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Pedestrians in static crowds are not grains, but game players
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The local navigation of pedestrians is assumed to involve no anticipation beyond the most imminent collisions,
in most models. These typically fail to reproduce some key features experimentally evidenced in dense crowds
crossed by an intruder, namely, transverse displacements toward regions of higher density due to the anticipation
of the intruder’s crossing. We introduce a minimal model based on mean-field games, emulating agents planning
out a global strategy that minimizes their overall discomfort. By solving the problem in the permanent regime
thanks to an elegant analogy with the nonlinear Schrödinger’s equation, we are able to identify the two main
variables governing the model’s behavior and to exhaustively investigate its phase diagram. We find that,
compared to some prominent microscopic approaches, the model is remarkably successful in replicating the
experimental observations associated with the intruder experiment. In addition, the model can capture other
daily-life situations such as partial metro boarding.
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I. INTRODUCTION

Although crowd disasters (such as the huge stampedes that
grieved the Hajj in 1990, 2006, and 2015 [1]) are more eye-
catching to the public, the dynamics of pedestrian crowds are
also of great relevance in less dire circumstances. They are
central when it comes to designing and dimensioning busy
public facilities, from large transport hubs to entertainment
venues, and optimizing the flows of people. Modeling pedes-
trian motion in these settings is a multiscale endeavor, which
requires determining where people are heading (strategic
level), what route they will take (tactical level), and, finally,
how they will move along that route in response to interactions
with other people (operational level) [2]. The strategic and
tactical levels typically involve some planning to make a
choice among a discrete or continuous set of options, such as
targeted activities, destinations [2], paths (possibly knowing
their expected level of congestion) [3], or, in the context of
evacuations, egress alternatives [3,4]. These choices are often
handled as processes of maximization (minimization) of a
utility (cost), which may depend on lower-level information
such as pedestrian density or streaming velocity [5,6].
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The operational level deals with much shorter timescales
and is generally believed to involve no planning ahead. Antic-
ipatory effects are thus merely neglected in so-called reactive
models, especially at high densities, possibly with the linger-
ing idea that mechanical forces then prevail. For example, the
popular social force model of Helbing and Molnar [7], still at
the heart of several commercial software products, combines
contact forces and pseudoforces (social forces) which, in the
original implementation, are only functions of the agents’
current positions (and possibly orientations). Some degree
of anticipation has since been introduced into these models
to better describe collision avoidance, e.g., by making the
pseudoforces depend on future positions rather than current
ones [8,9]. In a dual approach, the most imminent collisions
can be avoided by scanning the whole velocity space [10–12]
or a subset of it [13] in search of the optimal velocity. All
these dynamic models, at best premised on a constant-velocity
hypothesis, owe their high computational tractability to their
relative shortsightedness. Note that, to mitigate these limita-
tions, in particular, in the case of denser crowds, anticipated
collisions beyond the most imminent one [14] or, at a more
coarse-grained scale, local density inhomogeneities [5] can be
taken into account.

In this paper, we argue that, even at the operational level,
crowds in some daily-life circumstances display signs of an-
ticipation that may elude the foregoing short-sighted models;
this will be exemplified by the recently studied response of a
dense static crowd when crossed by an intruder [15,16]. We
purport to show that a minimal game theoretical approach,
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FIG. 1. Data (middle row) and velocity (bottom row) fields induced in a static crowd by a cylindrical intruder that crosses it; the
transparency of the velocity arrows is linearly related to the local density. Column 1: Simulations of a monolayer of vibrated disks. Column
2: Simulations of an agent-based model wherein agents may anticipate the most imminent collision. All fields have been averaged over many
realizations. Column 3: Results of the mean-field game introduced in this paper. Column 4: Controlled experiments of Ref. [15]. Note the
relatively symmetrical density dip in front and behind the intruder, as well as the transverse moves. Columns 1–3: The crowd’s density and
intruder’s size have been adjusted to match the experimental data (average density of 2.5 ped/m2). Details of simulations and videos showcasing
time evolution can be found in the Appendix.

made tractable thanks to an elegant analogy between its mean-
field formulation [17–19] and Schrödinger equation [20,21],
can replicate the empirical observations for this example
case, provided that it accounts for the anticipation of future
costs. We use an experimental validation of mean field games
(MFGs) as a relevant framework to study pedestrian dynam-
ics. Beyond that particular example, the approach efficiently
captures certain behaviors of crowds at the interface between
the operational and tactical levels that are crucial to consider
in attempts to improve the security of dense crowds.

