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Forces on an intruder combining translation and rotation in granular media

A. Seguin
Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France

(Received 14 August 2020; accepted 14 March 2022; published 23 March 2022)

An investigation of the mechanical actions on a moving intruder into a granular medium
subjected to a gravity field is provided using two-dimensional numerical simulation. The
interactions between the grains are frictionless and modeled by Hertz’s law with a viscous
damping. The intruder has a cross-shaped geometry and was initially buried at a shallow
depth. It has the ability to translate and rotate at constant velocities independently of each
other, thus defining a translational Froude number Fr and a rotational Froude number �.
We study the evolutions of the drag force Dx , the lift force Ly and the torque Mz exerted
on the intruder. In the case of pure horizontal translation with a low Froude number, these
quantities are constant and independent of Fr with Mz = 0. In the case of pure rotation
leading to Dx = 0, the torque is constant when � → 0 and increases with �. For the
combination of translation and rotation, we also determine the evolutions laws of the
mechanical actions with �: the rotation generates an increase of the torque on the intruder
while the drag force decreases. We highlight the existence of a significant drop of the lift
force favoring the anchoring of the intruder in the granular medium for a specific range of
�. By applying the granular resistive force theory, we determine theoretical expressions to
describe the evolution of the drag force Dx and the torque Mz. The theoretical results are in
agreement with the simulation results.
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I. INTRODUCTION

In the 2000s, a small lizard, called sandfish, was popularized by an experimental study high-
lighting its ability to swim and evolve in the sand [1]. Animal locomotion over the surface
of a granular medium or inside the granular medium itself remains a source of inspiration for
scientific projects since the associated movements are generally optimized [2–4]. Understanding
the mechanical behaviors of animals in order to be able to reproduce them in the eventuality of
designing bio-inspired machines or robots remains an exciting challenge. Thus, an experimental
study on a model robot able to move thanks to a propeller was recently developed: the movement
realized allowed a translation with an axial rotation like an Archimedes’ screw [5]. At the same time,
many scientific studies tried to decompose the different movements that participate to locomotion
in granular media and to measure their mechanical responses.

The first elementary movements of objects (or intruders) reported in granular media are most
often translational movements. These translational motions of intruders can be vertical, i.e., in the
direction of gravity g, generating an unsteady flow of grains. These unsteady flows are present in the
case of object impact on a granular medium where the initial energy of the object decreases during
the motion [6–11] and dynamic uplift test [12]. Several experimental studies have also explored the
case of stationary flow, often generated by a vertical translation at constant velocity of an object
in the granular medium. These studies have, for example, highlighted the grain fields [13–15] or
the force of resistance to penetration [16,17]. In the case of horizontal translational motions, i.e.,
perpendicular to the direction of gravity g, there are numerous experimental and numerical studies
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dealing with constant velocity displacement V0 [18–23] and dynamic testing [24]. Through these
studies, it is often reported the existence of two regimes which are the two extreme values of a
Froude number often defined by Fr = V0/(gh)1/2, where h defines the depth at which the object is
buried [25]. The major difference between these two regimes lies in the scaling of the drag force,
which corresponds to the resistance to motion, parallel to the movement. For low Froude numbers,
i.e., Fr � 1, the drag force on an object is independent of the translation velocity and scales roughly
with the hydrostatic pressure related to the depth of burial of the object, i.e., the weight of the grain
column above it [18,20,21,23]. For high Froude numbers, i.e., Fr � 1, the drag force varies as a
quadratic function of velocity scaling as V0

2 [19,22]. In this regime, collisions between grains, of
density ρ, generate a kinetic pressure scaling as ρV0

2 which is at the origin of the drag force [26].
Modeling the lift force in granular materials remains challenging. For example, it has been shown
that the lift force on a plate could be positive or negative depending on its orientation [27]. More
generally, the lift force does not have similar scaling laws as the drag force since it seems to evolve
with the Froude Fr number, the depth of burial and its geometric aspect [28].

