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Rheology of granular rafts
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Rheology of macroscopic particle-laden interfaces, called “granular rafts,” has been experimentally studied in
the simple shear configuration. The shear-stress relation obtained from a classical rheometer exhibits the same
behavior as a Bingham fluid, and the viscosity diverges with the surface fraction according to evolutions similar
to 2D suspensions. The velocity field of the particles that constitute the granular raft has been measured in the
stationary state. These measurements reveal nonlocal rheology similar to dry granular materials. Close to the
walls of the rheometer cell, one can observe regions of large local shear rate while in the middle of the cell a
quasistatic zone exists. This flowing region, characteristic of granular matter, is described in the framework of an
extended kinetic theory showing the evolution of the velocity profile with the imposed shear stress. Measuring
the probability density functions of the instantaneous local shear rate, we provide evidence of a balance between
positive and negative instantaneous local shear rate. This behavior is the signature of a quasistatic region inside
the granular raft.
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I. INTRODUCTION

Particle-laden interfaces are ubiquitous in the natural en-
vironment (e.g., insect colonies [1,2]) and industries to build
materials with specific properties (e.g., electric or magnetic
properties [3]), prevent sloshing [4], or stabilize foams or
emulsions [5,6]. Among their intriguing behavior one can cite
their ability to generate armored nonspherical or everlasting
bubbles [7] which can support high over- or underpressure
[8,9]. Their countless applications have generated many stud-
ies of their mechanical properties (see [10] for a review).
When particles are spread on a liquid surface they deform
the interface, and interaction forces between them appear. For
spheres, the contact angle ζ sets the position of attachment
of the liquid-air interface on the particle. For light (small
Bond number [11]) and large enough particles, gravity and
colloidal interactions are negligible compared to capillaries.
The curvature of the interface results from the balance be-
tween the particle weight, the Archimedean force, and the
capillary force which pulls the beads, leading to attractive
forces between particles. Under these conditions particle-
laden interfaces are often called granular rafts [12], and
their ability to float, to sink, or to trap material [13,14] as
well as their robustness has been widely studied [15,16].
The behavior of particle-laden interfaces under compression
[17–19], or indentation [20] is fairly well understood. Their
viscoelastic behavior has been studied [17,21,22], suggesting
the importance of local interactions between particles in the
macroscopic rheology; however, their behavior when submit-
ted to stationary simple shear remains poorly understood.

In three dimensions, above a yield stress and in the inertial
regime, dense granular materials (respectively suspensions)
obey the so-called local friction constitutive law μ(I ) = τ/P
[resp. μ(J ) = τ/P], where τ is the shear stress and P the con-
fining pressure, and a dilatancy law φ(I ) [resp. φ(J )] where
φ is the packing fraction. μ and φ are scalar functions of

the inertial number I = γ̇�d/
√

P/ρ (resp. the viscous number
J = η f γ̇�/P), with γ̇� the local shear rate, d the particle diam-
eter, ρ their density (and η f the fluid viscosity) [23–26]. This
inertial (resp. viscous) number can be seen as the ratio be-
tween a characteristic time of strain 1/γ̇� and a characteristic
time of rearrangement d

√
ρ/P for granular matter (resp. η f /P

for suspension). However, in many cases granular materials
exhibit nonlocal effects which lead to the development of a
sheared region next to a quasistatic one. In these situations
granular material rheology deviates from the local constitutive
law, and several models have been developed to account for
this nonlocality [27–33].

In order to keep the same rheological framework for the
description of granular rafts, it is relevant to define a micro-
scopic characteristic time tc related to the rearrangement of
the grains constituting the raft. For granular rafts the useful
stress scale comes from the surface tension χ between the
liquid and the particles which apply the confining pressure
σ/d with σ = χ cos(ζ ) where ζ is the contact angle. Thus the
characteristic rearrangement time reads tc = d

√
ρd/σ , and

one might build a capillary inertial number:

Ic = γ̇�d√
σ
ρd

. (1)

Moreover, due to the curvature of the meniscus attractive
capillary forces develop between particles, and granular rafts
may belong to the attractive granular class of materials [34]
with stronger nonlocal effects, thus different rheology.