II. CROSSING A STATIC CROWD

Crossing a static crowd is a common experience in busy
premises, from standing concerts and festivals to railway sta-
tions. Recently, small-scale controlled experiments [15,22]
have shed light on trends that robustly emerged in the response
of a crowd crossed by a cylindrical intruder, as displayed in
Fig. 1 (right column). The induced response consists of a
fairly symmetric density field around the intruder, display-
ing depleted zones both upstream and downstream from the
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intruder, as well as higher-density regions on the sides. Con-
sistently, the crowd’s displacements are mostly transverse:
pedestrians tend to simply step aside. A similar behavior—
though more noisy—was observed when the intruder was a
single pedestrian. Incidentally, a qualitatively similar response
was filmed on a much larger scale in a dense crowd of
protesters in Hong Kong, which split open to let an ambulance
through [23].

As penetration by an intruder is a benchmark test for
granular matter, it is instructive to compare the response
of the two systems. Actually, the above crowd features
strongly depart from the mechanical response observed in
experiments [24,25] or simulations [26] of penetration into a
granular monolayer below jamming, where grains are pushed
forward by the intruder (see Fig. 1 (left column) and Movie
S1 [27]) and accumulate downstream, instead of moving
crosswise. More worryingly, these “mechanical” features are
also observed (see Fig. 1 in Ref. [28]) in simulations of pedes-
trian dynamics performed with the social-force model [7],
which rests on tangential and normal forces at contact and
radial repulsive forces for longer-ranged interactions.

Introducing collision anticipation in the pedestrian model
helps reproduce the opening of an agent-free tunnel ahead
of the intruder, as illustrated with a time to (first) collision
model (second column of Fig. 1 and Movie S2 [27]) directly
inspired from Ref. [12], details of which can be found in
Appendix B. However, even though the displacements need
not align with the contact forces in this agent-based model,
the displacement pattern diverges from the experimental ob-
servations, with streamwise (walk-away) moves that prevail
over transverse (step-aside) ones. Indeed, such models rely on
short-sighted agents who do not see past the most imminent
collision expected from constant-velocity extrapolation.

Results will naturally vary with the specific collision-
avoidance model and the selected parameters. Yet the failure
of diverse state-of-the-art models to reproduce prominent
experimental features suggests that an ingredient is miss-
ing in these approaches based on short-time (first-collision)
anticipation.

III. A GAME THEORETICAL APPROACH TO ACCOUNT
FOR LOW-LEVEL PLANNING

To bring in the missing piece, we start by noticing that
the observed behaviors are actually most intuitive: Pedestrians
anticipate that it will cost them less effort to step aside and
then resume their positions, even if it entails enduring high
densities temporarily, than to endlessly run away from an in-
truder that will not deviate from its course. But accounting for
this requires a change of paradigm compared to the foregoing
approaches. Game theory is an adequate framework to handle
conflicting impulses of interacting agents endowed with plan-
ning capacities: agents are now able to optimize their strategy
taking into account the choices (or strategies) of others. So
far, its use in pedestrian dynamics has mostly been restricted
to evacuation tactics in discrete models [4,29,30]. Unfortu-
nately, the problem becomes intractable when the number of
interacting agents grows.

To overcome this quandary, we turn to MFG, introduced
by Lasry and Lions [17,18] as well as Huang et al. [19]

in the wake of the mean-field approximations of statistical
mechanics, and since used in a variety of fields, ranging from
finance [31–33] to economics [34–36], epidemiology [37–39],
sociology [37,40,41], and engineering [42–44]. While ap-
plications of MFG to crowd dynamics have already been
proposed [3,40,45–48], our goal here is to demonstrate the
practical relevance of this approach at the operational level,
using an elementary MFG belonging to one of the models
introduced by Lasry and Lions [17], and which can be thor-
oughly analyzed thanks to its connection with the nonlinear
Schrödinger equation (NLS).

In the mean-field approximation, the N-player game is
replaced by a generalized Nash equilibrium [49] where in-
discriminate microscopic agents play against a macroscopic
state of the system (a density field) formed by the infinitely
many remaining agents. Consider a large set of pedestrians,
the agents of our game, characterized by their spatial position
(state variable) Xi ≡ (xi, yi ) ∈ R2, which we assume follows
Langevin dynamics,

dXi
t = ai

t dt + σdWi
t , (1)

where the drift velocity (control variable) ai
t reflects the

agent’s strategy. In (1), σ is a constant and components of
Wi are independent white noises of variance one, accounting
for unpredictable events. Agents are supposed identical, apart
from their initial positions Xi(t = 0) and realizations of Wi.