Unlike translation, the rotational movements of objects in granular media have been less studied.
Stirring a granular medium with an object rotation causes a drop in the drag force [29]. To limit
the fluctuations in lift force, it is necessary that the intruder is sufficiently buried. According to a
previous study [30], the origin of the lift force comes from the pressure gradient on the intruder due
to gravity at great depths. This pressure gradient generates an asymmetrical distribution of normal
stress on the object and creates the lift force. An other study [31] indicates that this same pressure
gradient is rather the consequence of a volume fraction gradient caused by the shear and the dilation.
Recently, a numerical study with high Froude number frictional grains, i.e., without gravity, revealed
the Magnus effect exists in granular media [32]. Finally, the origin of the lift force in granular media
is still a subject of debate.

In this paper, we study the set of mechanical actions exerted on a cross-shaped intruder,
translating horizontally in a granular medium and being able to rotate around its center. We thus
characterize the drag force, the lift force and the torque exerted on the intruder as a function of
the kinematic parameters of the object’s motion. The intruder is initially buried at a shallow depth.
First, we briefly describe the numerical method used and we define the set of useful parameters.
Then, we carry out a first study on horizontal translation without rotation. Then, the second study
focuses on the pure rotation of the intruder without translation. The third study presents the results
on the combination of translation and rotation. Finally, we discuss the results in the framework of
the granular resistive force theory.

II. NUMERICAL SETUP AND CONFIGURATION

The numerical method has already been used for other analyses [9,23]. To simulate the displace-
ment of an intruder buried in a two-dimensional granular medium, we use a molecular dynamic
method. The typical geometry of the intruder and granular medium is shown in Fig. 1. The two-
dimensional (2D) granular medium consists of spheres whose centers are coplanar. The diameters
of these spheres can vary between 0.8d and 1.2d where d = 1 mm is the average diameter of the
spheres. To avoid crystallization of the packing, we have chosen a uniform distribution of these
diameters. All grains have the same mass m, thus defining the average density ρ = 103 kg/m3, based
on the average diameter d . All grain interactions in the simulation are modeled with a dissipative
Hertz law of the form Fi j = kζ 3/2 − λ

dζ

dt , where ζ is the interpenetration of the grains, k is the
stiffness of the contact, and λ is a damping coefficient. The stiffness k is related to the Young’s
modulus E = 1 GPa of the grains such that k = E

√
d/2. The coefficient of viscous damping λ

simulates a restitution coefficient en = 0.9. One can notice that the grains are frictionless. The
time step is small enough to ensure numerical convergence. The details of these calculations were
reported in Ref. [9].

The intruder has the shape of a cross in the setup (see inset of Fig. 1). This arbitrary shape
of the intruder has been chosen to ensure a dragging of the grains by obstacles during a possible
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FIG. 1. Snapshot of a simulation during the displacement of the intruder moving through a granular
medium at Fr � 0.02 and � � 0.05 along the x direction. The intruder is initially buried at depth h. The
scales for the x and y axes are in grain diameter. Inset shows a close up of the intruder in its initial position
defining its size δ with the spatial organization of the grains, the initial angle θ0, its linear velocity V0, and its
rotational velocity �0. The color of the grains represents the norm of their velocity vector associated with the
selected time according to the displayed color scale.

rotation of the intruder since the grains are frictionless. It consists of twelve grains with the same
mechanical properties as the granular medium. Therefore, the effective diameter δ of this intruder
is δ = (5 + √

2)d . Here, the kinematics of these grains constituting the intruder are completely
controlled. It is initially buried in the granular medium at a depth h � 20d , which is the vertical
distance (y direction) from the upper surface of the granular medium to the center of the intruder
(Fig. 1). This upper surface is defined as the average y position of the grains constituting the higher
layer of grains in the initial state. The x position of the intruder in the x direction corresponds to the
horizontal distance from the left wall of the tank to the center of the intruder such that x = 2.5δ in
the initial horizontal position of the intruder (Fig. 1). To prepare for this initial state, the intruder
was fixed in his initial buried position. Then, a diluted granular medium is placed above and its
sedimentation under the action of gravity (g = 10 m/s2 parallel to the y direction) leads to the
initial configuration for further calculations. Once the sedimentation is complete, the tank filling
level reaches a finite value that allows us to define h. In this initial organization, the tank containing
the product is large enough that the lateral limits (>10d) have no effect on the force exerted on the
intruder by the grains [8]. This process leads to an average packing fraction of 0.83. This value is
less than the critical volume fraction φJ = 0.85, indicating that the packing is rigid but still a loose
packing [33,34]. As we use spherical beads of diameter d , the effective length in the third direction
is d , so the effective cross section of the intruder scales as δd .

