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Added-mass force in dry granular matter
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From two-dimensional (2D) numerical simulations of the motion of a circular intruder into a dry granular
packing, we provide evidence for a specific force term in the case of unsteady motion in addition to the force
corresponding to a steady motion. We show that this additional term is proportional to the acceleration of the
intruder relative to the grains as the added-mass force known for simple fluids. This force term corresponds
to a variation in the kinetic energy of the surrounding flow and is characterized by a coefficient CAM which is
intrinsically linked to the nature of the granular media. An analytical calculation of the added-mass coefficient
CAM is developed based on the specific velocity field known for 2D granular flow around a cylinder. The
theoretical value is shown to depend on the grain-cylinder size ratio, in good agreement with the measurements
from our unsteady simulations.
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I. INTRODUCTION

Granular flow around obstacles has received much atten-
tion in recent years [1–12] and the drag force on moving
objects is a key physical ingredient to be considered in nu-
merous situations such as bio-inspired locomotion [13] or
anchoring problems [14]. The rheological characteristics of
flowing materials have a strong influence on the drag force,
which can thus be very different for complex fluids, such
as polymers, suspensions, foams, or granular materials with
shear-thinning or shear-thickening behavior, when compared
to simple Newtonian fluids [15]. The concept of added mass,
which was introduced by Bessel to describe the motion of
a pendulum in a fluid [16], is related to the work necessary
to modify the kinetic energy of the surrounding fluid in the
case of an unsteady motion with a velocity U (t ) varying with
the time t . The pressure field is modified and induces an
additional force term proportional to the acceleration dU/dt
and to the mass ρV of fluid of density ρ which is displaced
by the object of volume V , with a numerical prefactor CAM

that can be calculated analytically for simple shapes such as
spheres (CAM = 1/2) or cylinders (CAM = 1) in perfect fluids
[15,17]. These values are for isolated objects in a infinite fluid,
but may be slightly modified by close boundaries [18].

In granular matter, even if unsteady flows arise in many
situations, such as for impacts [5,6,19], locomotion [13], or
anchoring [14] in sands, the models developed are, in gen-
eral, based on a steady drag force only, except in situations
where the surrounding fluid is not negligible such as sediment
transport [20] and fluidized beds [21]. This force has been
investigated in many experiments and numerical studies for
objects of simple shapes such as cylinders [1,4,7–9] or spheres
[11,12], or even more complex shapes [3]. At high velocity,
the drag force scales as U 2 [4,10–12], as in the inertial hy-
drodynamic regime corresponding to large Reynolds number
Re = ρUD/η for Newtonian fluids of viscosity η. But at

low velocity, the drag force is generally independent of U
[1], in contrast with Newtonian fluids [15]. This is due to
the fact that the effective “viscosity” of the grain assembly
is decreased close to the object by the shear with a larger
“granular temperature” [7]. In the case where external vibra-
tions are applied to the granular matter, the drag force may
display a linear dependence with U [22] as in viscous fluids
at low Re [15]. As the viscosity is hard to define for granular
matter and depends on pressure [23], the Froude number Fr is
often used instead of Re to separate the different flow regimes.
In the case of a granular layer of vertical height h in the
gravity field g, Fr = U/(gh)1/2 is indeed the pertinent param-
eter for the steady force regimes [24]. In granular matter, the
added-mass force is sometimes mentioned to explain striking
experimental results [25], but is still unknown. This force
is expected to be different from Newtonian fluids due to its
complex rheological behavior, which is still the aim of an in-
tense research activities with jamming, yield stress, and shear
thinning [26].

We show in this paper that an added-mass force arises
for unsteady motion in granular matter. To put in light this
force term, we consider a simple flow configuration where
an intruder is moved within a granular layer, as sketched in
Fig. 1. We perform two-dimensional (2D) simulations using
a discrete element method (DEM) based on molecular dy-
namics, and calculate the instantaneous force exerted by the
grains of diameter d on the circular intruder of diameter D. We
show that a force peak arises when the intruder is accelerated.
This force peak, proportional to acceleration, corresponds to
an added-mass force term characterized by a coefficient CAM

which varies with the grain-cylinder size ratio d/D, i.e., CAM

is close to 1 for vanishing d/D but can be much larger than 1
for d/D � 0.1. Using known velocity fields specific to gran-
ular matter, CAM can be calculated analytically and is found
to be in good agreement with the measurements from the
unsteady simulations, showing the same variation with D/d .
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FIG. 1. Snapshot of the flow configuration. A large disk of di-
ameter D is moved horizontally at an imposed velocity U along
the x direction at the depth h of a two-dimensional layer of small
grains of diameter d within the vertical gravity field g. The simu-
lation parameters here are U = 0.5 m/s, D = 15d , and h = 15.5d
[Fr = U/(gh)1/2 = 1.3], with d = 1 mm grains colored according to
their velocity u, from blue at u = 0 to dark red at u/U = 2.5.