In this paper we study the rheology of a granular raft
with a classical rheometer in a double-gap cell with imposed
shear stress and address the question of the locality of the
particle-laden interface behavior. Granular rafts are 2D at-
tractive granular media that exhibit a yield stress function of
the particle surface fraction φ and whose mean behavior can
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be described as a Bingham fluid. When the granular raft is
sheared, coupling global stress-strain measurements and dis-
placement field measurements reveals that the local capillary
inertial number Ic is not homogeneous in the rheometer cell.
While accounting for this behavior by the use of a continuous
hydrodynamic model based on the kinetic theory extended
to dense granular systems [33,35], we highlight that in the
region where Ic is smaller than a critical capillary inertial
number Ic

∗, the microscopic velocity fluctuations give rise to
a balance between positive and negative instantaneous local
shear rate, thus inhibiting the onset of a macroscopic shear.
This is characteristic of a quasistatic regime and suggests a
transition of the nature of the interaction between grains from
a collisional regime to an elastic regime.

II. EXPERIMENTAL SETUP

Granular rafts are obtained by gently spreading silanized
polystyrene spheres of diameter d = 140 µm and d = 80 µm
(see Sec. VI) to probe the influence of particle size, setting
the mean particle surface fraction φ, which is measured by
direct visualization, over a mixture of water and glycerin
that matches the polystyrene density so that buoyancy effects
are neglected before capillary effects. Tetradecyl trimethyl
ammonium bromide (TTAB) is added to the liquid phase to
a concentration of 10 g L−1 to reduce the surface tension,
and thus the cohesive force between the particles, to χ = 34
mN m−1, while the contact angle between the fluid and the
silanized particle, measured through pendant drop method, is
ζ ≈ 80◦ leading to σ ≈ 5.9 mN m−1. Note that 34 mN m−1

is the minimum value accessible with this surfactant.
Granular rafts are sheared in a homemade cylindrical

double-gap cell of mean radius R = 30 mm whose two gaps
are e = 4.5 mm wide, accounting for the thickness of the mea-
suring cylinder [Fig. 1(a)]. The inside, outside, and measuring
cylinders are made coarse by gluing the same particles as the
ones forming the raft at their surfaces. The cell is placed into a
MCR 501 rheometer (Anton Paar), and the measuring cylinder
is lowered 10 mm deep into the solution. The granular raft
is sheared at constant velocity � = 0.3 Hz for 10 rotations
before any measurement. The cylinder is then driven with a
constant torque M, and we allow the system to flow until
a steady state is achieved, with a constant rotational speed
�∞ measured, which comes typically in 150 s [Fig. 1(b)].
Note that the rotational speed � corresponds to the cylinder
velocity; the actual particle velocity close to the wall may
differ from � due to the sliding at the wall. This steady state
can be achieved with both decreasing or increasing torque,
showing no hysteresis or long-time variation. Due to the con-
tribution of the fluid flow underneath the raft to the torque, a
benchmark measure is performed without particles to obtain
the resisting torque M f for the pure fluid at the same rotational
speed �∞. We can then deduce the expression of the surface
shear stress on the raft, that is, the shear stress integrated over
the thickness of the raft in this double-gap configuration, to be
τ = (M − M f )/(4πR2). In a fairly narrow gap configuration
[0.99 > R/(R + e) > 0.5 [40], here R/(R + e) ≈ 0.87], con-
sidering the mechanical equilibrium, the shear stress τ , and
the pressure are homogeneous in the gap.

FIG. 1. (a) Sketch of the experimental setup. (b) Imposed torque
M = 1.5 µN m (•) and measured velocity of the cylinder � (•) as a
function of time t for φ = 0.74. The dashed line represents the steady
regime with �∞ = 54 mHz. (c) Typical instantaneous velocity field
for an imposed torque M = 6 µN m. The color of the velocity vector
represents its norm relatively to the velocity of the inner cylinder
(R�∞ = 17.5 mm s−1).