Once the initial configuration has been prepared, we move the intruder at constant velocity V0

along the x direction (with ex being the associated unit vector) and zero along the y direction (with
ey being the associated unit vector). The intruder runs a distance equivalent to 5δ in the x direction
to avoid getting too close to the right wall of the tank [8]. The intruder is initially positioned with an
orientation of θ0. The angle θ0 represents the angle between the x direction and the arm of the cross
located in the quadrant I (see inset of Fig. 1). The intruder can also rotate at a rotational velocity
�0 around the z direction, with ez being the associated unit vector (see inset of Fig. 1). Similarly to
previous studies [25], it is relevant to use the translational Froude number defined by

Fr = V0/(gh)1/2. (1)

This number links the kinetic pressure ρV0
2 due to collisions [26] and the pressure created by the

gravity field ρgh [25]. Taking into account that h is proportional to d , there is then a direct relation
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between the Froude number Fr and the inertial number I used in the rheological law describing
granular materials [35,36]. Since our problem also presents the phenomenon of pure rotation, it is
also possible to define a rotational Froude number by adopting a similar definition. This number can
be written as

� = δ�0/(gh)1/2, (2)

since a characteristic linear velocity of rotational motion is δ�0. These two numbers Fr and � are
the two control parameters of our study.

During the movement of the intruder at constant velocity V0 and constant rotation velocity �0, we
record the component of the force exerted by the granular medium on the intruder in the x direction,
called drag force, the force exerted by the granular medium on the intruder in the y direction,
called lift force and the torque exerted by the granular medium on the intruder in the z direction.
These mechanical actions are calculated at each time step and are functions of time and contain the
collisions between the grains and the intruder. We therefore choose to work with the time-averaged
quantities once the transitory regime of the translation is over [23]. These temporal averages are
calculated once the intruder has crossed a distance equivalent to its diameter δ, which allows us to
cross the transient regime and to avoid the effects due to the preparation of the packing under the
intruder. The drag force (lift force) is calculated as the sum of the drag (lift) forces on each grain
constituting the intruder. The torque is calculated as the sum of the vector products on the grains i
constituting the intruder applied to the center of the intruder ri × Fi, where ri is the vector linking
the center of the intruder to the i grain and Fi is the force vector applied to that i grain. We call the
time-averaged drag force D̃x, the time-averaged lift force L̃y, and the time-averaged torque M̃z. Each
observed mechanical action (D̃x, L̃y, or M̃z) also has a characteristic scale in granular materials.
Thus the intruder being initially buried at a depth h in all the simulations, a typical pressure scale of
the hydrostatic type is ρgh. This pressure is present in many studies [18,20,21,23]. This pressure is
applied to a characteristic cross section of the object δd . One builds the dimensionless mechanical
actions associated with this scale: the normalized drag force Dx = D̃x/(ρghδd ), the normalized lift
force Ly = L̃y/(ρghδd ), and the normalized torque Mz = M̃z/(ρghδ2d ), using a characteristic lever
arm of size δ.

The following paper is an analysis of the mechanical actions Dx, Ly, and Mz exerted on the
intruder as a function of the two control parameters Fr and �. The range of variation of Fr is such
that 10−4 < Fr < 0.3 even if we will work essentially at Fr � 0.02. The range of variation of � is
such that −1 < � < 1.

