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Abstract. A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller
spherical grains far from any boundaries and without gravity is presented with a non-smooth contact
dynamics method. A dense granular “cluster” zone builds progressively around the moving sphere until a
stationary regime appears with a constant upstream cluster size. The key point is that the upstream cluster
size increases with the initial solid fraction φ0 but the cluster packing fraction takes an about constant
value independent of φ0. Although the upstream cluster size around the moving sphere diverges when φ0

approaches a critical value, the drag force exerted by the grains on the sphere does not. The detailed
analysis of the local strain rate and local stress fields made in the non-parallel granular flow inside the
cluster allows us to extract the local invariants of the two tensors: dilation rate, shear rate, pressure and
shear stress. Despite different spatial variations of these invariants, the local friction coefficient μ appears
to depend only on the local inertial number I as well as the local solid fraction, which means that a local
rheology does exist in the present non-parallel flow. The key point is that the spatial variations of I inside
the cluster do not depend on the sphere velocity and explore only a small range around the value one.

1 Introduction

The response of a granular material to a mechanical per-
turbation by the motion of a solid object at its surface
or in its bulk is a fundamental issue in many fields. For
instance, in civil engineering, the resistance of soils to the
penetration or extraction of stakes and piles is an impor-
tant point for the safety of structures. In biophysics, the
understanding of animal locomotion in sand [1] may in-
spire new robotics in very different situations, from agri-
cultural to military machinaries. And in geophysics, the
collision phenomena in the impacts of meteorits on plan-
ets or asteroids [2], or in the formation of protoplanetary
disks from dust particles [3], are the basic elementary pro-
cesses that need to be taken into account for a better un-
derstanding of the evolution of the universe. In all these
cases, the complex rheology of the granular material plays
a key role and needs to be well-understood, which is par-
ticularly hard when the packing is dense with a high solid
fraction φ close to the so-called liquid/solid or jamming
transition [4–6]. Different rheological laws have been pro-
posed for dense granular flows, such as the so-called μ(I)
rheology which relates the local friction coefficient μ and
the local packing fraction φ to the dimensionless inertial
number I [7]. This local rheology has been built from
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numerical and experimental results obtained in station-
ary parallel flows: Couette flow between two close parallel
walls in relative motion [8] or thin flows down inclined
planes [9]. Although such a rheological law may give some
good results in quasi-steady and quasi-parallel flows [10–
14], its validity for strongly non-parallel flow still needs to
be addressed. Even in simple parallel shear flows, the ex-
istence of such a local rheology and the influence of solid
walls is still under investigation [15,16]. As a matter of
fact, the presence of far boundaries such as fixed or mobile
solid walls has shown to have strong and non-elucidated
actions in different situations [17–19]. To examine this im-
portant question, one must have access simultaneously to
the strain and stress fields in the bulk flow. Different ex-
perimental tools have been developed to measure both
the kinematic properties of granular flows and the force
contact network such as image correlation techniques [19,
20] or light backscattering [21] for the former, and non-
linear acoustics [22], photoelastic techniques [5,23–26], or
even X-ray or neutrons diffraction [27] for the latter. In
addition to these remarkable experimental tools, discrete
numerical techniques is now a powerful tool to investigate
deeply the complex granular flows [8,10,15,16,28,29].

The object of the present paper is to investigate the lo-
cal rheology of granular matter in a strongly non-parallel
flow around a moving sphere without any gravity field and
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far from any other boundaries. We use for this a recent
powerful numerical method described in sect. 2 to investi-
gate such a sphere motion within a bidimensional cloud of
spherical particles initially at rest with a solid fraction φ0

far below the jamming point. The size of the dense clus-
ter that builds progressively around the moving sphere is
characterized in sect. 3 and the corresponding stationary
drag force in sect. 4. A local analysis of the stress and
strain rate in the stationary flow that arises in the dense
cluster around the sphere intruder is made in sect. 5 and
the local rheology is finally examined in sect. 6.

2 Numerical model

In the Discrete Elements Methods (DEM) used to simu-
late granular flows, two classes of numerical methods can
be distinguished. “Explicit methods”, also called “smooth
methods”, consider that collision forces can be explicitly
expressed as a function of the configuration of the system
as, e.g., for a spring network. This leads to very stiff Or-
dinary Differential Equations which impose to use small
time steps in the simulations. The numerical method we
use here belongs to the class of “Non-Smooth Contact Dy-
namic methods” [30,31] and is described in details in [32].
In these methods, impenetrability is expressed by writing
that the gap between solid bodies should remain positive
and the contact force is an unknown of the problem. This
leads to robust numerical schemes and allows to use larger
time steps. Here, we simulate the motion of dissipative
rigid spheres with a non-elastic impact law (zero restitu-
tion coefficient for the collisions) but without any static
nor dynamic friction between the spheres.

