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Abstract The rheology of particle suspensions has been extensively explored in the case of a simple shear
flow, but less in other flow configurations which are also important in practice. Here we investigate the
behavior of a suspension in a squeeze flow, which we revisit using local pressure measurements to deduce the
effective viscosity. The flow is generated by approaching a moving disk to a fixed wall at constant velocity
in the low Reynolds number limit. We measure the evolution of the pressure field at the wall and deduce
the effective viscosity from the radial pressure drop. After validation of our device using a Newtonian fluid,
we measure the effective viscosity of a suspension for different squeezing speeds and volume fractions of
particles. We find results in agreement with the Maron—Pierce law, an empirical expression for the viscosity
of suspensions that was established for simple shear flows. We prove that this method to determine viscosity
remains valid in the limit of large gap width. This makes it possible to study the rheology of suspensions
within this limit and therefore suspensions composed of large particles, in contrast to Couette flow cells

which require small gaps.

1 Introduction

Many natural events and industrial processes involve
the flow of suspensions made of solid particles dispersed
in a fluid. This is the case of mudflows [1], handling of
fresh concrete [2] or food processing [3]. This context
has motivated an intense research activity in the field of
dense suspensions rheology, with a particular emphasis
on the case of simple shear flows [4]. Most of the rheo-
logical studies of suspensions have been realized in the
Couette flow cells of rheometers which requires small
gaps. This point prevents the study of suspensions com-
posed of large particles, which are often encountered in
the applications. It is therefore necessary to develop
new rheological configurations that are not limited to
small gap widths.

Since Einstein’s pioneering work [5], the law of sus-
pension viscosity 1(¢), where ¢ is the particle volume
fraction, has been extended by Batchelor to take into
account the hydrodynamic interactions between two
particles [6]. Beyond the dilute regime the expressions
of Einstein and Batchelor are valid, several empiri-
cal expressions have been proposed to account for the
viscosity of suspensions. One of the most used is the
Maron—Pierce law which describes the relative viscos-
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ity of the suspension n,(¢) = n(¢)/ns according to the
relation:

é -2
mio)=(1-2) )
Pc
where 7y is the viscosity of the Newtonian carrier fluid
and ¢, is a critical volume fraction ranging from 0.58
to 0.66. The large range of ¢. for which the viscosity
diverges - i.e., the suspension becomes solid - has drawn
the attention of several studies [7,8]. The commonly
assumed origins of the variations in volume fraction for
the transition between fluid and solid are the rough-
ness of the particles [9] or their size dispersion [10-
13]. In the flowing regime, the strong increase in the
relative viscosity at moderate and large volume frac-
tions has been shown to mainly result from frictional
contacts between particles and depends of their spa-
tial arrangement [14,15]. Depending on how the fric-
tional contacts between particles are mobilized when
the suspension flows, several phenomena can occur
such as shear-thinning [16], shear-thickening [17], shear-
induced migration [18] and normal stress differences
[19]. The investigation of normal stress differences in
various flow configurations revealed disparities in inten-
sity [20-22] and in the sign [21,23]. These observations
show the strong influence of the flow configuration on
the behavior of the suspension. This can be attributed
to the fact that different types of solicitation lead to dif-
ferent micro-structures of the suspension. This context
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raises the question of the behavior of a macroscopic sus-
pension in a squeeze flow configuration where the shear
rate is non-homogeneous and where the micro-structure
may differ from the case of a simple shear flow. This
question is essential to determine whether the squeeze
flow configuration can be used as a rheological config-
uration for studying suspensions.

