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Abstract. We numerically investigate the force-displacement relation of a moving intruder initially at rest
into a granular medium. Our model granular medium is composed of one layer of coplanar polydisperse
spheres subjected to a gravity field. The interactions between the grains are modelled by Hertzian contacts
to which a viscous damping is applied. Moving it horizontally and with alternating positive and negative
velocity, we recover a hysteresis of the force-displacement curve. Considering that the flow is plastic as the
yield strength has been reached, we describe the transient part of the flow around the intruder. We show
that the drag stress increases as its distance to an ultimate drag stress σu with a typical deformation εc:
the drag stress–strains curve appears to exponentially decay as it saturates to this ultimate drag stress.
This protocol of deformation highlights that the deformation of the grains is negligible compared to the
deformation of the packing, i.e. related to the irreversible displacements of grains allowing the intruder to
pass through. Simultaneously, the lift force is constant on average during the displacement of the intruder.
We then give the different scaling laws of the yield strength, this ultimate drag stress, the characteristic
deformation of the packing and the lift stress. Finally, we recover the complete hysteresis cycle of the drag
force around the intruder.

1 Introduction

The application of cyclic deformation has always been a
powerful tool for the material characterization of metals
or plastics: it often reveals interesting mechanical prop-
erties that can be exploited industrially. For those mate-
rials that are not divided media, cyclic tests are used to
characterize the fatigue or aging of these materials. These
properties are useful for predicting the life of a product
and therefore sizing a product. In practice, for metals,
when a load is applied and the yield strength (or elastic
limit) is reached, there is a plastic deformation. In or-
der to perform a compression test or a triaxial shear test
on a granular medium, it is often necessary to initially
compress the granular material so that it acquires rigid-
ity. This prestress increases the volume fraction so that
the granular medium is in its solid phase. For example,
imposing a vacuum in the tank results in a compressive
load being applied. To reach the elastic limit and trig-
ger plastic deformation to study granular flow, the most
common test is the shear test [1–3]. The shear is applied
through the deformation of a cell containing the granu-
lar medium which does not ensure a homogeneous shear
in the bulk of the granular medium [4,5]. Several numeri-
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cal studies have already been developed to investigate the
evolution of the microstructure of a dense granular mate-
rial under homogeneous oscillating shear without gravity.
For very small deformations, the mechanical properties of
the packing (elastic moduli) depend on the properties of
the grains but also on the packing fraction [6]. To go fur-
ther, finite element simulations were performed with an
interactive Hookean force between grains in order to char-
acterize the evolution of the pressure in the medium with
the architecture of the microstructure [7]. For dense pack-
ing, a hysteresis cycle in the stress-strain relationship was
observed for oscillating shears [8]. In addition, experimen-
tal studies with a monodispersed granular medium have
shown that the change in shear direction causes a sudden
change in compactness [9]. The variations in the packing
fraction within the material are correlated to the pres-
sure and shear stress in the material [10]. Secondly, recent
studies have highlighted non-local effects in the granu-
lar medium leading to a more complex rheological law
for granular medium and an inhomogeneous shear in the
granular packing [11,12].

Unlike most studies that focus solely on steady flows,
the goal of this paper is to characterize numerically
the transient response of a granular medium around a
moving object, from a state of rest to steady flow. Us-
ing a model granular medium consisting of one layer of
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coplanar spheres subjected to a field of gravity and con-
structing a drag stress–strain curve by horizontally mov-
ing an intruder back and forth through the granular pack-
ing, this motion creates a hysteresis cycle. With this local
forcing, the drag stress response follows an exponential
behavior with the displacement of the intruder while the
lift stress remains independent of it. These behaviors are
characterized by a typical deformation and an ultimate
drag stress of the granular medium. We then give the dif-
ferent scaling laws of the yield strength, this ultimate drag
stress, the characteristic deformation of the packing and
the lift stress. We conclude by addressing several features
of the plastic flow.

