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Abstract – We study analytically the influence of lateral confinement on the penetration depth
of a sphere into a granular medium by impact. The granular medium is contained in a cylindrical
tank of diameter D and a sphere of diameter d plunges along its axis. The presence of side walls,
parametrized by the distance D − d between the walls and the sphere, influences the penetration
depth. Here, we deploy a continuous analytical model to account for the presence of side walls.
After solving and calibrating this model for an infinite medium (D/d → ∞), we show that it is
possible to extend this model without any additional parameters to account for lateral confinement.
The influence of side walls is modelled by an exponential effect, which modifies the sphere’s
penetration dynamics. The solution of the model is shown to be in agreement with experimental
results.

Copyright c© 2024 EPLA

Introduction. – The impact pattern of objects on
materials is a recurring problem to measure the energy
that the materials are capable of absorbing during an
impact. Beyond mechanical testing, soil mechanics and
geotechnics, this generic configuration has industrial ap-
plications [1,2] and geological applications in the formation
of impact craters [3–5]. To study these configurations, di-
vided media such as granular materials are often used at
laboratory scale [6–14]. When a sphere of diameter d and
density ρ impacts a granular material of density ρg, the
sphere ejects grains from the medium on impact, pene-
trates the medium and comes to rest at a depth defined
by the geometric and kinetic parameters of both the sphere
and the granular medium. The penetration depth δ has
been extensively studied in previous studies. To charac-
terize δ as a function of the kinetic energy imparted to
the sphere, most of the usual scaling laws use the total
height of fall h [7,8,15–17]. This total height of fall h is
the sum of the height during free fall and the penetration
depth δ. The decision to use the height h is motivated by
energy considerations. During penetration, the projectile
still possesses non-zero kinetic energy, and often travels a
distance greater than its diameter. In this case δ is not
negligible compared with the free-fall height. Therefore,
the kinetic energy of the projectile dissipated along δ is
taken into account in an effective total height of fall h.
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A commonly used scaling law has the following expres-
sion:

δ

d
= A

(
ρ

ρg

)β (
h

d

)α

, (1)

where α and β are exponents determined experimen-
tally [7,8]. It is also possible to choose the impact ve-
locity vi as parameter in order to develop another scaling
law [15]. This approximate scaling law is a practical for-
mulation, whereas other models for infinite media typically
give an implicit formulation through the equation of the
object’s penetration dynamics [18–21]. The final impact
depth δ is linked to the dynamics of the sphere during its
penetration over time. Thus, during its path, the granular
medium exerts a global drag force on the object, leading to
its stop. The drag force of an object in a granular medium
is often modelled by the sum of two terms [18,19]: a fric-
tional drag term and a collisional drag term. The frictional
drag term is modelled by a force proportional to the pres-
sure prevailing in the granular medium [22,23], whereas
the collisional drag term is characterized by the resistance
to advancement produced by the dissipation of kinetic en-
ergy when grains collide with the object [18,19,24,25].
Most real-life geotechnical or industrial situations in-

volve walls that can alter the penetration of objects. It is
thus important to understand and anticipate how the wall
will affect the object’s penetration. Most of the time, the
granular medium is considered as infinite medium. A first
study has defined the geometric conditions to be met by
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experiments in granular materials in order to determine
whether wall effects can be neglected [8]. The influence
of walls has the effect of decreasing the depth of penetra-
tion as confinement becomes more and more significant.
This lateral confinement effect is reflected in the values
of the exponent α and the prefactor A of eq. (1), which
are functions of the size of the container of the granular
medium. As confinement increases, the values of α and
A decrease. However, these evolutions remain descriptive
and there is no analytical model to take this effect into
account.

In this paper, we develop and propose a model of the in-
fluence of lateral confinement during impact penetration in
a granular material. After the presentation of the model
configuration, we establish the general equation for the
penetration dynamics of a sphere in a laterally confined
granular material. We first describe the different models
of drag terms already observed in various configurations.
Then we combine all these terms to define a general equa-
tion for penetration dynamics. This equation includes a
new term accounting for the lateral confinement. After
fitting the model on experimental results obtained in in-
finite granular media, we show that this model provides
valid results for laterally confined granular media.