Compared to simple shear flows, suspensions in
squeeze flows, have been less studied (see [24] for a
review). For this compression-type solicitation, the dif-
ferent studies have mainly considered the global force
experienced by the moving disk, and the effective vis-
cosity deduced from this measurement is global because
it is integrated over the surface of the disk. In addi-
tion, these experiments are often realized with a small
volume of suspension between the plates [25], which
creates capillary interfaces that prevent drainage but
can affect the squeeze flow. For a zeolite suspension
of volume fraction between 5 and 20 %, the required
squeezing force corresponds to the one expected for a
Newtonian fluid of viscosity equivalent to the effective
viscosity of the suspension [26]. It is no more the case
at large volume fractions (¢ > 0.40) and for suspending
fluids of low viscosities (ny < 1 Pa.s), where a differ-
ent flow regime has been identified. In this case, the
suspending fluid filtered through particles and induced
a more concentrated region of particles in the center
[27,28]. The consequences of flow filtration have been
observed in the measurements of the normal stress dis-
tribution made with pressure-sensitive films in a sus-
pension undergoing constant-force squeeze flow [29].
They observed that above 55% in volume fraction, the
normal stress profile deviated from the Newtonian pre-
diction and was larger in the central region and lower
at the edge. This pressure distribution was interpreted
as the result of jamming in the central zone. However,
these previous studies do not consider the intermediate
case where the suspension is concentrated but where
no filtration occurs and the squeeze flow can be used
as a rheological configuration to measure the effective
viscosity of the suspension.

In this paper, using an experimental setup soliciting
a fluid in compression, we revisit the rheology of the
suspension in the squeeze flow configuration to investi-
gate the behavior of suspension in a non simple shear
flow and in the limit of large gap widths. We mea-
sure the effective viscosity of the suspension through
local pressure sensors. After developing the theoretical
framework of our non-viscosimetric flow, in which we
describe the velocity field and the pressure field anal-
ogously, we deduce a global relation allowing to mea-
sure the effective viscosity of the fluid. Then we validate
our experimental protocol on a Newtonian fluid and we
apply it to deduce the effective viscosity of a suspen-
sion. The dependence with the particle volume fraction
of the measured relative viscosity of the suspensions is
in agreement with the empirical law of Maron—Pierce
established for simple shear flows.
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2 Experimental setup

2.1 Suspension

The suspensions were prepared mixing polystyrene par-
ticles (Microbeads TS 500) with Poly(ethylene glycol-
ran-propylene glycol) monobutyl ether (PEG) from
Sigma-Aldrich, of viscosity ny = 2.9 & 0.1 Pa.s and den-
sity py = 1050 kg.m~2 that matches the nominal den-
sity of the polystyrene particles at 20 °C. The rheology
of the suspending fluid was confirmed to be Newtonian
over the shear rate range [0.01 —100s~!] using cylindri-
cal Couette cell of internal radius R; = 13.33 mm and
intergap of 0.085 R; (Anton Paar MCR 501), with a
dynamic viscosity of ny = 2.90 £ 0.02Pa.s at 20°C.
The polystyrene particles are smooth, rather mono-
dispersed, spherical with a diameter of a = 500440 wm.
The suspensions were prepared by agitating the par-
ticles in a planetary mixer (Kenwood KCL95), grad-
ually adding the suspending fluid, and mixing for 10
to 15 min. The suspension was then passed through a
vacuum bell jar to remove air bubbles. This protocol
allows to prepare homogeneous suspensions with vol-
ume fractions ¢ = [0.3 — 0.5]. The rheology of these
suspensions was characterized in the same cylindrical
Couette cell (Anton Paar MCR 501) used for the car-
rier fluid. As the intergap of the cylindrical cell is 1.13
mm, we studied the same suspension but made with
particles of 80 pm in size in order to avoid particle size
effects in the gap. We observe that the viscosity of sus-
pensions increases with the volume fraction in agree-
ment with the prediction given by Eq. (1) leading to
¢ = 0.62 + 0.01. This value of ¢, is in the range of
usual values (0.58 < ¢, < 0.66) reported in a review [4].
This review also reports there is no systematic effect of
the grain size on ¢, (from 40 pm up to 1100 pm).