Each agent strives to adapt their velocity ai
t to minimize a

cost functional we assume to take the simple form

c[ai]
(
t, xi

t

) =
〈∫ T

t

[
μa2

2
− (gme(t, x) + U0(x−vt ))

]
dτ

〉
,

(2)
where 〈·〉 denotes averaging over all realizations of the noise
for trajectories starting at xi

t at time t . In this expression,
the term μa2/2, akin to a kinetic energy, represents the ef-
forts required by the agent to enact their strategy (how much
or how fast they have to move in this case), while the in-
teractions with the other agents via the empirical density
me(t, x) = ∑

i δ(x − Xi(t ))/N are controlled by a parameter
g < 0. Finally, the space occupied by the intruding cylinder,
which moves at a velocity v = (0, v), is characterized by
a potential U0(x) = V0�(‖x‖ − R) that tends to V0 → −∞
inside the radius R of the cylinder and is zero elsewhere.
Agents need to balance those three terms over the whole
duration T of the game, which enables them to make costly
but temporary moves if they lower the overall cost. For exam-
ple, depending on the parameters, stepping aside into a high
density region (a cost-inefficient strategy a priori) to let the
intruder through may prove overall more efficient than run-
ning away from it; the first strategy implies paying a high cost
upfront, but nothing afterward, while the second implies pay-
ing a comparatively low cost that, however, extends over the
whole duration of the game, resulting in a potentially worse
payoff.

In the presence of many agents, the density self-
averages to m(t, x) = 〈me(t, x)〉noise and the optimization

problem (2) does not feature explicit coupling between
agents anymore. It can then be solved by introducing
the value function u(t, x) = min

a(·)
c[a](t, x), which obeys a
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Hamilton-Jacobi-Bellman (HJB) equation [18,50], with op-
timal control a∗(t, x) = − ∇u(t, x)/μ. Consistency imposes
that m(t, x) is solution of the Fokker-Planck (FP) equation as-

sociated with (1), given the drift velocity a(t, x) = a∗(t, x).
As such, MFG can be reduced to a system of two coupled
partial differential equations [17,18,20,21]:

∂t u(t, x) = 1

2μ
[∇u(t, x)]2 − σ 2

2
�u(t, x) + gm(t, x) + U0(x − vt ) (HJB)

∂t m(t, x) = 1

μ
∇ · [m(t, x)∇u(t, x)] + σ 2

2
�m(t, x). (FP). (3)

The atypical forward-backward structure of Eqs. (3), high-
lighted by the opposite signs of Laplacian terms in the two
equations, accounts for anticipation. The boundary conditions
epitomize this structure: based on (2), the value function
has terminal condition u(t = T, x) = 0, while the density
of agents evolves from a uniform initial distribution m(t =
0, x) = m0. In previous work, we evinced a formal but insight-
ful mapping of these MFG equations onto a NLS [20,21,51],
well studied in fields ranging from nonlinear optics [52,53]
to Bose-Einstein condensation [54,55] and fluid dynamics
[56,57].

We perform a change of variables (u(t, x), m(t, x)) �→
(�(t, x), 	(t, x)) through u(t, x) = −μσ 2 log �(t, x),
m(t, x) = 	(t, x)�(t, x) [21]. The first relation is the
usual Cole-Hopf transform [58]; the second corresponds
to a Hermitization of Eqs. (3). In terms of the new variables
(�,	), the MFG equations read

−μσ 2∂t� = μσ 4

2
�� + (U0 + g	�)�

+μσ 2∂t	 = μσ 4

2
�	 + (U0 + g	�)	. (4)

Besides the missing imaginary factor associated with time
derivation, these equations have exactly the structure of a NLS
describing the evolution of a quantum state 
(t, x) of a Bose-
Einstein condensate, with formal correspondence 
 → 	,

∗ → � and ρ ≡ ||
||2 → m ≡ �	. This system, however,
retains the forward-backward structure of MFG evidenced
by mixed initial and final boundary conditions �(T, x) = 1,
	(0, x) �(0, x) = m0(x). Several methods have been devel-
oped to deal with NLS and most can be leveraged to tackle
the MFG problem [21,59].