Configuration. – The configuration is shown in fig. 1.
A sphere of diameter d, density ρ and mass m = πρd3/6
impacts vertically with a granular medium at impact ve-
locity vi. Thus, this impact velocity vi comes from a
free fall drop at a height vi

2/(2g), where g is the grav-
ity field. After this impact (corresponding to the surface
of the granular material and the origin of the displace-
ment), the sphere moves through the granular medium at
a depth z(t) which increases as a function of time until
it stops at a depth δ. The granular medium is consid-
ered to be a model continuous medium whose constituent
grains have a density ρg, so the diameter of the grains
are not taken into account. The packing fraction is as-
sumed to be constant and homogeneous throughout the
object’s penetration. The granular medium is contained
in a cylindrical container of diameterD and infinite height.
It has been shown experimentally that the bottom of the
tank has no influence on penetration depth [8]. The goal
is to determine the final penetration depth δ as a func-
tion of all geometric parameters, material parameters and
impact velocity. We thus define the total height of fall
h = δ + vi

2/(2g).

The penetration dynamics z(t) is based on two sources
of drag forces. The first term comes from a frictional drag
force resulting from a local shear stress proportional to
pressure [22,23]. As the pressure in the granular mate-
rial is hydrostatic, this pressure is modeled by a term
∼ ρggz, where z is the instantaneous depth. The sec-
ond term comes from an inertial drag force resulting from
collisions. The stress generated by these collisions is mod-
elled by a term ∼ ρg(dz/dt)

2, where dz/dt represents the
vertical velocity of the object.

d
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Fig. 1: Sketch of the studied configuration defining the main
parameters of the model.

Confined granular media have also been the subject
of numerous studies [8,26–30]. More generally, the ef-
fect of confinement of granular media was highlighted by
Janssen’s pioneering work [31]. When a granular medium
is used to fill a tank, the pressure at the bottom of the
tank does not evolve linearly with the weight of the grain
column, but saturates at a constant value. This saturation
is generated by the fact that the grains exhibits a non-zero
friction coefficient and cling to the walls of the tank. The
weight of the grains is then taken up by the side walls,
and there is a skimming length characteristic of this satu-
ration, linked to the characteristic dimension of the tank.
This effect, known as the Janssen effect, also exists in a
dynamic version when there is relative movement between
the walls and the grains [27]. This saturation exists when
the direction of relative motion is opposite to that of grav-
ity. However, the direction has a strong influence on the
modeling and on the intensity of this effect [26]. When
relative motion is in the direction of gravity, there is no
saturation, but rather an amplification of the resistance
force due to the walls. The stress formulation of this ef-
fect is modelled by a term ∼ ρggλ exp[(z/λ)− 1], where λ
is an effective screening length [26].
Experimental data have already been established in the

configuration of fig. 1 in [8]. We reuse this dataset for
the comparison with our model. The granular bed is com-
posed of glass spheres (ρg � 2500 kg ·m−3) of mean diam-
eter of 350μm. Several tanks of diameter D = 24, 35, 40,
50, 62, 80, 128 and 190mm have been used. The impacting
sphere is made of different material leading to ρ = 1140,
2150, 2500, 7800 and 14970 kg ·m−3. The sphere diameter
is d = 5, 10, 19, 20 and 40mm. The velocity of impact vi
ranges from 0 to 3m · s−1.

Model. – In this configuration, we seek to determine
the equation for the dynamics of the sphere as it moves
through the granular medium. The force balance is made
up of a driving force and two drag force terms, which
have the effect of slowing down the sphere. The driving
force corresponds to the sphere’s weight mg. According
to previous studies [18–21], the collisional drag force term
can be reasonably modelled by an expression of the form
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Kvρgd
2(dz/dt)2, where d2 is proportional to the surface

of the sphere and Kv is a coefficient. In our model, we
modify here the frictional drag force which is usually a
linear function of z [18,20,21].