2.2 Squeeze flow

The squeeze flow is generated into a rectangular reser-
voir filled with the fluid (total volume is 5L) where an
immersed disk of 150 mm in diameter approaches a ver-
tical wall of the reservoir (see Fig.la). The horizontal
motion of the disk is imposed by a linear stage (Physik
Instrumente M-414) that permits to control the moving
velocity Vy and the separating distance H between the
disk with the vertical wall. The parallelism between the
disk and the wall is ensured with an angle lower than
1.2°. In order to measure the fluid pressure P during
the squeeze flow, the wall was instrumented with two
pressure sensors (Keller PR-25) that have a resolution
of £2 Pa. The first sensor was installed along the cen-
tral axis of the moving disk and measure the pressure
P; at this location. The second sensor is placed at a dis-
tance R = 60 mm from the central axis and measure the
pressure P5. The signals P, and P, were registered as
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Fig. 1 a Sketch of the experimental setup: a moving disk is
squeezing the suspension at a constant velocity Vy along e,.
Pressure sensors are located on the opposite wall in order
to measure the pressure difference P; — P». b Velocity field
associated to the squeeze flow deduced from Egs. (7) and

a function of time with a sampling frequency of 100 Hz
and synchronized with the displacement of the disk as
it approaches the instrumented wall. In all experiments,
the initial and final separating distances were H = 47.6
mm and H = 10.0 mm, respectively. The velocity range
explored was Vo = [0.5 — 10] mm -s~! and ensured that
the Reynolds number based on the separating distance
H, Re = psVoH/ns, was smaller than 10~! even for
experiments at ¢ = 0 (pure suspending fluid).

3 Viscosimetry

3.1 Effective viscosity model

In this section, we describe the ideal case of a New-
tonian liquid, of constant viscosity n and density p,
squeezed between two disks of diameter D which are
approaching each other at the relative velocity V4.
Numerous studies have addressed this problem theo-
retically [30-33] and here we only recall the main cal-
culation steps that allow us to derive a measure of the
effective viscosity in this configuration in the limit of
low Reynolds numbers.

The problem is parametrized in a cylindrical frame
of reference (0, e, e,,ey) where (e,,eq) is the vertical
plane (Fig. la). At the edge of the disks, the pres-
sure applied by the rest of the fluid in the tank is
considered to be constant. The flow is assumed to
be stationary and in the limit of low Reynolds num-
ber, Re = pVoH/n < 0.1, so that the advection
terms in the equilibrium equation are neglected. Far
from the edges of the disk, the quasi-static velocity
field V in this axisymmetric geometry can be written:
v(z,r) = V/Vh = vi(x,r)e, + v.(x,r)e, where x and
r are the cylindrical coordinates normalized by the dis-
tance H. The pressure field P(z,r) is normalized by the
stress scale 3nVy/H to get the non-dimensional pressure
p(z,r) = P(x,r)H/3nV,. In this configuration, the con-
servation of momentum is similar to the Stokes equation
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(8). The color map represents the norm of the velocity. ¢
Shear rate field associated to the squeeze flow according to
Egs. (7) and (8). The color map represents the shear rate
calculated from Eq. (13). The black arrows represent the
velocity field as in figure b

(neglecting the volume force terms):
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The incompressibility of the flow (V - v = 0) allows
to define the existence of a stream function ¢ (z, r) such
that:

ve(x, 1) = _1%v
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Using the stream function ¢ (r, z) and cross differen-
tiating Eqs. (2) and (3) in order to eliminate pressure
p, it leads to the equation:
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Equation (5) admits a solution of the form (r,z) =
r?\(z) which results in an equation on \:
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d*\
0= (6)

The velocity boundary conditions on the fixed wall
are defined by v, (0,7) = 0 and v,.(0,7) = 0. The bound-
ary conditions on the moving wall are v, (1,7) = —1 and
vyr(1,7) = 0. By combining Eqgs. (4) and (6), the velocity
field, solution of the problem is:

vy (2) = —2? (3 — 21) (7)
vp(x,r) = 3ra (1 — x) (8)
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Fig. 2 a Pressure difference AP = P, — P> as a function
of H for pure fluid (lower curve) and suspension of ¢ = 0.45
(upper curve). The imposed velocity is: Vo = 4 mm - s~
The data has been collected on ten successive realizations
(data points ranging from turquoise to blue). The mean of
these realizations have been plotted with symbol (4) for the
pure fluid and with symbol (¢) for suspension. b Normal-
ized pressure difference Ap of the pure fluid and suspension