Self-consistent solutions of Eqs. (4) are obtained by itera-
tion: (i) Assume m(t, x) = min(t, x); (ii) solve the equation for
� backward in time with terminal condition �(T, x) = 1;
(iii) solve the equation for 	 forward in time with ini-
tial condition 	(0, x) = m0(x)/�(0, x); and (iv) iterate with
�(t, x)	(t, x) = mout �→ min until mout is sufficiently close
to min(t, x). A video illustrating the evolution of the agents’
density for a particular set of parameters, along with addi-
tional details about the numerical scheme, can be found in
Appendix C.

Focusing on the permanent regime [60], for which we have
experimental data [15], rather than on the transients associ-
ated with the intruder’s entry or exit, further simplifies the
resolution. In this regime, defined by time-independent den-
sity and velocity fields in the intruder’s frame, the auxiliary

functions � and 	 are not constant in time, but they as-
sume the trivial dynamics �(t, x) = exp[λt/μσ 2]�er (x) and
	(t, x) = exp[−λt/μσ 2]	er (x), where, in the intruder’s frame

μσ 4

2
��er − μσ 2v · �∇�er + [U0(x) + gmer]�er = −λ�er

μσ 4

2
�	er + μσ 2v · �∇	er + [U0(x) + gmer]	er = −λ	er

(5)

(with mer = �er	er independent of time). Far from the in-
truder U0(x) = 0, m  m0 and pedestrians have constant
velocity −v in the intruder’s frame. This imposes the
asymptotic solutions �er (x) = 	er (x) = √

m0, from which
λ = −gm0.

IV. RESULTS

The stationary Eqs. (5) have two remarkable features: (i)
They give direct access to the permanent regime, and are
straightforward to implement numerically since time depen-
dence has disappeared (results with reasonable resolution can
be obtained in a few minutes on a mid-range laptop). (ii) As in
Ref. [61], rescaling Eqs. (5) shows that solutions are entirely
specified by only two dimensionless parameters.

Indeed, the intruder is characterized by its radius R and its
velocity v. Similarly, pedestrians are characterized by a length
scale ξ =

√
|μσ 4/2gm0|, the distance over which the crowd

density tends to recover its bulk value from a perturbation,
aka healing length, and a velocity scale cs = √|gm0/2μ|, the
typical speed at which pedestrians tend to move.1 Up to a
scaling factor, solutions of Eqs. (5) can be expressed as a
function of the two ratios ξ/R and cs/v instead of depend-
ing on the full set of parameters (R, v, μ, σ, m0, g), which
facilitates the exploration of the parameter space, makes mod-
eling more robust, and highlights the uttermost importance of
anticipation. It should be noted that in MFG the individual
anticipation time, usually defined explicitly in classical agent-
based models, is encoded in the choice of ξ and cs but is not
readily available as a function of the two. In fact, MFG leads
to a strategy of motion where the anticipation time is optimal,
without prescribing it.

Figure 2 presents typical density and velocity fields simu-
lated in the permanent regime for each quadrant of the reduced

1Note that μξcs = μσ 2 has the dimension of an action and plays
the role of h̄ in the original nonlinear Schrödinger equation.
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FIG. 2. Typical density and velocity fields induced by the crossing intruder in the permanent regime, as predicted by the MFG model in
different regions of the parameter space. Parameters taken in the small cs/v and small ξ/R quadrant display good visual agreement with the
experimental data.

parameter space. Intuitively, one understands that cs governs
the cost of motion for the agents while ξ gives the extent of
the perturbation caused by the presence of the intruder. The
main difference between large and small cs/v is the change
in rotational symmetry, which reflects a fundamental change
in strategy. For large values of cs/v pedestrians do not mind
moving, and they rather try to avoid congested areas for as
long as possible, thus creating circulation around the intruder,
as shown in the velocity plots. On the other hand, for small
values of cs/v, moving fast costs more; therefore, to avoid the
intruder, pedestrians have to move earlier, and accept to tem-
porarily sidestep into a more crowded area, thereby stretching
the density along the vertical direction.

Experimental observations [15] are best reproduced for
small cs/v and small ξ/R (cs = 0.11 and ξ = 0.15), as shown
in the third column of Fig. 1. Considering the minimalism of
our MFG model, the obtained agreement is especially satisfy-
ing. In particular, it demonstrates that even basic MFG models
can naturally capture prominent features of the response of
static crowds which may be out of reach of more short-sighted
pedestrian dynamics models.