2 Numerical method and configuration

The present numerical setup is adapted from a previous
configuration already used in [13]. A molecular dynamic
method is used to perform two-dimensional simulations
in the typical case illustrated in fig. 1: an intruder is
immersed in a granular medium and moved inside the
medium. A circular intruder with a diameter d is initially
buried in the granular medium at a depth h which rep-
resents the vertical distance (y-direction) from the upper
surface of the granular medium to the center of the in-
truder (fig. 1). This upper surface is defined as the aver-
age y-position of the grains constituting the last layer of
grains in the initial state. The δ position of the intruder
in the x-direction corresponds to the horizontal distance
from the center of the tank to the center of the intruder
such that δ = 0 in the initial state (fig. 1). To prepare
for this initial state, the intruder was fixed in his initial
buried position. Then, a diluted granular medium is placed
above and its sedimentation under the action of gravity
(g = 9.81m · s−1 parallel to the y-direction) leads to the
initial configuration for further calculations. Once the sed-
imentation is complete, the tank filling level reaches a fi-
nite value that allows us to define h. The granular medium
consists of spherical beads: we have chosen a uniform dis-
tribution from 0.8dg to 1.2dg in order to guarantee the
absence of crystallization. In the following, we use only
dg as the average diameter of the beads. Each grain has
a mass m and Young’s modulus E; we define the average
density ρ based on the average diameter dg. The tank con-
taining the product is large enough that the lateral limits
(> 10d) have no effect on the force exerted on the in-
truder by the grains [14]. This process leads to an average
packag fraction of 0.83. This value is less than the critical
volume fraction φJ = 0.85 indicating that the packing is
rigid but still a loose packing [15,16]. In the following, our
granular medium model is composed of spherical beads
of density ρ = 103 kg · m−3 and effective Young’s mod-
ulus E = 1GPa. We use spherical beads of diameter dg

and therefore the effective length in the third direction is
dg, so the effective area of the intruder is ddg. All grain
interactions Fij in the simulation are normal without tan-
gential components. They are modelled with a dissipative
Hertzian law of the form Fij = kζ3/2 − λdζ

dt where ζ is

x
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Fig. 1. Snapshot during displacement of the intruder at ve-
locity V0. The darkest grains have undergone a significant dis-
placement during the intruder’s displacement. The scales are
in grain unit. The origin of the system of coordinates is de-
fined as the middle of the cell in x-direction and the average
flat line in y-direction. Thus the coordinates of the center of
the intruder are defined with h vertically and δ horizontally.

the interpenetration of the grains, k is the stiffness of the
contact and λ is a damping coefficient. The stiffness k is di-
rectly related to the mechanical property of the grains and
also the diameter of the grain dg through the relationship

k = E
√

dg/2. In order to dissipate energy during grain-
to-grain contact, we decided to use a viscous damping λ in
the grain contact law to reproduce a restitution coefficient
en = 0.9 and to consider a zero microscopic coefficient of
friction between grains. The interaction model differs from
other numerical models that use linear contact laws with
microscopic friction inducing tangential forces [6] or from
much richer models in modeling energy dissipation during
contacts [17]. In problems of grain flow around intruders,
the existence of macroscopic friction, i.e. steric hindrance,
makes it possible to capture physical phenomena [13]. The
absence of microscopic friction between the grains does
not prevent the local rheological laws of granular materi-
als from being reproduced [18].

Once the initial configuration has been prepared, we
move the intruder at constant speed V0 only along the
x-direction. During the movement of the intruder at con-
stant speed V0, we record the component of the force
exerted by the granular medium on the intruder in the
x-direction, called drag force Fx and in the y-direction
called lift force Fy in the rest of the document. The time
step is small enough to ensure numerical convergence. The
details of these calculations were reported in [13]. In or-
der to generate an independent velocity measurement, the
macroscopic velocity time V0 (dg/V0) must be longer than
the microscopic grain rearrangement time related to the
pressure created by the gravity field (

√

gdg). It is the

equivalent of imposing a Froude number Fr = V0/
√

gdg

smaller than 1. As part of our numerical configuration,
this leads to the condition V0 ≪ 0.1m · s−1 to ensure that
the possible wake created behind the moving intruder is
filled. It is also well established that for a small num-
ber of Froude, the evolution of the drag force is quasi-
static [19–23] and it is then useless to vary this parameter,
so we keep V0 constant at 10mm · s−1 in all simulations.
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Fig. 2. Time evolution of (a) the position of a sphere δ moving into a granular medium, (b) the associated drag force Fx in
the x-direction and (c) the associated drag force Fy in the y-direction. The sphere of diameter d = 50dg = 50 mm embedded at
h = 100dg = 100 mm moves at velocity V0 = 10 mm · s−1. The horizontal dotted lines indicate the zero value line of δ and F .
The vertical dashed lines and the bullets indicate the existence of a remaining drag force at δ = 0. The vertical plain lines and
the rectangular zone indicate the jump of the drag force which demonstrates the presence of a constant force threshold into the
material.