III. THE CASE WITH TRANSLATION AND WITHOUT ROTATION: Fr < 1 AND � = 0

We first study the classical case of horizontal translation at constant velocity [18,20,21,23,27,28].
The goal here is to validate whether the behavior of the cross-shaped intruder is similar to the disk in
the case with no rotation of the intruder, i.e., � = 0. Figure 2 presents the various measurements of
Dx, Ly, and Mz obtained according to the Froude number but also according to the initial orientation
angle θ0 of the cross. The angle θ remains constant such that θ = θ0 during the movement since
there is no rotation of the intruder.

Figures 2(a)–2(c) show the evolution of Dx, Ly, and Mz, respectively, with the Froude number Fr
in the studied range. It is shown that the drag force Dx [Fig. 2(a)] and the lift force Ly [Fig. 2(b)]
do not evolve significantly with the Froude number. We then consider them as constants. There is
no growth of the drag force with Fr2 here since Fr � 1 [22,26]. The influence of the high Froude
number on the drag force is not visible. The torque Mz fluctuates with the Froude number Fr with a
very low value. This leads us to conclude that Mz � 0. Finally, the three mechanical actions (Dx, Ly,
and Mz ) are independent of the Froude number in the studied range. To be in this regime, the kinetic
pressure ρV0

2 must be lower than the pressure created by the gravity field,
√

ρgh. It is the equivalent
of imposing a Froude number F = V0/

√
gh smaller than one. As part of our numerical configuration,

it leads to the condition V0 � 0.5 m/s to ensure that the possible wake created behind the moving

034302-4



FORCES ON AN INTRUDER COMBINING TRANSLATION …

FIG. 2. Evolution of (a) the drag force Dx , (b) the lift force Ly, and (c) the torque Mz as a function of
translational Froude number Fr. Evolution of (d) the drag force Dx , (e) the lift force Ly, and (f) the torque Mz

as a function of the initial angle θ0. The dotted lines in panels (a) and (d) represent the value D0 = 0.72. The
dotted lines in panels (b) and (e) represents the value L0 = 0.045, which is the average of the data set of panels
(b) and (e).

intruder is filled [26]. It is also well established that, for a small Froude number, the evolution of the
drag force on a disk is quasistatic [19,21,22,25,37] and it is then useless to vary this parameter.

Figures 2(d)–2(f) show the evolution of Dx, Ly, and Mz, respectively, with the initial orientation
angle θ0 for 0 ◦ � θ0 < 90 ◦. Several tests with different packing were performed for each value
of θ0. The results fluctuate and a bar has been added to represent the standard deviation of the
measurements for each value of θ0. The drag force Dx varies little with θ0 and remains constant
[Fig. 2(d)]. This average value is measured to D0 = 0.72 [Figs. 2(a) and 2(d)]. The torque Mz varies
little with θ0 and we still have Mz which is very close to zero [Fig. 2(f)]. The lift force fluctuates
significantly with θ0 and the associated standard deviation is not small. We can, however, estimate
an overall average value of the lift force over the data set; this average value is measured to be
L0 = 0.045 [Figs. 2(b) and 2(e)]. We find here that the shape of the object influences the lift force,
as in the previous studies with comparable dispersion bars and a lift force which can be negative
[27,28,38].

IV. THE CASE WITHOUT TRANSLATION AND WITH ROTATION: Fr = 0 AND � < 1

In this section, we look at the complementary case to the previous one where Fr = 0 and � �= 0.
Here, there is no translation and rotation is imposed for five rotations of intruder. The transitional
regime due to the rotation can be reasonably estimated at one round of intruder [30]. We therefore
choose to work with the time-averaged quantities once the transitory regime of the rotation is
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FIG. 3. Evolution of (a) the drag force Dx , (b) the lift force Ly, and (c) the torque Mz as a function of
rotational Froude number �. The horizontal dotted line in panel (b) represents the average value of the lift
force L0 = 0.045. The solid line in panel (c) is given by Eq. (3) with M0 = 0.17, M1 = 0.73, and �0 = 0.76.