V. ALTERNATIVE CONFIGURATION:
BOARDING OF A TRAIN

Although our model reproduces remarkably well the ex-
periments of Ref. [15] in view of its minimalism, we realize
that a single test might not be sufficient to justify our claim
that MFG theory is a good candidate for modeling pedes-
trian dynamics. We argue that MFGs are also applicable to
a broader array of crowd-related problems at the operational
level, beyond crossing scenarios. In this section, we illustrate
this assertion by exploring the daily-life situation of people
waiting to board a coach in an underground station. This is a
common configuration at the frontier between the operational
and tactical level, which should give a strong edge to MFG

over alternative models, owing to the important role played
by anticipation.

This situation can be readily simulated by suitably mod-
ifying the external potential U0(x) and the geometry of the
system, as shown in Fig. 3; U0(x) here is a boxlike infinite
potential representing the walls of the coach (black bands).
On top of that, we introduced a terminal cost cT (x) [21,59]
that is lower aboard the metro than on the platform,

cT (x) = cplatform + [ccoach − cplatform]�(xwall − x), (6)

where ccoach < cplatform, � is the Heaviside function and xwall

is the x coordinate (horizontal) where the walls of the coach
start. This terminal cost cT (x) does not modify the MFG
equation (3) but serves as terminal condition for the value
function u(x, t = T ) = cT (x) (and accordingly for �). We
then numerically solve the nonlinear Schrödinger type system
using the algorithm described succinctly in Sec. III and in
more detail in Appendix C. Results of our simulations can be
seen in Movie S4 [27], of which Fig. 3 (right) is a snapshot.

There are sadly no experimental evidence to support this
at the moment, but we manage to reproduce the boarding
process in a qualitatively realistic way, despite the simplicity
of our model. We even naturally capture the decision made
by some agents to stay on the platform rather than board the
overcrowded metro. We believe this last point to be particu-
larly interesting since this passive behavior emerges naturally
from our (anticipatory) game theoretical model, which would
be more difficult to implement in traditional approaches of
crowd dynamics.

VI. DISCUSSION

To conclude, our results have been obtained with a simple,
generic MFG model which depends linearly on density via
gm(t, x). The NLS representation provides important insight,
efficient numerical schemes, and powerful analytical tools.
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FIG. 3. Boarding a crowded metro coach at rush hour. Left: Morning rush hour of November 18, 2021, on the platform of Metro A in Lyon,
France. The doors are about to close and the gap between boarding passengers and those who preferred to wait for the next metro is clearly
visible. Right: Snapshot from a MFG simulation at t = 0.9T . Players start uniformly distributed on the platform and would like to get on the
coach before the doors close, at t = T . Just before that moment, the players closest to the doors choose to rush toward the coach and cram
themselves in it despite the high density. Others prefer to stay on the platform (see Movie S4 [27] for the whole process). Simulations have
been performed in a box of dimensions 15×15 over a time T = 10, with an initial density on the platform m0 = 0.2. Parameters are chosen to
have healing length ξ = 1.1, and speed of sound cs = 0.45, while ccoach = 0 and cplatform = 6.21.

Most notably, it draws a bridge between pedestrian dynamics
and optics, fluid dynamics, or Bose-Einstein condensation.
Naturally our minimal model can be refined: the MFG for-
malism is flexible enough to incorporate further elements and
make it truer to life, including time-discounting effects [62,63]
and congestion [45,64,65]. Higher quantitative accuracy will
be within reach of these more sophisticated approaches, pos-
sibly at the expense of less transparent outcomes. For sure,
MFG will struggle to capture a variety of problems of crowd
dynamics at the operational level, notably those for which the
granularity of the crowd is central. However, the afore-studied
experiments strikingly illustrate that even the simplest of MFG
model is able to capture qualitative features that generally
elude existing agent-based models, even if they include short-
time anticipation.

We also believe MFG can apply in various other configu-
rations. In particular, we show in Sec. V an MFG simulation
of train-boarding at peak hours that qualitatively reproduces
some nontrivial features associated with this situation (Movie
S4) [27]. All this bolsters the claim that optimization and
anticipation stand among the essential ingredients for the
description of crowd dynamics at the operational level, and
justifies to claim entry for MFG-based approaches into the
toolkit of practitioners of the field.
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APPENDIX A: GRANULAR SIMULATIONS

Appendix A provides details on the numerical method
used to produce the granular matter simulation, displayed in
the first column of Fig. 1 of the main text (also see Movie
S1 [27]). The numerical method is adapted from Ref. [66].