We then study the evolution of this drag force F ac-
cording to the drag displacement δ of the intruder. We
choose dg as unit of length. We tune three parameters
for all the simulations: the diameter dg of the grains in
the range 0.1 < dg < 10mm, the depth h in the range
30dg < h < 300dg and the diameter d of the intruder in
the range 20dg < d < 100dg.

3 Numerical results: hysteresis cycle

A cyclic deformation is shown in fig. 2. The position δ is
plotted as a function of time in fig. 2(a) while the con-
stant speed V0 of the intruder is imposed alternately pos-
itive or negative. The distance travelled by the intruder
before switching increases arbitrarily over time. In sum-
mary, the intruder oscillates horizontally and the ampli-
tude of these oscillations increases with each change of
direction. We calculate the corresponding drag force Fx

in the x-direction and display it in fig. 2(b). Even if the
force presents strong fluctuations generated by the colli-
sions between the intruder and the grains, we chose to
keep the raw signal because the general behavior of the
drag force Fx is always recognizable on the curve. We be-
lieve that these fluctuations contain information that is
beyond the scope of this study: in this section, we con-

sider only the evolution of the average drag force Fx on
these fluctuations. First, the δ displacement is linear with
time (fig. 2(a)), since the speed is kept constant (±V0).
The drag force Fx increases or decreases according to the
sign of the speed V0 (fig. 2(b)) but the evolution is not
linear in time contrary to the displacement δ. For a large
displacement amplitude, the drag force Fx saturates to a
plateau value. This plateau value is symmetric for posi-
tive and negative drag forces. Secondly, we can see that
there is no elastic deformation in the granular medium:
there is always a non-zero Fx when δ = 0 (indicated by
bullets in fig. 2(b)) even if the saturated regime has not
been reached. Third, during the speed sign change (indi-
cated by the vertical plain lines in fig. 2), there is a jump
in the drag force indicated by rectangles in fig. 2(b). In-
deed the average curve displays a gap from one side to
the other of each rectangle: this indicates the presence of
a constant force threshold into the material. This jump
can be interpreted as the elastic limit of the packing (or
elastic limit σY ) that must be crossed twice to change di-
rection of deformation. This elastic limit σY corresponds
to the minimum stress that must be applied to move the
intruder. Thus, the deformation of the granular medium
is mainly plastic. We note that this behavior is different
from the nature of the grains in our simulation that have
a finite modulus E and no yield strength [13]. As a result,
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in our simulations, the granular packing could be modeled
as a solid with infinite Young’s modulus and a finite yield
strength σY . In summary, the elastic deformation of the
stack is negligible compared to the plastic deformation and
the elasticity of the grains is not relevant to study the de-
formation process of the packing. Although each grain has
elastic behavior, the deformation ε in the entire medium
is plastic. Moreover, we can see that the yield strength
σY does not increase with the amplitude of the cycles.
These hysteresis cycle figures have been observed through
simple or pure shear experiments on soil materials [8] but
also on numerical simulations of sheared granular materi-
als [7]. However, these studies are conducted in the solid
phase of the granular material and require an initially very
dense medium with a large volume fraction or a confining
pressure ensuring the rigidity of the material. Here, in our
simulations, there is no external confining pressure except
that provided by gravity. We also notice that microscopic
friction is not necessary and that we can use a Hertz con-
tact model. In addition, the granular material is initially
well below the critical volume fraction and is loose. Fig-
ure 2(c) displays the evolution of the lift force Fy exerted
by the granular material on the intruder. Several stud-
ies have already shown this lift force [17,24,25]. This lift
force Fy is not negligible and is on average constant: it
does not present hysteresis cycles at all unlike drag force.
In the following, we will specify the behavior of this force-
displacement curve and give the scaling laws of drag and
lift forces.