over. Figure 3 shows all the results of this configuration. First we notice that the drag force Dx

fluctuates around zero for the whole range of � studied so it is reasonable to write that Dx = 0
[Fig. 3(a)]. Figure 3(c) shows the evolution of the torque Mz as a function of �. Two regimes can
be distinguished: a low-value regime of � and a high-value regime of �. In the low-� regime, the
value of Mz is constant and corresponds to the quasistatic case. In the high-� regime, the torque
Mz increases nonlinearly with �. The origin of this torque comes from the effective friction of the
granular material on the object. Given that the flowing properties of the granular material are well
described by the μ(I ) rheology [36], we expect to observe a similar rheological law in this flow. In
the case of pure rotation of the object around its axis in a granular medium, it is relevant to propose
a similar behavior law. Thus we think the best continuous description of the data is

Mz(�) = M0 + M1 − M0

1 + �0
�

, (3)

with M0 = 0.17 ± 0.01, M1 = 0.7 ± 0.1, and �0 = 0.8 ± 0.2. In this description, when � → 0, the
torque tends towards a finite value M0. This behavior is the complementary case to pure translation
where the drag force is not null when Fr → 0 [Fig. 2(a)].

Figure 3(b) shows the evolution of Ly with �. The value of this lift force is consistent with the
values of L0 measured in Figs. 2(b) and 2(c) (dashed lines). The lift force dispersion bars are still
important even if a continuous rotation is imposed here—this is due to the shallow depth of burial.
As for the torque Mz, it would appear that a quasistatic regime is emerging for low �. In this regime,
the value of the lift force is comparable to L0. Then, in the higher-� regime, the lift force increases
with �. Since in this regime the grains above the intruder are relieved of gravity, the lift force
comes only from the grains exerted under the intruder. As soon as � > 1, the lift force increases
significantly and the torque fluctuates strongly; it is the transition to the ballistic regime where no
grains are in contact with the intruder. Since this ballistic regime is not the subject of the study, we
limit ourselves in the following paper to � < 1.

V. THE CASE WITH TRANSLATION AND ROTATION: Fr = 0.02 AND |�| < 1

We now investigate the case where V0 �= 0 and �0 �= 0 corresponding to both Fr �= 0 and � �= 0.
However, we have restricted the study to the case of the quasistatic regime in translation, so we
keep V0 constant at 10 mm/s leading to Fr = 0.02 in this set of simulations. Figure 4 presents the
evolution of the drag force Dx, the lift force Ly, and the torque Mz applied on the intruder as a
function of �.

First, we have observed that Dx is an even function of the variable � while Mz is an odd function
of the variable �. In other words, the sign of rotation �0 does not affect the drag force Dx and
modifies the sign of the torque Mz. Figure 4(a) [4(c)] shows the evolution of Dx (|Mz|) as a function
of |�|. We observe that Dx decreases with |�| [Fig. 4(a)] and Mz increases with |�| [Fig. 4(c)]. Here
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FIG. 4. Evolution of (a) the drag force Dx , (b) the lift force Ly, and (c) the torque Mz as a function of
rotational Froude number � for Fr � 0.02. The open symbols correspond to h � 20d , and the full symbols
correspond to h � 100d . The inset of panel (b) shows the lift force Ly as a function of �/(2Fr). The solid
line in panel (a) represents Eq. (5) and the dotted line represents the value of D0 = 0.72. The dotted line in
panel (b) represents the value of L0 = 0.045. The solid line in panel (c) represents Eq. (6) and the dotted line
represents the value of M0 = 0.17.

we can identify two regimes. The first regime at small values of |�| for which the drag force Dx is
constant and equal to D0 and the torque Mz is zero. This velocity corresponds to the fact that the
effect of rotation is negligible compared with the effect of translation. The other regime corresponds
to larger values of |�| for which the drag force Dx decreases to near zero and for which the torque
|Mz| increases. The increase of the torque with � is correlated with the decrease of the drag force Dx.
This indicates that there is a transfer of mechanical power from translation to rotation. Moreover,
for small values of �, the drag force Dx is constant and corresponds to the value D0 measured for
� = 0. For large values of �, it seems to be zero. We observe here a transition between these two
values of drag force.