To simulate the displacement of an intruder in a two-
dimensional granular medium, we resort to molecular dynam-
ics. The diameter of the grains is d = 0.37 m and they all
have the same mass. All interactions between two grains i and
j in the simulation are modeled with a dissipative Hertz law of
the form Fi j = kζ 3/2 − λ

dζ

dt , where ζ is the interpenetration of
the grains, k is the stiffness of the contact, and λ is a damping
coefficient. The stiffness k is related to the Young’s modulus
E = 1 GPa of the grains by k = E

√
d/2. The coefficient of

viscous damping λ simulates a restitution coefficient e = 0.5.
One can notice that the grains are frictionless. The time step is
small enough to ensure numerical convergence. The details of
these calculations were reported in Ref. [66]. The diameter of
the intruder is D = 2d = 0.74 m and its mechanical properties
are identical to those of the grains. The tank containing the
granular material is of length Lx = 25d in the x direction and
Ly = 200d in the y direction.

To prepare the initial state, the intruder is initially fixed
in the tank. The y position of the intruder in the y direction
corresponds to the vertical distance from the bottom wall of
the tank to the center of the intruder such that y = 2.5D is the
initial vertical position of the intruder. The x position of the in-
truder in the x direction corresponds to the equal distance from
the left wall and right wall of the tank to the center of the
intruder such that x = Lx/2 is the initial horizontal position of
the intruder. Once the intruder is placed, we fill the remaining
space by randomly drawing x and y positions for each grain.
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The number of grains to insert depends on the chosen objec-
tive density. We ensure that there is no spatial overlap between
the grains. Once the initial configuration has been prepared,
we move the intruder at constant velocity v = 0.6 m.s−1 along
the y direction. The intruder runs a distance equivalent almost
to 80D in the y direction to avoid getting too close to the
top wall of the tank. The displacement of the intruder in this
granular material naturally leaves a wake behind it since there
is no pressure scale that comes to fill it up [26,67,68]. To
create a process that fills this wake, we introduce a small
Gaussian noise in the displacement of the grains during the
simulation. This noise acts as diffusion for the displacement
which will then have the possibility of filling the wake.

The run of the intruder through the granular medium allows
us to get the positions of the grains over time. Considering
these data after passing through the spatial transient regime (of
the order of one D), we reach a stationary regime on average
for the grain flow around the intruder. For each simulation, we
can calculate the density field and the velocity field around the
intruder. To smooth the results, they have been averaged over
10 runs of intruder displacement.

APPENDIX B: AGENT-BASED MODEL FOR PEDESTRIAN
DYNAMICS BASED ON AN ANTICIPATED

TIME TO COLLISION

Appendix B provides details on the numerical methods
used to produce the agent-based simulations, displayed in the
second column of Fig. 1 of the main text (also see Movie
S2 [27]).

1. Principle

The social force model, initially propounded by Helbing
and Molnar [7], arguably remains the continuous model that
is most widely used commercially to simulate pedestrian
dynamics. In this model, agents essentially obey Newtonian
dynamics, with a sum of binary pseudoforces (social forces)
mimicking their attractive and repulsive interactions with
neighboring agents, which are mostly based on their relative
positions.

However, it has been shown that substituting these po-
sitional variables with a time-to-collision (TTC) variable,
reflecting the time at which each agent expects the most im-
minent collision with other agents, better renders the spatial
organization of pedestrians in diverse empirical settings [9].
The agent-based model used in the main text to represent
a crowd of agents displaying some degree of anticipation
is based on the same approach, but incorporates a number
of changes aimed at correcting some issues as identified in
Karamouzas et al.’s seminal paper [9].

First, to enhance numerical stability, instead of solving a
Newtonian equation with a TTC-based force, we opt for a
numerical scheme in which the velocities selected at each time
step result from the minimization of a total energy (includ-
ing the TTC contribution), following Ref. [12]. Nonetheless,
contrary to Ref. [12], each agent minimizes their own en-
erg, rather than solving for the set of agents’ velocities that
minimizes the global energy of the assembly; these individ-
ual choices better reflect the decisional process at play in a

crowd of autonomous agents (and not robots), in line with
the concept of utility used in economics rather than the global
energy used in physics [69]. Besides, only the most imminent
collision is taken into account to compute the TTC energy.
Finally, to avoid grazing trajectories and smooth the agents’
response [70], each agent is modeled as a disk whose radius
is uncertain, i.e., estimated between R and (1 + ε) R. In ad-
dition to avoiding discontinuities in the collision avoidance
response, this uncertainty accounts for the existence of an
immaterial private sphere around each agent, which others are
reluctant to cross.