4 Continuum description of the results

In this section, we describe the evolution of the force-
displacement curve of the intruder. Here, we make a simple
move in the x-direction (fig. 1). By defining the drag stress
on the intruder with the relationship σ = Fx/ddg and the
normalized displacement as ε = δ/dg, it is possible to con-
struct the typical drag stress-deformation curve (fig. 3).
Note that the drag stress defines a force per unit surface
in order to get a parameter homogeneous to a pressure. In
fig. 2(b), the drag stress σ increases roughly linearly from
a non-zero value to values below ε and reaches a plateau at
values above ε. This behaviour is similar to an exponential
curve and can therefore be modelled using an equation of
the form

σ = σY + σu

(

1 − e−
ε

εc

)

, (1)

where εc, σu and σY are three parameters characterizing
the granular packing. εc is a characteristic drag deforma-
tion of the packing. σu is the ultimate drag stress. σY is
the yield strength: as previously defined, it corresponds
to the minimum stress that must be applied to move the
intruder. We notice that the asymptotic value reached by
the drag stress σ is σY + σu at large values of ε. A fit
of the data was carried out in the case of fig. 3 in order
to determine the scaling laws of these three material pa-
rameters. This equation means that the stress excess from
yield stress σ−σY increases as its distance to the ultimate
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Fig. 3. Stress-strain curve σ = Fx/ddg as a function of ε =
δ/dg for d = 50dg = 50 mm and h = 100dg = 100 mm. The
solid line is an exponential fit from eq. (1) with σu = 0.34 kPa,
σY = 0.09 kPa and εc = 1.6.

stress σu with a characteristic length εc,

εc
d(σ − σY )

dε
= σu − (σ − σY ). (2)

A similar work can be performed by constructing a lift
stress σy = Fy/ddg associated to the normalized displace-
ment ε = δ/dg. It is possible to construct the typical lift
stress-deformation curve (not shown as it is on average
constant and comparable to fig. 2(c)).

5 Scaling laws

In order to obtain the scaling laws of the material pa-
rameters, we fit each drag stress–strain curve obtained
for different values of the burial depth h, diameter d and
grain diameter dg with eq. (1) (fig. 3). Then we extract
the three material parameters: characteristic deformation
εc, yield strength σY and ultimate stress σu. The influence
of the burial depth h, diameter d and grain diameter dg is
shown in fig. 4 for the drag stress σ and in fig. 5 for the
lift stress σy.

Spurious effects of a partial intruder immersion can be
avoided by choosing h larger than the diameter of the in-
truder h > d. To avoid spurious effects of the bottom wall,
h is also chosen far from the bottom of the tank, which
means that the distance between the intruder’s position
and the bottom must be greater than d [14]. We observe
that σY and εc are rather constant with h (not shown
but represented by the small amplitude of the standard
deviations in figs. 4(b) and (c)). The ultimate stress σu

increases linearly with h − d/2. The presence of d/2 in
this behavior comes from the geometry of the intruder,
as the intruder is identified by the burial depth h of its
center relative to the free surface. This means that h = 0
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Fig. 4. (a) Ultimate stress σu as a function of hydrostatic pressure ρg(h− d/2). The symbols correspond to d = 20dg = 20 mm
(�), d = 30dg = 30 mm (�), d = 75dg = 75 mm (◭), d = 100dg = 100 mm (�) and d = 15dg = 15 mm (▽). The symbol ◦
corresponds to d = 50dg and h = 100dg since dg is the parameter that is varied for this symbol. (b) Yield strength σY as a
function of hydrostatic pressure ρgdg. The symbol ◦ corresponds to d = 50dg and h = 100dg and the symbol • corresponds to
the average of all data obtained for dg = 1 mm. (c) Characteristic deformation εc as a function of the aspect ratio d/dg. The
symbols correspond to d/dg = 20 (�), d/dg = 30 (�), d/dg = 75 (◭), d/dg = 100 mm (�). The symbols ▽ and ◦ correspond to
the average of all data obtained for d/dg = 15 and d/dg = 50 respectively. Dashed lines correspond to (a) σu = αρg(h − d/2)
with α = 0.42 ± 0.01, (b) σY = βρgdg with β = 8 ± 1 and (c) εc = λd/dg with λ = 0.03±0.003.

corresponds to an intruder halfway down, i.e. there is al-
ways one half d/2 of the intruder immersed in the packing
(bottom half). In this situation, there is a non-zero drag
force when the intruder moves. If the intruder is initially
positioned at depth h − d/2, it is not in contact with the
packing at all, the drag force is indeed zero in this case.
The intruder must be deep enough in the packing. We can
see that the ultimate stress σu is more significant that the
yield strength σY especially at large depth h where σY

can be considered negligible comparated to σu.