Figure 4(b) shows the evolution of the lift force Ly as a function of �. First of all, this function is
not monotonic with �. We see that, for the larger values of �, the value of the lift is roughly constant
and its value is comparable to the value L0 found when Fr = 0 [Fig. 3(b)] in the range � < 1. For
� > 0, Ly does not exceed L0 as in the case of pure rotation [Fig. 3(b)]. For � < 0, we observe that
Ly/L0 > 1, which shows that the negative sign of rotation amplifies the lift effect compared with
values of � > 0. When � goes from a negative to a positive value, it seems that the lift Ly decreases
sharply to a negative value, passing through a minimum before increasing to positive values. The
inset in Fig. 4(b) shows a close-up on this minimum and displays the evolution of the lift force
Ly as a function of �/(2Fr). For � > 0, we see that the lift force decreases with �, goes through
a minimum, and then increases with �. We observe that the value of the lift force (positive when
|�| → 0) is in compliance with Figs. 2(b), 2(c), and 3(b). As has already been observed for the lift
force, the dispersion of the data is significant. It is thus difficult to give a value to this minimum;
however, we evaluate it here at Lm = −0.015 ± 0.001. At this minimum, it seems there is a negative
lift (or close to zero) and thus the intruder would tend to anchor deeper than its current depth if it
was not kept at a constant depth. The value of this minimum is expected to change with depth h.
Some simulations have been performed for h � 100d (Fig. 4). Even if the drag force Dx and the
moment Mz are independent of h, it is possible that the depth h has an slight influence on the value
of the minimum Lm in this configuration [Fig. 4(b)]. The value of this minimum is obtained for
�m/(2Fr) � 0.9 corresponding to �m � 0.036, taking into account the fact that Fr = 0.02. Back to
the simulation parameters, that corresponds to δ�0/V0 � 1.8 which is very close to the value two.
For this peculiar configuration, the object rolls by pressing slightly the grains above it. Moreover,
the rotation induces a fluidization of the granular medium below the intruder which has the effect
of reducing the lift action of these grains. The upper part of the granular medium above the intruder
is not subject to large grain movements unlike the lower part of the granular medium (Fig. 1). The
upper part of the granular medium can apply a greater vertical force on the intruder than the lower
part, causing a drop in the lift force.
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VI. DISCUSSION

Let us now compare the numerical results to theoretical predictions. We model the increase of
the torque Mz and the fall of the drag force Dx with the rotational Froude number �. To do so,
we consider the framework of the granular resistive force theory developed in several studies with
the difference that our intruder is not a slender object [1,3,5] or a wheel moving on the surface of a
granular medium [39,40]. We apply a Coulomb-type friction law to the rotating object. Even if it has
the shape of a cross, we work as if it were a solid disk of radius δ/2. The frictional force experienced
by the intruder is decomposed into a radial force and a tangential force, with two a priori distinct
force coefficients Cr and Cα . This model geometry is compatible with a description in a cylindrical
coordinate system (er, eα, ez). Thus, the position of a point at the surface of the intruder of radius
δ/2 is only defined by an angle α. The velocity of this point during the combined motion is written
v = (δ�0)/2 eα + V0 ex. In the framework of granular resistive force theory, the frictional force per
unit length at this point is proportional to the pressure at which the object is buried (≈ρgh) and is
integrated over the thickness (≈d) in the z direction. This force per unit length can then be written
as

f = −ρghd

(
Cr

v · er

‖v‖ er + Cα

v · eα

‖v‖ eα

)
, (4)

where Cr and Cα are the normal and tangential effective coefficients of friction. The integration of
this force on the surface of the disk of radius δ allows us to propose an expression for the drag force
Dx (associated with the vector ex) and the torque Mz (associated with the vector ez). Thus, we can
propose a theoretical expression for the drag force such that

Dx = −
∫ 2π

0

f · ex

ρghδd

δ

2
dα

= 1

2

∫ 2π

0

−Cα
�
2 sin α + (Cr cos2 α + Cα sin2 α)Fr(

Fr2 + �2

4 − Fr� sin α
)1/2 dα. (5)

We can also propose an expression for the torque such as

Mz = −
∫ 2π

0

(
δ
2 er × f

) · ez

ρghδ2d

δ

2
dα

= 1

4

∫ 2π

0

Cα

(
�
2 − sin αFr

)
(
Fr2 + �2

4 − Fr� sin α
)1/2 dα. (6)

The determination of the lift force by this model leads to an expression which will always be equal
to zero in the range of � and Fr. This result is a consequence of the resistive force theory model
which assumes that the intruder is located at a constant pressure. The model cannot capture the lift
evolutions on the object which cannot be considered as slender.