All in all, the total energy E [v′
p] minimized by each agent

with respect to their velocity v′
p comprises the following con-

tributions:
(1) A driving term E target = FF(r + τφv′

p) with a static
floor field FF giving the shortest-path distance to a target or
a set of targets, computed with the Dijkstra algorithm. Here,
τφ is a reaction time and r + τφv′

p is the position at which the
agent expects to be after this reaction time, should they choose
velocity v′

p.
(2) A term constraining the agent’s speed, E speed =

αv′
p(v′

p − vp
pref)2, where v′

p = ||v′
p||. Note that v′

p = 0 is a
minimum of this term, which means that not moving is a
suitable option for static agents, as it should be.

(3) A term penalizing sudden changes in velocity (direc-
tion), compared to the current velocity vp

t , E inertia = β|v′
p −

vp
t |2�t−2.
(4) An interpedestrian repulsion term, E core-repulsion =

η( 1
d − 1

d∗ ), with d the actual distance between pedestrians and
d∗ a threshold distance beyond which this term is no longer
zero. Here, ε takes into account the uncertainty that each
pedestrian has when estimating the radii of their neighbors.

(5) The TTC energy ETTC
i = max j ETTC(τi j ), where τi j

is the anticipated TTC between agent i and agent j under
the assumption that the current velocities are maintained and
ETTC is the TTC energy expression given by Ref. [9], which
we characterize with the parameter γ . This is actually the most
important term in our model. Should it be turned off, particles
would stop anticipating the upcoming intrusion.

The minimization over vp is performed with the Nelder-
Mead algorithm for each agent and the updating scheme is
made via

vp
t+1 = argmin

v′
p

(E [v′
p]),

xt+1 = xt + vp
t+1 · �t,

with a time step �t = 0.1 s (lower values of �t were also used
to test the convergence of the implemented framework with no
significant changes).

2. Simulation layout

To simulate the crossing of a static crowd by an intruder,
the model is specified as follows:

The floor-field energy E target is specific to each agent, with
a target that matches their initial position. The interaction with
the intruder (and other particles) will make them move away
from this position, but they will strive to come back to it
once it has passed. The speed term in the energy is computed

024612-7
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FIG. 4. Variation of the agent speed term for the TTC model, while keeping the other parameters equal to those of the picture displayed in
the letter.

with a preferential speed v
pref
p coinciding with experimental

measurements for the avoidance response.
Regarding the geometry, an intruder of diameter D =

0.74 m has to cross a region of 20 m length×4 m width along
its median part. The intruder moves uniformly and linearly
along the y-axis at a prescribed speed v = 0.5 m× · s−1. In-
side this zone, 200 particles (thus obtaining a global density of
2.5 ped/m2) of diameter d = D/2 are randomly distributed.

The results presented in the main text correspond to mo-
ments when the intruder is at least 3 m from the boundaries
(entrance and exit of the corridor). This was done in an at-
tempt to minimize boundary effects in the measurements and
achieve an approximately stationary state.

For the sake of completeness, we include here an exhaus-
tive exploration of parameter space determined by the values
of α, β, and γ .

Indeed, Figs. 4–6 show the density and velocity plots for
the TTC model for four different choices of these parameters.
For each figure, the rightmost columns shows the results for

the values used in the paper, whereas the other three columns
show the variation of one of the three parameters, leaving
the other two untouched. By observing these figure, we can
conclude that the fundamental parameter of the TTC model is
indeed the TTC amplitude term γ , indeed the only one capable
to produce significant variations of the solution. The other two
parameters, while introducing some changes in the velocity
plots, do not have a real impact on the main features we
look for, such as the horizontal displacement and the lateral
accumulation of the agents.

APPENDIX C: MEAN-FIELD GAME SIMULATIONS

This third and last section describes the numerical schemes
used to produce MFG simulations. Results of a time-
independent simulation are displayed in the third column of
the Fig. 1 of the main text, whereas time-dependent ones
are used to simulate metro-boarding. Naturally, we expect

FIG. 5. Variation of the inertial term for the TTC model, while keeping the other parameters equal to those of the picture displayed in the
letter.
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FIG. 6. Variation of the TTC amplitude term for the TTC model, while keeping the other parameters equal to those of the picture displayed
in the paper.

both schemes to be consistent in the appropriate regime as
evidenced by Movie S3 [27].