Once the normalized velocity field has been determined,
it is possible to determine the pressure field by integra-
tion of Egs. (2) and (3):

p(z,r) = (—r2 —2z(1— m)) + po (9)
where py is an integration constant. Equation (9) allows
to deduce that the normalized pressure difference Ap =

p(0,0) — p(0, R/H) between the center of the flow and
the periphery expresses:

(i)

In a dimensional form, Eq. (10) writes:

(10)

- 3’(]V0R2

AP = =

(11)

This relation means that from the measurement of the
pressure difference AP = P; — P, made with the two
pressure sensors located at a distance R on the fixed
wall of the experimental setup and knowing the veloc-
ity Vi of the moving disk and the separating distance
H, one can deduce the viscosity n of the fluid. Note
that Eq. (11) has been established without consider-
ing lubrication approximation implying H/R < 1, as
already mentioned in [24].

3.2 Validation with a Newtonian fluid

In order to validate our experimental setup, we real-
ized a set of measurements with the pure Newtonian
suspending fluid (ny = 2.9 + 0.1 Pa.s) squeezed in our
setup at a velocity V) = 4 mm - s~'. The corresponding
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10!

R/H

as a function of H/R. For the pure fluid, the symbols (+)
are experimental data and the dark solid line corresponds to
theoretical prediction given by Eq. (10). For suspension, the
symbols are experimental data (V) ¢ = 0.30, () ¢ = 0.35,
(M) ¢ = 0.40, (¢#) ¢ = 0.45 and (A) ¢ = 0.50. The colored
solid lines correspond to theoretical prediction of Eq. (12)
where 7, is fitted by least mean square method

pressure difference P; — P, is shown as a function of the
separating distance H in Fig. 2a ((+), lower curve). We
first observe that the pressure difference is vanishingly
small at large separation distances and increases dras-
tically as the disk approaches the wall. We also observe
there is no drift of the pressure during ten successive
compression cycles. The pressure profiles remain simi-
lar and thus can be averaged over 10 cycles in order to
obtain a unique pressure profile. Then, we present the
normalized value Ap deduced from this signal as a func-
tion of R/H, (+) in Fig. 2b. The pressure difference has
been normalized using the value of the viscosity mea-
sured in the rheometer. The dark solid line in Fig.2b
represents the prediction of Eq. (10) and a good agree-
ment between experiments and theory is observed with
no fitting parameters. Note that this agreement is valid
for the whole range of aspect ratio H/R as expected
and also reported in [24]. Thus, the measurement of the
radial pressure drop in a squeeze flow allows to deduce
the dynamic viscosity of the fluid that is squeezed.

3.3 Effective viscosity of suspension

We performed similar experiments with suspensions of
polystyrene particles squeezed at constant speed. Fig-
ure 2b shows the evolution of the normalized pressure
difference Ap as a function of R/H for a compression
speed Vo = 4mm - s~ ! and different volume fractions
¢. We observed that the normalized pressure difference
scales as Ap ~ (R/H)? as for a Newtonian fluid but
with a prefactor that increases with ¢. For a suspen-
sion of relative viscosity 7., the normalized pressure
difference, Eq. (10), reads:
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Ap = 1:(¢) <§)2~ (12)

According to this expression, the prefactor that can
be extracted from the logarithmic plot in Fig. 2b corre-
sponds directly to the relative viscosity of the suspen-
sion 7,.. Experiments have been conducted with suspen-
sions of various particle volume fraction 0.3 < ¢ < 0.5
and for different compression velocities Vj ranging from
0.5 to 10 mm - s~ 1. The relative viscosity 7, (¢) deduced
from these experiments are displayed in Fig.3, as a
function of ¢ (the different colors correspond to dif-
ferent velocities V). We observe that the relative vis-
cosity of the suspension has no clear dependence on the
squeezing speed for each particle volume fraction ¢. In
this configuration, we do not observe a significant shear
thinning effect [21]. Thus, for each ¢ we average the
relative viscosity over different compression velocities.
The inset of Fig.3 shows the increase of the relative
viscosity with the particle volume fraction. The best fit
of the evolution 7,.(¢) with the Maron—Pierce law given
by Eq. (1) is found for ¢. = 0.61 £ 0.02. This value is
equal to the value estimated from rheological measure-
ments detailed in Sect. 2.1. Moreover it is in agreement
with the set of values found in previous studies [4].