Referring to the experimental study of [26], during pen-
etration of the sphere, the frictional drag force felt by
the sphere is caused by the quasi-horizontal redirection
of stresses in the grains in the vicinity of the lower part
of the sphere. These stresses will be dissipated by friction
through chains of forces between the grains [32]. When the
distance between the tank walls and the sphere is small,
these chains of forces will cling to the walls also by fric-
tion. In a formalism similar to the Janssen effect, this
wall friction exerts a pressure that varies exponentially
with the depth z with a characteristic distance between
the walls and the sphere. The effect is positive here, since
the sphere’s motion moves in the opposite direction to the
frictional forces, amplifying these forces. The inclusion
of the exponential effect in the frictional term enables
this term to be rewritten more finely, since it must be
compatible with all existing formulations. If we consider
the sphere moving relatively to a fixed wall of the con-
tainer, then a basic effective characteristic length λ can
be written simply as λ = D − d. Rewriting the expo-
nential formulation [26], the frictional drag term becomes
Kzρgg(D−d)d2 exp[(z/(D−d))−1], where d2 is still pro-
portional to the sphere surface and Kz is a coefficient.
The general equation for the object’s dynamics can be

formulated as follows:

1

6
πρd3

d2z

dt2
=

1

6
πρd3g −Kvρggd

2

(
dz

dt

)2

−Kzρgg(D − d)d2
(
exp

(
z(t)

D − d

)
− 1

)
, (2)

with the following initial conditions: z(0) = 0 and
dz/dt(0) = vi, where vi is the initial impact velocity of
the sphere. Note that in the limit of laterally uncon-
fined media (D → ∞), we recover the usual results for
the friction drag force term in Kzρggzd

2 by performing a
first-order Taylor expansion in z/(D − d) of the exponen-
tial. Thus, this complete equation includes previous for-
mulations established in earlier studies [18,21]. In order
to write a normalized equation, it is relevant to establish
the normalized quantities of time T , depth Z, screening
length Λ and impact velocity Vi:

Z =
6ρgz

πρd
, T =

(
6ρgg

πρd

)1/2

t,

Λ =
6ρg(D − d)

πρd
, Vi =

(
6ρg
πρgd

)1/2

vi.

(3)

By injecting these variables into eq. (2), the normalized
problem is then written as

d2Z

dT 2
= 1−Kv

(
dZ

dT

)2

−KzΛ

(
exp

(
Z

Λ

)
− 1

)
, (4)

with initial conditions Z(0) = 0 and dZ/dT (0) = Vi.
Equation (4) can be solved numerically. The dimension-
less distance Δ covered by the object from the granular
surface (Z(0) = 0) until it stops can be evaluated when
dZ/dT = 0.

Unbounded medium. – We first consider the case of
an infinite tank corresponding to D → ∞, thus Λ → ∞
(eq. (3)). The goal of this section is to determine the
values of Kv and Kz that must be valid within this
limit. It is important to note that the normalized vari-
ables provide the relationship δ/d = (π/6)(ρ/ρg)Δ when
the projectile stops (eq. (3)). Consequently, the to-
tal fall height is h/d = (π/6)(ρ/ρg)(Δ + V 2

i /2) allow-
ing to define H = Δ + V 2

i /2. In an infinite medium
(Λ → ∞), eq. (4) reduces to the usual impact equation
as KzΛ(exp(Z/Λ)− 1) ∼ KzZ [18,20,21]. Thus, the pen-
etration depth Δ is a function of the total height H such
that Δ = f(H). As a result, the experimental scaling law
1 between δ and h can be improved. By injecting normal-
ized quantities (3), the scaling law (1) can be rewritten:

Δ = A

(
6

π

)1−α (
ρ

ρg

)β+α−1

Hα. (5)

Since Δ depends only on H, this imposes the condition
β + α = 1. This result is exactly what was obtained
experimentally [8,15,16]. Note that we can improve the
relationship (1) by using the link between α and β. There-
fore, eq. (5) can be rewritten:

Δ = BHα (6)

with B = A (6/π)1−α. Using the values obtained ex-
perimentally (A = 0.37 and α = 0.4 [8]), this leads to
B ≈ 0.55. Note that B depends on α in this formula-
tion. The coefficients Kz and Kv in eq. (4) are coefficients
characterizing energy dissipation in the medium. They
include the various coefficients of friction and the colli-
sion dissipation coefficient. They are also a function of
the packing fraction of the medium. The determination of
these coefficients has been the subject of numerous stud-
ies [7,19,30,33–36].
We are working here on an experimental dataset ob-