Using a camera set under the raft, we record its displace-
ment field in the outer gap of the cell while shearing it,
allowing us to detect and follow particles for a dense raft
[Fig. 1(c)]. We can then process the images thus obtained via
image correlation to compute the local time-averaged velocity
field of the particles. Considering the flow geometry, the re-
sults will be presented in polar coordinates (r, θ ) centered on
the axis of the rheometer in the viewing plane of the camera
[Fig. 1(c)]. Since the range of variation of r extends from R
to R + e, we define a reduced space variable s = (r − R)/e
to discuss the results. Additionally, the axisymmetry of the
system allows us to average spatially the results according
to the orthoradial direction eθ . Since no mean displacement
of particles in the radial direction is observed, the instanta-
neous velocity field of the particles is Vθ (s, t )eθ . Averaging
over time, one obtains the time-averaged velocity field V (s) =
〈Vθ (s, t )〉. From this local velocity field, it is then possible to
determine the local shear rate γ̇�. The detection of the grains
is feasible in the center of the cell leading to no significant
radial variations of φ in the range 0.3 < s < 0.9, implying
no variation in the whole gap: Sec. IV will show that for
higher stresses the shear rate is homogeneous in the whole
gap, leading to the conclusion that φ is also homogeneous.
The measure of φ being independent of the imposed stress
in the available range [Fig. 3(b)], and the number of particles
being constant through the experiment, this means that φ is
independent of the imposed stress in the whole gap and thus
homogeneous.

III. RHEOMETRY

In these experiments performed in a Couette rheometer, it
is usual to present the evolution of the mean (surface) stress
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FIG. 2. (a) Dimensionless shear stress (τ − τ0 )/σ as a function
of the dimensionless mean strain γ̇mtc for different solid fractions:
(�) φ = 0.71, (	) φ = 0.74, (×) φ = 0.76, (
) φ = 0.77, and (�)
φ = 0.79. The solid line represents a linear fit τ − τ0 = ηs(φ) σ tcγ̇m

corresponding to Bingham fluid behavior. (b) Normalized surface
viscosity ηs/(σ tc ) and (c) dimensionless yield stress τ0/σ as a func-
tion of φ. The solid line in (b) is given by ηs/(σ tc ) = η0φc(φc −
φ)−2φc with φc = 0.82 and η0 = 2.83 corresponding to the 2D sus-
pension behavior law [36,37]. The dashed line in (b) corresponds
to the Maron and Pierce law [38,39] adapted in two dimen-
sions, ηs/(σ tc ) = η0φc(φc − φ)−2 with φc = 0.82 and fit parameter
η0 = 0.81.

τ as a function of the mean shear rate γ̇m = R�∞/e (Fig. 2).
The average rheological curves show that the rheology of the
granular raft follows a Bingham fluid constitutive law τ =
τ0 + ηsγ̇m [41], where τ0 is a 2D surface yield stress in Pa m
and ηs is then a 2D surface viscosity thus expressed in Pa m s.
Figure 2(a) presents the linear evolution of the normalized
stress (τ − τ0)/σ as a function of the normalized shear rate
γ̇mtc for different packing fractions φ. Above a critical particle
surface fraction φ∗ ≈ 0.71 granular rafts exhibit a yield stress
τ0 which increases with φ [Fig. 2(c)]. On either side of this
critical particle surface fraction, flowing rafts do so with a
constant viscosity, which is itself a growing function of φ

[Fig. 2(b)]. The dependence of the surface viscosity ηs with
the particle surface fraction φ is in a roughly good agreement
with previous studies [17,42]. It follows the usual rheological
law of 2D suspensions ηs ∝ (φc − φ)−2φc [36,37] showing
that our setup is not singular. Note that a Maron and Pierce law
used for 3D suspensions is also in reasonable agreement with
our data [38,39] as shown in Fig. 2(b). Out-of-plane motion of
the particles is a good candidate to explain the odd rheological
behavior at very high φ (squares in Fig. 2). At a particle sur-
face fraction that close to the packing fraction, a small relative
change in φ caused by out-of-plane motion would induce a
large change in the measured ηs and τ0. We tried to check

this hypothesis using a laser profilometer, unfortunately to no
avail for the lack of precision of the measurement. During
this experiment, the fact that the measure of φ for the highest
stress, at the beginning of the experiment, is no noticeably
different from the measure for the lowest stress, at the end
of the experiment, leads to the conclusion that no significant
amount of particle had sunk (<2%).