1. Time-independent MFG

The equation we want to solve numerically is the first of
system (5), which we recall,

μσ 4

2
�� − μσ 2v∂y� + (gm + U0(�x))� = −λ�, (C1)

where λ = −gm0. We want to solve the equation in a box of
side L. We define the matrices � ∈ RN,N and 	 ∈ RN,N that
we have to evaluate on a grid of N×N points corresponding

to the (x, y) coordinates in Euclidean space. To do this, we
first write the discrete form of Eq. (C1),

μσ 4

2dx2
(�i−1, j + �i+1, j + �i, j−1 + �i, j+1 − 4�i, j )

− μσ 2v
�i, j+1 − �i, j−1

2dy
+ (gmi, j + V0Vi, j )�i, j

= −λ�i, j,

where we choose dx = dy. Then we make the term �i, j ex-
plicit and obtain

�k+1
i, j =

μσ 4

2

(
�k

i−1, j + �k
i+1, j + �k

i, j−1 + �k
i, j+1

) − μσ 2

2 vdx
(
�k

i, j+1 − �k
i, j−1

)
2μσ 4 − λdx2 − (gmi, j + V0Vi, j )dx2

.

This is the recursive rule that updates �i, j until convergence.
For a generic geometry, the same rule with an opposite sign
of v would be used to find 	i, j . Here we take advantage of the
symmetry � → 	 and (x, y) → (x,−y) to directly obtain 	.
Starting from an initial guess for �, 	, and m, we fix boundary
conditions given by the asymptotic solution �er (x) = √

m0,
then iterate the formula to find � and 	, and, recalling that
�	 = m, also the density. We repeat this operation until con-
vergence of m.

2. Time-dependent MFG

Time-dependent simulations were realized using a C++
algorithm, using the Schrödinger representation of MFG
equations to lean on the symmetry between the fields � and
	 and on well-proven numerical methods such as the Crank-
Nicolson [71,72] implicit scheme which provides added
stability compared to Euler method. Details of the discretiza-
tion, along with a stability analysis of the method, can be
found in Appendix A of Ref. [73].

The forward-backward conditions, along with the nonlin-
ear coupling between the fields, make direct resolution of

MFG equations difficult. A simple, though not perfectly con-
trolled, way to bypass those difficulties is to solve the system
iteratively:

(1) Assume a plausible form of the density m0 (e.g., a
constant equal to the average density).

(2) Compute, using the Crank-Nicolson scheme, a first
solution �1 of the backward equation

−μσ 2∂t�
1 = μσ 4

2
��1 + (U0 + gm0)�1, (C2)

with given terminal condition �(T, x).
(3) Compute 	1, solution of the forward equation

μσ 2∂t	
1 = μσ 4

2
�	1 + (U0 + gm0)	1, (C3)

with initial condition m0(x, t = 0)/�1(x, t = 0).
(4) Update the initial guess m0 → m1 = �1	1 and repeat

the process until mn is sufficiently close to mn−1. In practice,
we check for

max
x,t

|mn(x, t ) − mn−1(x, t )| < ε. (C4)

024612-9



THIBAULT BONNEMAIN et al. PHYSICAL REVIEW E 107, 024612 (2023)

(We will use ε = 0.001, which we expect to be sufficiently
small given the average density m0 = 2.5, in accordance with
the experiments of Ref. [15].)

This method is easy to implement and fairly efficient, but
in some particular circumstances convergence may not occur.
This may be alleviated by updating the guess differently,

mi+1 = αmi + (1 − α)�i+1	i+1, (C5)

α being a suitable number between 0 and 1.
The complete dynamics of the time-dependent MFG can

be found in Movie S3 [27]. All MFG simulations are

realized with parameters ξ = 0.15 and cs = 0.11. In the time-
dependent simulations, the intruder (of diameter D = 0.74
and velocity v = 0.5) crosses vertically a static crowd in a box
of dimensions 6×11 (with periodic boundary conditions) over
a time T = 27.5 long enough to reach the ergodic state. The
time-independent simulation is performed in a box of side L =
40, large enough so differences between the boundary condi-
tions of the two approaches are negligible. As proof of the
soundness of both approaches, comparison between the time-
dependent simulation at t  T/2 and the time-independent
results shows excellent agreement.
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