3.4 Discussion

Measurements of suspension viscosity in rheometer
faces different issues such as particle size effects, shear-
induced migration and particle wall slip that are not
predominant in squeeze flow configuration. Conversely,
the drawback of squeeze flow is the liquid/solid sepa-
ration that gives rise to shear jamming, but which is
not observed here. We discuss in the following these
different issues in cylindrical Couette rheometers and
homemade squeeze flows.

Most Couette rheometers use gaps of the order of
1mm. Thus, in order to have enough particles in the
gap (> 10), it is difficult to characterize suspensions
whose particles have a diameter > 100 pwm. One advan-
tage of the present setup is that it can be used to char-
acterize suspensions of particles up to 1 mm in diame-
ter, although this requires a larger volume of suspension
than Couette rheometers.

Moreover, the squeeze flow presents by nature large
shear gradients that might lead to particles migration.
The intensity of this phenomenon must be estimated
because it can affect the hypothesis of homogeneous
suspension considered in the theoretical analysis. The
shear rate inhomogenity can be estimated by defining
the shear rate 4 as the second invariant of the strain
rate tensor [34]. From Egs. (7) and (8) for the velocity
field, the normalized shear rate writes:

1/2

NGV

Yz, r) = = (122%(z — 1)® + (22 — 1)?) (13)
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Fig. 3 Relative viscosity of the suspension versus the par-
ticle volume fraction ¢ in semi-log scale. The imposed veloc-
ity Vo ranges from 0.5 up to 10 mm- s~* and the magnitude
of the velocity is in agreement with the colorbar. The solid
line corresponds 7, = (¢¢/(de — ¢))* with ¢. = 0.61. Inset:
Relative viscosity of the suspension versus reduced volume
fraction (¢c/(¢c — ¢)). Each symbol is the average of the
relative viscosity for the different velocities

The predictions of Eq. (13) for the normalized shear
rate are plotted with a color map in Fig. 1c. We observe
that the local shear rate at the walls (x = 0 or 1) ranges
from 0 at the center (r = 0) up to a normalized value
of 3r/2 at a normalized distance r from the center.
According to Morris and Boulay [35] and considering
only the effect of the shear rate gradient along a X-
direction on particle migration, the characteristic shear
deformation . associated to particle migration is gen-
erated by the particle pressure gradient. Thus, it can
be written 1/v. = (a?/ns Vo) (0I1/0X), where II is the
particle pressure and a the diameter of the particles. In
our configuration, assuming the particle pressure scales
as IT ~nyyVo/H and X = zH, it reduces to:

1 a? 9y

Equation (13) allows to deduce that the shear rate
gradient along the z-direction verifies the inequality
0%/0x < 3r. This implies that the characteristic defor-
mation for particles migration respects 7. > H®/3a® R.
Considering typical values of these parameters corre-
sponding to the experiments presented above, H = 10
mm, R = 80 mm and a = 0.5 mm, the previous cri-
teria becomes 7, > 17. This characteristic deformation
is larger than the typical deformation imposed in the
squeeze experiment which is of order R/H ~ 5. This
confirms that particles migration is not significant in
our experiments and the suspension can be assumed to
be homogeneous.