II. NUMERICS

A molecular dynamic method is used to perform 2D sim-
ulations in a flow configuration, illustrated in Fig. 1, where
a large disk of diameter D is moved at an imposed velocity
U along the horizontal x direction at the depth h of a planar
layer of smaller grains of diameter d . Such a technique has
already been used to well reproduce unsteady situations such
as impacts [5]. Most of our simulations have been performed
with D = 15d and a few with different D in the range 1 �
D/d � 100. The granular medium consists of spherical beads
with a uniform size distribution between 0.8d and 1.2d , where
d = 1 mm is the mean diameter, to avoid any crystallization.
Each grain has the same Young’s modulus E = 1 GPa and
the same mass m so that the grain density is distributed be-
tween 0.6ρg and 2ρg around its mean value ρg � 6.5m/πd3.
The grain interactions fi j between two grains come into play
when the distance ri j between two grains is smaller than
(di + d j )/2, with only normal component and no tangential
component. The normal force is a dissipative Hertzian force
of the form fi j = kζ 3/2 − λ

dζ

dt , where ζ = (di + d j )/2 − ri j is
the interpenetration of the grains, k the stiffness of the contact,
and λ a damping coefficient. The stiffness k is directly related
to the mechanical property and size of the grains through
k = E

√
d/2. The damping coefficient λ is adjusted to repro-

duce a restitution coefficient en = 0.5 defined as the ratio of
the normal velocities before and after a binary collision. The
absence of a tangential component in the force contact model
corresponds to no microscopic friction. However, a macro-
scopic friction arises from steric hindrance in the granular
packing [27].

To prepare the initial state, the intruder was first fixed at
a given initial position (x0, y0)=(37.5d, 30d), where y = 0
corresponds to the bottom wall and x = 0 and x = L corre-
spond to the lateral walls of a container of length L. Then, a
dilute granular medium of N grains of diameter d is placed
above and let fall under the action of gravity (g = 10 m s−2

parallel to the y direction), which leads to a loose random
packing up to a mean height H � 60d , with a surface fraction
φ = Nπd2/4HL � 0.83 less than the critical value φJ = 0.85

[28,29]. The effective density of the grain assembly is given
by ρ = 2φρg/3 as the grains are spherical. Once the initial
configuration has been prepared, the intruder is moved hori-
zontally at a velocity U along the x direction from x = 0.1L
to x = 0.9L. During the intruder motion, we record the drag
force F . The time step is small enough to ensure numerical
convergence and the length L of the container is large enough
(375d � L � 750d) to avoid any influence of the lateral walls
on the drag force [30].

III. STEADY MOTION

We first check the different force steady regimes depend-
ing on the Froude number. A typical instantaneous force
signal F (t ) is shown in Fig. 2(a) for an imposed constant
velocity U = 0.5 m/s corresponding to the Froude number
Fr = U/(gh)1/2 � 1.3. The drag force F (t ) exhibits strong
and rapid fluctuations which may be associated to the for-
mation and breakage of force chains [31,32]. When averaged
over 105 successive points (time steps) corresponding to
the displacement �x/D � 0.2, the drag force does not vary
so much around the steady value FS � 3.3ρghDd obtained
by averaging over the entire time window corresponding
the large relative displacement �x/D � 6. These observa-
tions are in agreement with experiments [33]. For different
velocities U and thus different Fr, the steady force FS is
different, as reported in Fig. 2(b). A plateau is observed at low
Fr, corresponding to the quasistatic regime where the force
does not depend on velocity, i.e., FS = CDqsρghDd with a
quasistatic drag coefficient CDqs � 1 for Fr � 1 (horizontal
dashed line). The inertial regime at high Fr is also observed
where the force increases with the square of the velocity, i.e.,
FS/(ρghDd ) = 0.4Fr2 [dashed line of slope 2 in Fig. 2(b)]
so that FS = CDiρDdU 2/2 with an inertial drag coefficient
CDi � 0.8. The crossover between these two limit regimes
is expected around Frc = (2CDqs/CDi )1/2 � 1.6. Close to this
crossover, the increase of F with Fr is approximately linear,
i.e., FS/(ρghDd ) � 3.2 Fr − 3.3 in the range 2 � Fr � 6, as
shown in the inset of Fig. 2(b).