The yield strength σY does not depend on d (fig. 4(b))
while the ultimate stress σu displays a small dependence
(fig. 4(a)). Finally, the scale of σu is similar to a hydro-
static pressure due to the weight of the column of grains
above the intruder such as σu ∼ ρg(h − d/2) (fig. 4(a)).
This means that in the limit case where d/h ≪ 1, the
size of the intruder does not affect this ultimate stress
since σu ∼ ρgh. The scaling for the ultimate stress σu

has been reported in many studies as corresponding to an
established stationary flow [26–30,24]. Furthermore, it is
also used in the construction of the inertial number I for
granular flow under gravity [3]. The main influence of d is
included in εc leading to εc ∼ d/dg (fig. 4(c)). The exis-
tence and scale of εc can be related to the localization of
the velocity field (as it is related to the stress) in a granu-
lar flow around obstacles. It has been reported in previous
studies [28,30,31].

Although the ultimate drag stress σu does not change
with dg (fig. 4(a)), the yield strength σY is proportionnal
to the scale σY ∼ ρgdg (fig. 4(b)). This stress scale cor-
responds to the energy needed to move one grain on its
own size. Therefore, the ratio σY /σu only depends on h,
d and dg; it follows σY /σu = γdg/(h − d/2) with γ ≃ 19
using prefactorial values determined with the data (fig. 4).
The appearance of the yield strength in this case was not
expected here and it cannot be neglected to describe the
data. Several studies [32–35] investigate the yield strength
using a pressure controlled setup (or a local force im-
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Fig. 5. Lift force per unit surface σy = Fy/ddg as a function
of pressure ρgd (same symbols as in fig. 4). The dashed line
corresponds to σy = γρgd with γ = 0.46 ± 0.01.

posed via an intruder inside the packing) requiring a large
compression of the granular packing. Moreover initial pre-
stress might screen this yield stress and provide direct
access to the ultimate stress. Figure 5 shows the evolu-
tion of the lift stress σy for all the simulations performed.
The natural scale that emerges is σy ∼ ρgd, leading to
Fy ∼ ρgd2dg. Since d2dg is comparable to the intruder’s
volume, it means that the lift force is Archimedean in this
problem. Thus, the deeper the intruder is buried, the more
negligible this force will be in front of the drag force. In
our numerical setup, we capture the transient part of the
granular flow: from rest to flow.

6 Normalized cyclic deformation

We now derive the complete cyclic deformation from the
drag stress-strain curve in fig. 2. First we normalize the
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drag stress with the ultimate drag stress σu and the drag
strain with the characteristic deformation εc. So consid-
ering the initial load defining the cycle 0, the stress σ(0)

evolves according to the deformation ε(0), eq. (1) can be
rewritten as follows:

σ(0)

σu
=

σY

σu
+

(

1 − e−
ε(0)

εc

)

. (3)

In this initial cycle, using eq. (3), ε(0) increases (with

dε(0) > 0) from 0 to the final value ε
(0)
f so that the in-

truder reaches the state (ε
(0)
f /εc, σ

(0)
f /σu). For each sub-

sequent cycle 2n with dε(2n) > 0, the intruder reaches

the state (ε
(2n)
f /εc, σ

(2n)
f /σu). The next cycle 2n + 1 cor-

responds to a reverse load (with dε(2n+1) < 0) and the

intruder reaches the state (ε
(2n+1)
f /εc, σ

(2n+1)
f /σu). Each

end state is the starting point for the next cycle. So, more
generally, each cycle 2n (with dε(2n) > 0) can be described
by the general formula

σ(2n)

σu
= 1 +

σY

σu
+

(

−1 +
σ

(2n−1)
f

σu

)

e−
ε(2n)

−ε
(2n−1)
f

εc . (4)

Similarly, each reverse load 2n+1 (with dε(2n+1) > 0) can
be described by the general formula

