponential amplification still occurs for various dis-
tribution PðzeÞ: i.e., taking PðzeÞ as a Dirac distribution
δðze − LÞ in (7a), we recover (6b). Exponential amplifica-
tion should also occur in case of disordered values of t0, or
if fibers trajectories are not perfectly helicoidal.
Critical Hercules twist number and spinning transi-

tion.—This amplification factor AðHÞ increases nearly
exponentially with H. However, the maximum traction
TM cannot be larger that the force Tr for which the rupture
of the fibers occurs. We note Hc the critical value of the
Hercules twist number which verifies Tr ¼ Nt0AðHcÞ.
It occurs at a point C on Fig. 1(e). Hc separates weakly
twisted yarns (H < Hc) that fail by sliding of fibers,

from highly twisted yarns (H > Hc) that fail by breaking
of fibers.
A typical value of Hc for a yarn made of identical fibers

of diameter d and of length L may be evaluated. Noting E
the Young’s modulus, and εr the deformation of fibers at
rupture, and dropping constant numerical factor, the rupture
tension is tr ∼ εrEd2 for a fiber, and Tr ¼ Ntr for a yarn.
Since fibers are slender objects, we take t0 as the force
necessary to straighten into a yarn the fibers that are
initially bent. Noting ξ the initial flexion of the fibers
[Fig. 4(b)] we have t0 ∼ Ed4ξ=L3. It follows that AðHcÞ ¼
tr=t0 ∼ εrL3=ξd2. For cotton fibers with L ¼ 30 mm,
d ¼ 16 μm, μm ¼ 0.48 [22,23], εr ≃ 0.08, and ξ ∼ L=3:
AðHcÞ ∼ 105, andHc ≃ 33. The associated pitch for a yarn
of radius R ¼ 80 μm is P ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μRL=Hc

p
≃ 1.2 mm.

From a microscopic inspection of the yarn, we measured
a similar value of the pitch P ≃ 1.5 mm. For fibers made of
an identical material with ξ ∼ L, and dropping nonexpo-
nential term in AðHÞ ∼ expðH=2Þ, we obtain the simple
scaling Hc ∼ 4 lnðL=dÞ: Hc is in the range 20–40 when
L=d varies between 102 to 104.
Optimal yarn.—The maximum resistance of a yarn is

attain for H ≥ Hc, but is it possible to attain this value?
Indeed, twisting a yarn elongates the fibers which may
break: twisting a yarn too much reduces its strength, a fact
already noticed by Galileo [2]. The elongation may be
evaluated: a length dz of an initially straight fiber at r ¼ R
becomes ds ¼ dz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
after the twist of the yarn. The

deformation ε ¼ ðds − dzÞ=dz ≃ γ2=2 should be lower
than εr, so that the twist must verify γ2 < 2εr. The
maximum attainable value of H without breaking of fibers
is then Hr ¼ 2μεrL=R. For a maximal resistance without
breaking due to twist we must have Hc ≤ H ≤ Hr, so that

R ≤ Ropt ¼ 2μεrL=Hc; ð8Þ

where we introduced Ropt as the value of the yarn radius R
which verifies Hr ¼ Hc. Ropt is the largest radius of yarn
which may reachHc without breaking of fibers. For cotton
fibers, with Hc ≃ 30, we obtain Ropt ≃ 80 μm which is the
value of the radius that we measure for our cotton yarn.
Thicker simple yarns may be processed, but will not reach
their maximal resistance. Making larger yarns with maxi-
mal resistance must be done by putting together elementary
yarns of radius Ropt as it is done in practice [24,25].
Concluding remarks.—From our experiments and our

statistical model, a relatively simple picture emerges to
properly describe the spinning transition of yarn: the twist
on the fiber creates a confining potential. The tangential
force variations are then proportional to tension, creating
exponential decay of the tension. Although the model is
very simple, the experimental variations on model yarns
are very well captured. This means that a more refined
description of the disorder in the fiber arrays, potential

(a) (c)

(b)

FIG. 4. (a) Fibers of cotton. (b) Length L and tortuosity ξ of
fiber. (c) Separation of a yarn at a plane z ¼ 0. Arrows show the
directions relative to the plane z ¼ 0.
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deviations from helicoidal structures of fibers, or non-
linearity arising from nonsmall curvature (r≪p) are pre-
sumably of weak importance.
A crucial result of our study is that the force amplifi-

cation may be properly described with a single nondimen-
sional number H that we named Hercules twist number.
Although it appears to be a quantity of fundamental interest
for the yarn processing, this nondimensional number has
apparently not been previously defined. This name echoes
to the situation of the interleaved phone book experiment
[17,18]. In those studies the authors considered a “Hercules
number” 2μM2ε=d, with μ the friction coefficient, M the
number of pages, ε the sheet thickness, and d the distance
of overlap between leaves. Writing H as μθ2R=L, the
structure of these two nondimensional numbers appears
similar, but with the noticeable difference that θ is con-
trolled by the deformation of the yarn, whereas M is fixed.
It should be interesting to investigate in detail if the
assembly of frictional objects with different symmetries,
such as packing of nonaligned fibers [26] or twisted sheets
[27] show similar exponential force variations. Also, it
should be interesting to see if recent results on friction
effects on bending of layered structures [28] may be
extended to fibrous structures.
Finally, it should be noted that our theory is not only

qualitative, but also quantitative sinceHc ≃ 30 corresponds
to the twist value for real yarns. The exponential increases
of the force amplification factor AðHÞ, together with the
quadratic dependence with the twist angle H ∼ θ2 induces
that the spinning process appears in practice as a sharp
twist-controlled phase transition.
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