IV. UNSTEADY MOTION

We now consider an unsteady motion with a phase of con-
stant acceleration 	 between two phases of constant velocities
Ui and Uf > Ui. This acceleration is applied at the time t = ta
during the time interval τ so that 	 = dU/dt = (Uf − Ui )/τ .
In the following, we change only the τ for changing the 	.
We choose the initial and final velocities in the range where
the steady drag force increases linearly with velocity, i.e.,
Ui = 1 m/s and Uf = 2 m/s corresponding to the Froude
numbers Fri � 2.6 and Fr f = 5.1, respectively, and to the
steady forces FSi � 5ρghDd and FS f � 13ρghDd � 2.6FSi ,
respectively. During the unsteady motion, the force F is thus
expected to increase linearly with time at low acceleration
where no significant unsteady force term is expected, and
an extra unsteady term FAM is expected to arise at high ac-
celeration. The time evolution of the force measured in the
simulations is reported in Fig. 3 for three typical accelerations
	 from 8.3 m/s2 (0.9g) to 250 m/s2 (25g) with filtered signals
so that the unsteady force term is expected to display a bell
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FIG. 2. (a) Dimensionless drag force F/(ρghDd ) as a function of the dimensionless time tU/D = x/D for a disk of diameter D = 15d
moving with U = 0.5 m/s � 1.3(gh)1/2 at the depth h = 15.5d of a packing of grains of density ρ = 103 kg m−3. Solid line shows
instantaneous force (in gray) and force averaged over 105 successive points (time step) corresponding here to �x/D = 0.2 (in black). Dashed
line shows mean value FS/(ρghDd ) = 3.3 over the entire time window (�x/D = 6). (b) Dimensionless steady drag force FS/(ρghDd ) as a
function of the Froude number Fr = U/

√
gh in a log-log plot for the whole range of Fr and (inset) in a lin-lin plot for a narrow range of Fr

around 4. Circles show data from numerical simulations for an intruder disk of diameter D = 15d moving at different constant velocities U
and thus different Froude numbers Fr = U/(gh)1/2, dashed line shows asymptotic behaviors with a constant plateau value FS/(ρghDd ) = 1
at Fr � 1 or a quadratic law FS/(ρghDd ) = 0.4Fr2 at Fr � 1, and solid line shows best linear fit FS/(ρghDd ) = 3.2 Fr − 3.3 in the range
2 � Fr � 6.

shape. For the smallest acceleration (	 = 0.9g), the force in-
creases about linearly during the acceleration phase from FSi

to FS f so that no extra unsteady force term can be clearly seen.
For the largest acceleration (	 = 25g), we observe a large
force peak during the acceleration phase, which undoubtedly
indicates an extra unsteady force term. For the intermediate
acceleration (	 = 12.5g), a smaller force peak can be seen
during the unsteady motion. The calculation of the unsteady
force is made by averaging the force signal F (t ) over the
time interval τ corresponding to the constant acceleration
	. The extra unsteady force term FAM is then computed by
withdrawing the steady force term (FSi + FS f )/2 to the mean
force < F >τ calculated from the instantaneous signal F (t ),
i.e., FAM =< F >τ −(FSi + FS f )/2. This extra unsteady term
FAM is reported in the inset of Fig. 4 as a function of ρV 	,
both normalized by the initial steady force FSi . The data points

F 
/ F

S i

8

6

4

2

0
4321-1 0

( t - ta ) / 

FIG. 3. Time evolution of the force F (t )/FSi for a disk of diam-
eter D = 15d accelerating from Ui = 1 m/s � 2.6(gh)1/2 to Uf =
2 m/s � 5.1(gh)1/2, with 	 = 0.9g (blue line), 12.5g (yellow line),
and 25g (red line). The force signal is averaged over 105 successive
points corresponding to τ/10. Dashed lines show expected initial and
final steady forces FSi and FS f = 2.6FSi .