IV. VELOCITY FIELD

The images taken from a video camera are analyzed by
a DIC software (DaVis, LaVision) to get the velocity field
of the grains [Fig. 1(c)]. From it we extract the azimutal
profile V (s). In the observed range the velocity at which the
cylinder rotates R� is never met by the grains at the wall. To
account for this slip velocity, we normalize the velocity by
its maximum value VM leading to v = V/VM . The values of
VM are plotted in the inset of Fig. 3(a), showing that VM is
a growing function of the imposed stress τ . However, there
is no linear relation between VM and τ , as there was when
considering γ̇m = R�∞/e, because there is no trivial propor-
tionality between the wall velocity �∞ and the velocity of the
grains at the wall VM . This once again stresses the need for
a microscopic description of the flow. Figure 3(a) shows the
normalized local velocity v measurements as a function of dis-
tance s from the cylinder for decreasing imposed shear stress
τ . Overall, we see that the velocity decreases as the distance
to the inner cylinder increases. From this velocity field, we
can deduce the local shear rate γ̇� = r d (V/r)/dr � dV/dr
in our experiments, within the small gap approximation. The
decrease of v is rather linear when the applied stress τ is
high, leading to a roughly constant shear rate γ̇� in the raft.
But it becomes nonlinear as τ becomes smaller. We observe
a localization of the velocity close to the wall like what can
be sometimes observed in dry granular media [27,35,43,44].
Thus, the local shear rate γ̇� is not homogeneous, and these
velocity field measurements show that the rheology of the
rafts is expected to be nonlocal, different from a Newtonian
fluid [45], but similar to a dry granular medium [27]. Thus the
2D Krieger-Dougherty model or Maron and Pierce law, used
in Sec. III, are only true in average but cannot describe the
local behavior of a granular raft.

V. HYDRODYNAMICAL MODEL

To account for nonlocality, the recent rheological models
applied to granular flows define a diffusive quantity. Even
though the most universal one (in its application) is the non-
local granular fluidity (defined as γ̇�/μ) [28], a recent review
[46] suggests that kinetic theory can be successfully applied
while also giving a microscopic physical origin for the veloc-
ity fluctuations. Thus, the kinetic theory model is both relevant
and sufficient in the case of an homogeneous state of stress.

We develop a hydrodynamic model that has been used in
studies around dry granular media [35,43,44,47]. The clas-
sical kinetic theory of molecular systems has been applied
with some success to dilute and even dense athermal gran-
ular systems by introducing the concept of a “temperature”
T related to the fluctuations of the time-averaged velocity
T (s) = 〈Vθ (s, t )2〉 − V (s)2. Within this framework, heat is
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FIG. 3. (a) Normalized velocity profile v as a function of the
distance s inside the gap. Same symbols and colors as in Fig. 2:
the colors correspond to the value of τ . The solid lines are given by
Eq. (4). Inset: Maximal velocity VM reached at the moving wall, as a
function of applied stress τ . (b) φ as a function of the distance s inside
the gap. Same symbols and colors as in Fig. 2. (c) Characteristic
length δ/e as a function of τ/σ . The solid line is obtained from
the hydrodynamical model [Eq. (3)] with (2κ0η0)1/2 = 1.9 × 10−7

Pa m2 and (ε0η0)1/2 = 3.3 × 10−4 Pa m. The dashed line represents
the saturation of the diffusion length at δ ≈ e/2.

created by the flow itself. A moving area increases locally
the temperature, thus reducing the resistance to movement
of the surrounding particles and allowing them to flow. This
effect is then propagated until a steady state is reached. In
the present case, the local velocity fluctuations are generated
and exchanged in the whole raft through the contacts of the
particles in the flow. Assuming pressure p and τ are homoge-
neous in the whole raft, the effective viscosity varies such as
η ∝ 1/γ̇�. In the framework of the kinetic theory of granular
systems [43], one can define an effective surface viscosity η

related to the temperature T such as η = η0T −(2β−1)/2 where
η0 depends on density ρ, diameter d , mechanical properties of
the particles, and the pressure p in the raft, which are constant
in the experiment for a given τ , while β is a phenomenological