The results for � = 0 and Fr �= 0 show that Cr and Cα do not depend on Fr in the range
studied (Fr < 0.1). Using the results of the simulations at Fr = 0 [Eq. (3)], we derive a theoretical
expression for Cα which depends on �:

Cα (�) = 2

π

(
M0 + M1 − M0

1 + �0
�

)
. (7)

Cα is not constant, contrary to previous studies [3,5], and depends on �. The equation (5) implies
that the drag force Dx is null when Fr = 0 regardless of the value of �, which is consistent with
the results presented in Fig. 3(a). By implementing the expression of Cα in the expression of the
measured drag force D0 in the case � = 0 and Fr �= 0, it is possible to propose an expression of Cr
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when � = 0:

Cr = 2(D0 − M0)

π
, (8)

which leads to Cr � 0.35. It is now possible to implement the expressions of Cr and Cα into Eqs. (6)
and (5) to determine Dx and Mz. The black solid line in Fig. 4(a) [4(c)] shows the proposed analytical
function of Dx (Mz). We can see that the behavior matches the simulations very well. It is expected
that accounting for the microscopic friction in the contact law between grains will slightly affect the
values obtained. The small remaining offset probably comes from the assumptions of the coefficients
Cr and Cα , which may have more complex dependencies depending on Fr and �. Furthermore, since
the local packing fraction variation has not been taken into account in the model, it may also modify
these values.

VII. CONCLUSION

In this study, we are interested in the set of forces and torques acting on a cross-shaped intruder
moving in a granular material subjected to gravity (along the y direction). The possible movements
of this cross are horizontal translation (along the x direction), rotation (along the z direction) or a
combination of these two movements. The translation is described by a translational Froude number
Fr, and the rotation by a rotational Froude number �. The forces measured on the intruder are the
drag force Dx, the lift force Ly, and the torque Mz.

In the case of pure translation (� = 0) and low Froude number (Fr < 1), we find the results of
the usual cases presented in previous studies [18–23]. The set of results is summarized as a constant
drag force Dx = D0, a constant lift force Ly = L0, and a null torque Mz = 0.

In the case of pure rotation (Fr = 0) for values of |�| < 1, the results show an evolution with
�. Even if the drag force remains null, Dx = 0, the lift force remains constant at Ly = L0 and then
increase with �. The torque exerted on the intruder is constant Mz = M0 as long as � is small and
then increases with �. The evolution of Mz can be described by a phenomenological law similar to
μ(I ) rheology.

The combination of rotation and translation is not limited to an addition and reveals new behavior
for these three quantities. When � is small, rotation has no effect and similar results to pure
translation are found for drag force, lift force, and torque. As � increases, the torque increases and
the drag force decreases. By applying the granular resistive force theory, it is possible to describe
the evolutions of Dx and Mz with � in agreement with the simulation results. The lift force loses the
constant behavior that was observed in pure translation and pure rotation. The lift force decreases
toward a value close to zero or even negative. The minimum lift force is obtained for the case
�/(2Fr) � 1. This study opens the way to other studies closer to the problems of animal locomotion
where it would be relevant to consider movements such as translation with imposed rotation or
translation with imposed rotation.

Finally, it would be necessary to characterize the grain flow around the intruder in this geometry.
This would allow a better understanding of the origin and the mechanisms that cause the drop in lift
during rotation combined with translation. Even if this study showed the existence of �m value, its
origin is not clear yet. The understanding of this flow and of the local stresses and deformations will
allow a better control of the problem of grain flows around rigid and moving objects.
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