Another known issue with squeeze flow geometry is
the possible solid-liquid separation [27,28]. Phase sep-
aration occurs when the characteristic convection time
of the suspension 7. o« 1/4, which scales as H/V}, is
large compare to the characteristic time of the fluid
flow through the particles (filtration) 7,,. As the filtra-
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tion follows the Darcy’s law, the filtration character-
istic time scales 7, o< H?/n,.(¢)k(¢)Vo where k(¢) =
a®(1 — ¢)3/(45¢?) is the Carman—Kozeny’s permeabil-
ity [36,37]. Thus the Peclet number defined as the ratio
of 7, and 7, reads:

2 2 172
oo 5 (6= 0 H? (15)
(1 - (b)g ¢c a

If Pe > 1, the filtration rate is low and the suspension
remains homogeneous during the flow. On the contrary,
if Pe <« 1, the filtration rate becomes significant and
leads to particle/fluid separation. In the experiments
presented above, an underestimate of the Peclet number
is given by ¢ = 0.5. It leads to minimal value of Peclet
number Pe ~ 1000. Thus, the Peclet is always much
larger than unity and no phase separation is expected
in these conditions.

Furthermore, a major difference between Newtonian
fluids and suspensions is the existence of normal stress
differences in the suspension. These normal stress dif-
ferences are a consequence of contact between solid
particles, which induce additional stresses compared
with the case of a pure fluid and lead to the dilata-
tion of the suspension under shear. Several experimen-
tal [4,20,21,38] and theoretical [35] works present this
normal stress effect. In our experimental configuration,
the pressure sensor encodes the first normal stress dif-
ference Ny (the difference between the normal stress in
the flow and in the shear directions), whose signature
should be a deviation from the usual effective viscosity
of suspensions (Fig. 3) [35]. As we do not observe any
deviation from Maron—Pierce law, we can conclude that
Ny ~ 0. This is compatible with several experimental
studies [4], also reporting that Ny ~ 0 for suspensions.

The last point concerns boundary conditions at the
walls. In order to induce total slip conditions at the
walls and generate a pure biaxial extensional flow, lubri-
cated walls can be used [39]. This approach is limited
by the fact that slip is often partial rather than per-
fect and is difficult to estimate experimentally. In the
present study, we have considered no-slip conditions at
the walls and the agreement between theory and exper-
iments is correct. In future, it would be interesting to
study how a change in boundary conditions affects the
determination of the effective viscosity of a fluid in a
squeeze flow.

4 Conclusion

In this study, we have considered a squeeze flow config-
uration as a viscometer. The squeeze flow is generated
between a disk and a wall approaching at constant rel-
ative velocity. The fluid viscosity is deduced from the
measurements of the radial pressure drop along the wall
made with two pressure sensors. Indeed, the solution of
the Navier—Stokes equations in a squeeze flow geometry
and in the absence of inertia provides a linear relation
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between the radial pressure drop and the fluid viscosity.
We have first validated this protocol with a Newtonian
fluid whose viscosity has been estimated with a relative
accuracy of 1 %. Then, this approach has been applied
to a suspension of particles in order to determine its rel-
ative viscosity 7, regarding the suspending fluid. These
experiments yield viscosity measurements in agreement
with the Maron—Pierce law where the relative viscosity
of the suspension evolves as 7, ~ (1 — ¢/¢.)~2. The
critical packing fraction ¢. associated with the mea-
surements in a squeeze flow is in good agreement with
the one obtained from simple shear experiments. Thus,
viscosity measurements made in a squeeze flow are con-
sistent with the ones done in a simple shear flow cell, a
result that reinforces the modeling of the suspension by
a fluid of effective viscosity. Any characteristic phenom-
ena of suspension flows such as shear-induced migra-
tion, liquid filtration or the presence of normal stress
differences do not affect the viscosity measurement in a
squeeze configuration. Finally, this work proves that the
concept of effective viscosity for suspensions of particles
is robust to a change in the flow geometry.

This work is based on local pressure measurements
but it would be interesting in the future to investigate
the fluid velocity field in order to test the validity of
the theoretical prediction of this field when the fluid is a
suspension of particles. Our approach to determine fluid
viscosity has been proved to be efficient in the limit of
small Reynolds number Re <« 1. It would be of interest
to study the response of a suspension in a squeeze flow
when the Reynolds number is not vanishingly small in
order to address the role of inertia in this configuration.
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