FIG. 4. Dimensionless velocity fluctuations T 1/2/(d/tc ) as a
function of Ic for different imposed τ and for φ = 0.76 and d =
140 µm (same symbols as in Fig 2). The symbol (◦) correspond to
χ = 69 mN m−1. The solid line represents the best fit of the data
T 1/2 ∼ I1/(2β−1)

c with β = 1.25 ± 0.05.

exponent larger than or equal to unity to account for the
divergence of the viscosity [35,43]. For instance, β = 1 for
dilute and moderately dense system, while for a dry granular
shear flow, a value of β � 1.75 has been reported [35,43].
The relation between η and T implies a power law between
the temperature and the local shear rate γ̇�. It holds in the
inertial regime, that is, as long as the contacts by collisions
are dominant in the dynamics of the raft; it is then useful to
plot the local temperature T as a function of the local capillary
inertial number Ic (Fig. 4). For high capillary inertial number
Ic, Fig. 4 reveals that T 1/2/(d/tc) ∼ I2/3

c . This is in agreement
with kinetic theory model and leads to β = 4/3. It shows
that the kinetic theory model framework is compatible with
the measurements in this flowing regime. However, for low
value of Ic experimental data deviate from the power law and
kinetic theory is no more applied. It is then possible to define
a crossover between these two regimes characterized by a
critical inertial capillary number I∗

c = 2 × 10−4. Measures of
Ic inside the raft [Fig. 5(a)] show that this criterion (Ic > I∗

c )
is met everywhere for the higher stresses, whereas for lower
applied stresses Ic is heterogeneous with a minimal value that
is met at the center of the gap. This minimal value falls under
the criterion Ic < I∗

c . Note that we do not vary d in Fig. 4.
Although the complete expression is Ic = (τ/η0)tcT (2β−1)/2,
the dependency of η0 with d is not explicit since the pressure
might also depend on particle diameter d . Experimentally,
the measurement of the confining pressure in this 2D object
remains a challenge.

As a result, only the surface tension χ can be changed
without spreading the curves. We performed additional ex-
periments without the use of surfactant in the water-glycerol
mixture, thus bringing the surface tension to its highest
possible value χ = 69 mN m−1 (which has been mea-
sured using pendant drop method), with a surface fraction
of φ = 0.77 that should be close enough to the previous
one (φ = 0.76) to allow for comparison. In our frame-
work this should lead to a change in the proposed scaling,
with t ′

c � tc/
√

2. We plot the result of this experiment
in Fig. 4, superposing the two experiments, to check the
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FIG. 5. (a) Ic as a function of s. The dashed line represents the critical value I∗
c delimiting the two flow regimes. PDF of instantaneous local

shear rate γ̇i normalized: by the mean local strain γ̇� in the flowing region (b) and quasistatic region (c) and by γ̇
3/4
� in the quasistatic region

(d). Same colors as in Fig. 3(a). (e) Ic as a function of s for different imposed stress ( ) τ/σ = 0.014, ( ) τ/σ = 0.022, ( ) τ/σ = 0.041 and
for φ = 0.76 and d = 80 µm. The dashed line represents the critical value I∗

c delimiting the two flow regimes. PDF of instantaneous local shear
rate γ̇i normalized by the mean local strain γ̇� in the flowing region (f) and quasistatic region (g) and by γ̇

3/4
� in the quasistatic region (h).

validity of the scaling in defining the criterion I∗
c . Even

though the factor
√

2 in the scaling has a noticeable ef-
fect, this is not incompatible with the other experiments
(Fig. 4).