σ(2n+1)

σu
= −1 −

σY

σu
+

(

1 +
σ

(2n)
f

σu

)

e
ε(2n+1)

−ε
(2n)
f

εc . (5)

This model recovers that the threshold σY has to be
crossed when there is a change in the sign of dε. From
eq. (3) corresponding to the initial load, eq. (4) corre-
sponding to the load and eq. (5) corresponding to the re-
verse load, it is possible to build the complete cyclic drag
stress–drag strain curve (fig. 6) from the data of fig. 2. The
raw data have been filtered to allow a more direct com-
parison to the model. We note that there is no adjustable
parameter in this curve, since λ, σu and σY have been de-
fined with the scaling laws of fig. 4. Nevertheless the values

of the initial state (σ
(n−1)
f /σu, ε

(n−1)
f /εc) were released to

perform the fit of the data. The original asymmetry of the
cycle fades as the deformation increases. The succession of
cycles conveys the mean value of the stress to zero. There
are two sources of hysteresis in this cycle. The first source
is generated by the yield strength σY that exists at each
change in the intruder’s direction. This is reflected by the
vertical slope in the modeled cycle in fig. 6. The other
source is generated by exponential behavior up to ±σu

which is not reversible. However we notice that there is a
small disparity between the model and the numerical data.
This disparity may come from the preparation of a gran-
ular medium: the initial packing is rather loose. Through
many cycles, the local packing fraction may increase a lit-
tle and thus modify the drag stress–strain curve, as it has
already been shown in other more complete rheological
models [7]. Although the increase of the packing fraction
is small, its influence on characteristic deformation could

ε / εc

0 5 10 15-5-10

  
σ

 /
 σ

u

2

1

0

-1

-2

Fig. 6. Normalized stress σ/σu as a function of normalized
deformation ε/εc (in gray). The data are the same as in fig. 2
but they were filtered by a median filter. The solid line is an
analytical combination of the initial load from eq. (3), the re-
verses loads from eq. (5) and the loads from eq. (4). Arrows
indicate the carrying out direction of the cycles.

be significant, especially when approaching the jamming
point. This effect has been reported in several studies [36,
21,18] and is not taken into account in our model.

7 Conclusion and perspectives

We made a cyclic drag stress–strain curve of a 2D gran-
ular medium made of spheres under a gravity field. This
curve was obtained by moving a spherical intruder per-
pendicular to the gravity field in the bulk of the granu-
lar medium. This protocol of deformation has highlighted
that the deformation of the grains is irrelevant compared
to the deformation of the whole granular medium and
finally there is no elasticity of the packing although it
presents a yield strength σY : all the deformation ε is plas-
tic. From this threshold σY , the drag stress σx increases
exponentially with the drag deformation ε with a charac-
teristic deformation εc up to an ultimate stress σu. In the
case where this intruder is deeply buried in the granular
packing (d/h ≪ 1), the ultimate stress scales mainly as
hydrostatic pressure due to the weight of the column of
the grain above the intruder σu ∼ ρgh. The characteristic
deformation scales as the aspect ratio εc ∼ d/dg. The yield
strength σY scales as the weight of one grain σY ∼ ρgdg.

The yield stress σY differs from the ultimate stress σu.
In granular flows around intruder, as velocity is imposed,
studies evaluate the ultimate drag stress and not the yield
stress [28,23,37]. Actually the yield strength prevails in
the first moment of the deformation before the flow of
the material. The path from the yield stress to the ulti-
mate stress is exponential regarding the displacement of
the intruder. Our results provide a quantitative descrip-
tion of the transient flow before the stationary granular
(plastic) flow. Furthermore, the study of this plastic flow
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and this ultimate drag stress belongs to rheology: many
models have already been developed [5,11,38,39].

Understanding the structure of this path in terms of
microscopic material properties, such as microscopic fric-
tion or restitution coefficient, gives a better assesment of
the macroscopic properties. This transient plastic regime,
from rest to flow, has to be linked to local plastic events in
terms of statistical properties and spatial hererogeneities.
Comparisons to other divided media like foam or emulsion
will represent a step forward in this field of research.

The author is grateful to J.C. Géminard for fruitful discussion
and to the referee for carefully reading the manuscript.
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