tained in an infinite granular medium corresponding to
D = 190mm [8]. The goal here is to make a comparison
between the experimental measurements [8], the scaling
law given by eq. (6) and the solution of eq. (4) in the
limit Λ → ∞. Figure 2 shows those former experimental
data by plotting Δ as a function of H. A power law fit
is applied on the experimental data (blue curve) accord-
ing to eq. (6) and this yields α = 0.4 and B = 0.55. In
parallel, we solve eq. (4) for similar ranges of H (fig. 2).
The values Kz = 8 and Kv = 0.15 are used to draw the
solid black curve in fig. 2. We obtain excellent agreement
with experimental measurements and recover the α and
B values given by the fit of the experimental data. How-
ever, relationship (6) is not the solution to eq. (4) we can
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Fig. 2: Evolution of normalized penetration depth Δ as a func-
tion of normalized total height H. Experimental data for steel
spheres ρ = 7800 kg ·m−3 of different diameters: d = 5mm
(�), d = 10mm (�), d = 20mm (◦), and d = 40mm (�).
Experimental data for spheres of diameter d = 20mm and
of different materials corresponding to different density ra-
tio ρ/ρg: ρ = 1140 kg ·m−3 (�), ρ = 2150 kg ·m−3 (•),
ρ = 2500 kg ·m−3 (�) and ρ = 14970 kg ·m−3 (�) [8]. The
blue curve represents the fit of experimental data in infinite
granular medium of the form Δ = BHα with B = 0.55 and
α = 0.4 [8]. The lines represents the solution of eq. (4) for
Λ → ∞ and for different values of Kz and Kv: Kz = 8 and
Kv = 0.15 (solid line), Kz = 50 and Kv = 0.15 (dashed line),
Kz = 8 and Kv = 1 (dotted line).

only conclude that the difference between the two is small.
Figure 2 shows the solution of eq. (4) with Kz = 8 and
Kv = 1 (dotted line) and with Kz = 50 and Kv = 0.15
(dashed line). The influence of Kz and Kv can be seen on
the shape of the curves Δ = f(H). Note that B seems to
be mainly a function of Kv (as the dotted line is almost
parallel to the solid line) while α seems to be mainly a
function of Kz (as the dashed line and the solid line are
similar at low H values).

It is very likely that Kz and Kv depend on the packing
fraction of the granular material. The evolution of the in-
ertial drag force and the frictional drag force of a disk with
an initial packing fraction φ0 have been measured in a 2D
packing [24,25]. The two force terms vary as (φc−φ0)

−1/2,
where φc is the critical packing fraction. This formulation
has geometrical origin, i.e., the disk needs extra space in
order to move, so it creates a cluster in front of it. For
an initial packing fraction close to the critical value φc,
these forces diverge. In a 3D packing, we expect the two
drag force terms to follow a similar dependence and, there-
fore, the coefficients Kz and Kv should vary such that
Kz ∼ (φc−φ0)

−1/3 and Kv ∼ (φc−φ0)
−1/3 . It is reason-

able to assume that this formulation is only valid in the
vicinity of the critical volume fraction φc � 0.64 (a reason-
able value for 3D packing). Measurements of fig. 2 were
carried out with an approximate value of φ0 � 0.60. The
experimental range of variation in φ0 goes from loose to
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Fig. 3: Evolution of normalized penetration depth Δ as a func-
tion of normalized total heightH. The large colored curves rep-
resent the solution of eq. (4) for values Kz = 8 and Kv = 0.15
for different values of lateral confinement Λ. Color code spans
from blue to red for 10−2 < Λ < 10, respectively. The thin col-
ored curves represent a power law fit of the data using eq. (6).

dense packing, i.e., 0.55 ≤ φ0 ≤ 0.63. Thus, it is possible
to give a range of coefficient varations with the packing
fraction range φ0 which is approximately 6.1 ≤ Kz ≤ 13.7
and 0.11 ≤ Kv ≤ 0.26. For the rest of our analytical study,
Kz = 8 and Kv = 0.15 remain constant and there are no
more adjustable parameters.

Lateral confinement of the medium. – We now in-
vestigate the influence of lateral confinement by evaluat-
ing the influence of the parameter Λ. To do this, we solve
eq. (4) for different values of Λ. The results are shown
in fig. 3 for intermediate H values with large solid line.
The color scale ranges from red (low values of Λ) to blue
(Λ → ∞). We note that the lower the value of Λ, the
lower the value of penetration Δ for a given value of H.
This is in line with experimental observations [8].