Above I∗
c , the temperature obeys the heat equation, and to

obtain an analytical solution while introducing no noticeable
error (given the range of variation of T 1/2), we set β = 1
leading to Ic = γ̇�tc = τT 1/2tc/η0. In our 2D configuration,
the heat equation is an equilibrium between diffusion (with
a transport coefficient reducing to κ = κ0T −1/2), collision
dissipation (with a dissipation coefficient reducing to ε =
ε0T −1/2), and source term corresponding to τ γ̇�. κ0 and ε0

depend on density, diameter, and mechanical properties of
the grains and pressure p, which are constant in our case.
In our geometry the hydrodynamic equation for T (s) comes
down to

d

ds

(
κ (T )

dT

ds

)
− ε(T )T + τ 2

η0
T 1/2 = 0, (2)

which can be integrated to obtain

d3v

ds3
− 1

δ2

dv

ds
= 0, (3)

where δ = [(2κ0η0)/(ε0η0 − τ 2)]1/2 is a characteristic
length. Solving Eq. (3) using v(0) = 1 and v(1) = 0

gives

v(s) = A

[
cosh

(
(2s − 1)e

2δ

)
− cosh

(
e

2δ

)]

+ exp

(
− se

2δ

)
sinh

( (1−s)e
2δ

)
sinh

(
e

2δ

) (4)

with A a fitting parameter. This analytical function has been
fitted on the velocity profiles showing an excellent agreement
with the experimental data [Fig. 3(a)]. Note that the veloc-
ity profile so obtained presumes that the whole raft is in an
inertial regime: while this is not true, the contribution of the
quasistatic regime in the overall macroscopic dynamics of the
flow is too small to be noticed. These fits are robust and can
be derived in order to extend them to the Ic profiles [Fig. 5(a)].
The diffusion length δ, which is found in the analytical solu-
tion for v, is a growing function of τ , as observed in Fig. 3(c).
Its evolution differs, however, from the analytical model. For
the higher imposed stress, the shear rate is uniform in the cell’s
gap and δ reaches a maximal value, δ ≈ e/2 dashed line in
Fig. 3(c)]. The model predicts, for an infinite system, a diver-
gence of the diffusion length for a maximal stress (ε0η0)1/2.
The saturation of the diffusion length experimentally recorded
may be imputed to the Newtonian fluid that flows under the
raft, which tends to impose a uniform shear. The diffusion
length saturates due to the finite size of the cell and the stress
continues to grow over the maximal value deduced from the
fit in Fig. 3(c) (ε0η0)1/2/σ = 0.056.
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VI. QUASISTATIC REGIME

Despite the good agreement between the velocity profiles
deduced from Eq. (4) and the experimental data, below the
critical inertial capillary number I∗

c the system is no longer
described with the hydrodynamical model (left flat parts of
the curves in Fig. 4). The remaining dynamics of the raft
for Ic < I∗

c is then not contact driven but may be forced by
the flow underneath, allowing for nonzero velocities in an
otherwise quasistatic regime as proposed by numerical stud-
ies [33,48,49]. According to them, for Ic(s) < I∗

c , the system
is in a quasistatic regime (similar to a plug flow) in which
the strain and thus the velocity fluctuations are sustained by
the boundary conditions. In this regime instantaneous local
shear rate γ̇i, defined as dV (r, t )/dr, occurs over time in and
against the forcing. The probability density functions (PDFs)
of instantaneous local shear rate γ̇i normalized with the time-
averaged local shear rate γ̇l for two radial locations s = 0.1
and s = 0.5 are displayed in Figs. 5(b) and 5(c). For s = 0.1,
Ic > I∗

c for any τ > τ0, the raft is in a flowing regime, the
PDFs are narrow, and the instantaneous local shear rate is
positive, i.e., in the direction of γ̇� [Fig. 5(b)]. This is in
agreement with a predominance of a viscous component of
the stress (due to particle collisions), over an elastic one,
as developed in another numerical study [50]: as particles
are freely flowing against one another, the stress τ and γ̇�

are proportional, and the energy input is τ γ̇� and balances
with the viscous dissipation, which is proportional to γ̇ 2

i in
a rearrangement event. At s = 0.5, for the higher imposed
torques (τ/σ � 5.7 × 10−2), Ic > I∗

c and the PDFs are sim-
ilar: they are narrow and the instantaneous local shear rate
all positive. It is no more the case at lower imposed torques
(τ/σ � 4.7 × 10−2), for which Ic � I∗

c : the PDFs are broad
and present negative values; the lower the capillary inertial
number is the broader the distribution. For the lowest imposed
torque [τ/σ = 3.2 × 10−2, red curve in Fig. 5(c)], the PDF
displays comparable proportions of positive and negative in-
stantaneous local shear rate. These instantaneous local shear
rates opposed to the shear flow are characteristic of the qua-
sistatic regime [33]. The fact that PDFs do not rescale with
γ̇� but with γ̇