made by varying the acceleration align well along a straight
line of slope 1 in the log-log plot of Fig. 4, which means
that the unsteady extra-force term FAM is proportional to the
acceleration of the intruder 	. Note that the point obtained
at the lowest 	 is not significant since the added-mass force
is very small, i.e., only about 3% of the initial steady force
FSi . Other points made by varying the grain density fall on the
same master curve, meaning that FAM is also proportional to
the mass of grains displaced by the intruder of volume V =
πD2/4. All these findings demonstrate that FAM corresponds
to an added-mass force. A good linear fit of the data of Fig. 4
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FIG. 4. Added-mass coefficient CAM as a function of the grain-

cylinder size ratio d/D. Diamonds show simulations results, and
solid and dashed lines show the theoretical prediction from Eq. (1)
with α = 1/4 + 2d/D. Inset shows dimensionless unsteady force
FAM/FSi as a function of ρV 	/FSi for 4 < 	 � 500 m s−2, D = 15d ,
and ρ = 103 kg m−3 (�), and for ρ = 102 kg m−3 and 104 kg m−3

(×). Dashed line shows best linear fit FAM = 0.8ρV 	.
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is obtained for FAM = (0.8 ± 0.1)ρV 	. This corresponds thus
to the added-mass coefficient CAM = FAM/ρV 	 = 0.8 ± 0.1
close to the value 1 known for Newtonian fluids. By mak-
ing simulations with other cylinder diameters D in the range
1 � D/d � 100, we observe that the added-mass coefficient
CAM increases with d/D with a value slightly smaller than 1
for d/D � 0.1 but that becomes much larger than 1 above 0.1.

V. THEORETICAL MODELING

The rheology of granular media is quite different from
Newtonian fluids [23,34,35] so that the flow of grains around
an obstacle is quite specific. Several experimental studies have
measured the velocity field of a stationary flow of grains
around a cylinder in vertical penetration [7,8,36,37] and the
unsteady velocity field in impact situations was found to be
similar [38]. According to these studies, the velocity field u
of the grain flow around the cylinder can be approximately
modeled as u(r, θ )/U = Ar (r) cos θer + Aθ (r) sin θeθ , where
r is the distance from the cylinder center and θ is the
angle from the direction of motion. The radial functions
Ar and Aθ for the radial and azimuthal velocities can be
approximated by Ar (r) = exp[−(r − D/2)/λ] and Aθ (r) =
(r/λ − 1) exp[−(r − D/2)/λ], respectively [8]. The charac-
teristic length λ has been shown to scale with the cylinder
size with some effect of the grain size, i.e., λ � D/4 + 2d
from measurements performed for d/D � 0.1 [8]. The ex-
ponential variation of the velocity field in granular matter is
quite different from that in Newtonian fluids, which displays
power-law variations. The added-mass coefficient CAM which
corresponds to a variation in the kinetic energy of the sur-
rounding fluid can be calculated in the case of the 2D granular
flow around a cylinder of diameter D as [39]

CAM = 4

πD2

∫ +∞

r=D/2

∫ 2π

θ=0

[
u(r, θ )

U

]2

rdrdθ

= 1 − α + 6α2 + 6α3

4α
, (1)

where α = λ/D. CAM is a function of α only, whose value
depends on the grain-cylinder size ratio d/D. With α = 1/4 +

2d/D taken from [8], Eq. (1) leads to CAM = 39/32 � 1.2 at
vanishing d/D, which is close to the value 1 corresponding to
Newtonian fluids even if the velocity field is quite different for
granular matter. For increasing d/D, the CAM value predicted
by Eq. (1) increases and may be much larger for d/D � 0.1
as shown in Fig. 4. These theoretical predictions are not far
from the values given by the numerical simulations, and in
particular they do explain the increase of CAM with d/D by the
increase of λ with d/D. Note that the theoretical CAM values
estimated here may be slightly modified by the precise flow
configuration, as the near free surface parallel to the cylinder
motion in the simulations.

VI. CONCLUSION

With force measurements from 2D numerical simulations
of an intruder disk accelerating in granular matter, we high-
light that an extra force term arises corresponding to an
added-mass force. The added-mass coefficient CAM depends
on the specific velocity field of the granular flow around
the cylindrical disk, which is known to display exponential
variation with a characteristic length that increases with the
grain/cylinder size ratio d/D [8], i.e., CAM is close to one
at low d/D and may be much larger for d/D � 0.1. This
can have important technical consequences to be taken into
account in dimensioning equipments. With our findings, the
added-mass force is expected to be larger than the steady drag
force when 	 > (4CDqs/πCAM )gh/D in the quasistatic regime
or when 	 > (2CDi/πCAM )U 2/D in the inertial regime. With
CDqs, CDi, and CAM all of the order of 1, this leads to the
simple criteria 	 � gh/D or 	 � U 2/D. Added mass could
thus be important, especially at low depth or in low gravity
environments, and at low velocity. This poses a milestone for
forthcoming experimental investigations and 3D numerical
simulations to be developed.
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