In order to have a more explicit and synthetic compar-
ison, we choose to model the analytical results provided
by eq. (6) in the partial range of H comparable to the
experimental data. To do this, we fit the analytical data
to eq. (4). Thus, for each value of Λ, we determine the
values of α and B. The fits are plotted in fig. 3 with thin
solid line on all the range of H.

Figure 4 shows the evolution of α and B as a func-
tion of Λ. It can be seen that α and B decrease as Λ
decreases over the Λ range studied. Corresponding data
points and fits from an earlier experimental study [8] have
been added to fig. 4: α = 0.4(1 − exp(Λ/0.8)) and B =
0.37(ρ/ρg)

0.61((πρ)/(6ρg))
1−α (1 − exp(−(Λ(πρ)/(6ρg) +

1)/0.8). Over the range of H that is explored, we find
that the agreement between the experimental data and
the analytical model is excellent without any adjustable
parameter. Note that we observe a slight discrepancy
between the value of B provided by the model and the
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Fig. 4: Power exponent α (a) and prefactor B (b) of eq. (6)
as a function of Λ obtained by solution of eq. (4). The color
code corrreponds to increasing values of Λ and is the same
as in fig. 2. The symbols correspond to experimental data
in the same configuration, extracted from [8]. For varying D
and ρ = 7800 kg ·m−3: d = 5mm (�), d = 19mm (•) and
d = 40mm (�). For ρ = 14970 kg ·m−3: d = 20mm (�). The
dashed lines correspond to the best fit of the experimental data
described by [8].

experimental data for small diameter values d = 5mm
(fig. 4(b)). This slight discrepancy is also observed in the
infinite case (fig. 2). We believe that this deviation is
linked to the fact that the granular medium can no longer
be considered as a continuous medium, as the aspect ra-
tio between sphere diameter and grain diameter begins to
approach 1.

Agreement between the model and the experiment al-
lows us to specify the influence of Kz and Kv in the model.
Indeed, it can be seen that the Kv term has not been mod-
ified from the infinite case to obtain this agreement. This
is consistent with the modeling of a collisional drag force
term [18,24,25]. This term has no connection with fric-
tion at a wall. The most striking feature is that Kz can
be kept constant when using lateral confinement. The
value of Kz is closely linked to the macroscopic coeffi-
cient of friction between the grains. The presence of lat-
eral walls can certainly generate a different coefficient of

friction between the grains and the walls, but this differ-
ence will often be of the same order of magnitude, as is the
case in the experimental measurements. It is not reason-
able to expect an exponential variation in the coefficient
of friction in the experimental data. Thus, the presence of
a wall modifies the pressure prevailing within the granu-
lar medium through a geometric effect due to grain chains
forces clinging to the lateral walls.
The model allows also to describes the data in a re-

fined way as already specified in the experimental study
in ref. [8]. In this study, the fits were established without
a model equation, with the goal of describing the data as
well as possible. The fits were chosen in exponential form
to account for the growth of α and B at low values of Λ
and the saturation of α and B at high values of Λ. We find
that the fit of α(Λ) proposed by [8] has a rather accept-
able form (fig. 4(a)). However, the fit of B(Λ) deviates
significantly from the model for low values of Λ (fig. 4(b)).
In particular, the fit proposes a non-zero value of B when
Λ = 0, whereas the model specifies that B(Λ = 0) = 0.
The model derived from eq. (4) provides an improvement
on what was identified in the experimental data.

Conclusion. – In this study, we investigated analyt-
ically the penetration depth of spheres by impact in a
confined granular medium. Experimental scaling laws in
the form of power laws are useful to foresee penetration
depth [8,15,16]. They are self-explanatory and do not re-
quire equation solving. However, they are only valid for
a certain range of impact velocities and geometric dimen-
sions. Complete equation-based modeling of the problem
enriches experimental results by allowing them to be sup-
plemented. For example, it is possible to take into ac-
count the effects of lateral confinement by correcting the
hydrostatic pressure-type term in granular materials. This
correction involves an exponential expression [26]. The
incorporation of this term in the penetration dynamics
equations makes it possible to account for the effect of con-
finement on penetration depth. The results obtained ana-
lytically are in excellent agreement with the experimental
results. The inclusion of confinement effects enriches dy-
namic models of object penetration and gives new insights
into the physics of geotechnical situations, industrial prob-
lems and locomotion in granular materials.
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