3/4
� [Fig. 5(d)] is another sign of the different

dynamics at play. Based on numerical work [50] relying on the
Durian foam bubble model [51], the shift in scaling tends to
demonstrate the predominance of an elastic component in the
stress in this regime, where elastic energy is released with rare,
sudden, and significant rearrangements. During these events,
particles need to overcome an exceeding stress, similar to a
microscopic yield stress, to put in motion their surroundings.
As a result, the model predicts that τ ∼ γ̇

1/2
� and the energy

production goes as γ̇
3/2
� [50]. The viscous dissipation still

being in γ̇ 2
i , the PDF should rescale with γ̇

3/4
� . The elas-

tic energy loss is balanced by the viscous dissipation with
a characteristic time tq = ηd/σ . While the velocity profiles
cannot show it, the PDFs of Figs. 5(b)–5(d) highlight that the
quasistatic regime corresponds to this elastoplastic regime.

Would the kinetic theory model apply on the whole gap,
the microscopic dynamics should be homogeneous. Conse-
quently, the PDFs should follow the same scaling as γ̇i/γ̇�.

The experiment shows that this is not true. However, the dif-
ference between the experimental data and the model provided
by the kinetic theory is of the order of 10−5 on the values of
Ic [Fig. 5(a)]. This difference, once integrated on the velocity
profiles, does not create major differences on the whole profile
[Fig. 3(a)].

To account for the dependence of Ic with the parti-
cle diameter d , we performed experiments with d = 80 µm
with results in agreement with the suggested scalings
[Figs. 5(e)–5(h)]. The Ic profiles are displayed on Fig. 5(e),
and their general shape is the same as for d = 140 µm. The
velocity profiles follow a similar trend, and the shear rate
can be either heterogeneous or homogeneous depending on
the applied stress. For the lowest stress τ/σ = 0.014, Ic is
inhomogeneous and is always below I∗

c . For the highest stress
τ/σ = 0.041, Ic is always above I∗

c . This is confirmed by the
PDF scalings of the instantaneous local shear rate: for s = 0.1
the two PDF that rescale with γ̇� are the ones corresponding
to Ic above I∗

c [Fig. 5(f)], while for s = 0.5 the PDFs do not
rescale with γ̇� but with γ̇

3/4
� [Figs. 5(f) and 5(h)].

VII. CONCLUSION

The mechanical behavior of granular rafts is close to the
one of attractive granular materials. Below a yield stress τ0

the material is static, and no local fluctuations of the parti-
cle position are measurable. As for granular materials and
above the yield stress, the flow exhibits a nonuniform shear,
thus revealing two flow regimes that are characterized by a
local capillary inertial number Ic [Eq. (1)]. A hydrodynamical
model developed from kinetic theory describes well the flow,
and as predicted by a recent numerical model [33], below
the critical value I∗

c the system is in a quasistatic regime.
The signature of this quasistatic regime is reflected in the
scalings of the probability density function of the instanta-
neous local shear rate γ̇i, as proposed by another numerical
model [50]. This suggests that the macroscopic transition in
the flow regime is in agreement with a microscopic transition
in the nature of contacts between the particles. The critical
value I∗

c ≈ 2 × 10−4 is found to be one order of magnitude
lower than the one predicted for 2D cohesion-free granular
materials I∗ ≈ 5 × 10−3, in agreement with numerical study
which reported that characteristic relaxation time tc can be two
orders of magnitude lower for attractive granular materials
[52]. When the behavior of the granular raft is described by
an hydrodynamical model, the diffusion length δ increases
with the shear stress τ , though because of the presence of the
Newtonian fluid under the raft and the finite size of the cell δ

it cannot be larger than half the gap of the cell.
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