The present simulation configuration is as follows. The
granular assembly is contained in a rectangular box of size
Lx along the x streamwise direction of motion and Ly in
the transverse direction y with (x, y) = (0, 0) at the cen-
ter of the box. It is made of slightly polydisperse spherical
grains of mean diameter dg and density ρ, with a uniform
size distribution in the range 0.9dg to 1.1dg in order to
avoid any possible crystallization during the simulation.
A sphere of larger diameter d = 10dg, which is initially
placed at one side of the rectangular box at x = −Lx/3
and y = 0, is then moved at constant velocity V0 in the
x direction toward the opposite side. The interaction be-
tween the grains and the moving sphere as well as between
the grains and the walls is solved using the same law as
for the grain-grain interaction.

To prepare the granular medium at the initial solid
fraction φ0 = N(πd2

g/4)/(LxLy − πd2/4), we pick ran-
domly N centers of non-intersecting spheres of diame-
ter dg in the box of size Lx × Ly = 1100dg × 800dg,
and apply a random force on the grains to ensure a uni-
form spatial configuration of spheres without any contact
force. For required φ0 values higher than 0.7, an initial
φ0 = 0.7 configuration is slightly compacted by slightly
moving one side wall of the box thus slightly decreasing
Lx to reach the required φ0 > 0.7, before a random force
is applied on the grains to obtain again a uniform spatial
distribution of grains without any contact. For the highest

range of the solid fraction built here (0.7 � φ0 � 0.75),
the length of the box thus lies in the reduced range
1030 � Lx/dg � 1100. It is worth noting that all the
explored initial solid configuration are far below the jam-
ming point which is known to be at the packing fraction
φJ � 0.84 in 2D [24,33].

Starting the intruder sphere motion, the numerical
solver gives the velocity vm of each particle m and the con-
tact force fmn exerted by particle m on particle n (which
is zero if particles m and n are not in contact). The veloc-
ity field v at any point of the domain is computed using
an interpolation of the vm values onto a Cartesian grid of
step Δx = Δy = 0.05dg. Besides, for each particle m, one
can define the corresponding stress tensor:

σm =
4

πd2
g

∑

n

emn ⊗ fnm,

where emn is the unit vector giving the direction from the
center of particle m toward the center of particle n and
⊗ is the vector outer product. The stress tensor σ at any
point of the domain is then computed by interpolating the
σm values on the same Cartesian grid as for the velocity
field v.

The local solid fraction φm around each particle m is
first computed using a Voronoi tesselation, and the local
solid fraction φ at any point of the domain is then com-
puted by interpolating the φm values on the same Carte-
sian grid as for v and σ.

From the velocity field v and the stress tensor field σ,
one can define the following quantities of interest in the
whole domain:

– The pressure p = − 1
2

∑
k σkk, defined by the opposite

of the mean normal stress.
– The shear stress τ =

√
1
2

∑
i,j(σij + pδij)2, defined by

the mean deviatoric component of the stress tensor,
where δij is the Kronecker symbol.

– The dilation rate ε̇ = 1
2

∑
k Dkk, defined by the mean

normal strain, where Dij = (∂ivj +∂jvi)/2 is the strain
rate tensor.

– The shear rate γ̇ =
√

1
2

∑
i,j(Dij − ε̇δij)2, defined by

the mean of the deviatoric component of the strain
rate tensor.

Note that the 1/2 factor for p and ε̇ arises from the
present bidimensionnal configuration.

The drag force F exerted by the grains on the intruder
can be calculated as F = −

∑
m fm0 · ex, where fm0 is the

contact force exerted by particle m on the intruder and ex

is the unit vector along the x direction of motion.
In the following, dg will be chosen as unit of length

and V0 as unit of velocity, so that dg/V0 will be chosen as
unit of time. As no gravity acts and no external pressure is
imposed in the present configuration, there is no pressure
scale other than ρV0

2, which will thus be chosen as the
unit of stress and ρd2

gV0
2 as the unit of force. The spatial

variation of each local quantities will be presented in the
polar coordinates (r, θ) adapted to the geometry, where
θ is the angle relative to the x direction of motion and
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Fig. 1. (Color online). (a) Snapshot of a simulation for the
initial solid fraction φ0 = 0.75. The length λc corresponds to
the cluster size in front of the sphere moving from left to right.
(b) Same snapshot but zoomed in around the sphere intruder.
The black lines indicate non-zero contact forces between touch-
ing grains.

r the radial position relative to the moving sphere center
(fig. 1b).

3 Dynamical clustering

As the intruder starts moving, it perturbs progressively
the initial grain assembly and a dense cluster zone of
touching grains grows around as illustrated in fig. 1. In
this figure, the grains are drawn as open disks in light gray
(light blue online) and non-zero contact forces between
touching grains are drawn as black lines connecting the
grain centers. The open disks and black lines can be seen
individually in fig. 1b that displays only a zoomed part
close around the moving intruder. In fig. 1a that displays
the entire domain, touching grains appear in dark gray
(dark blue online). The dense cluster exhibits an ovoid
shape which does not touch any limiting walls, so that
the cluster is surrounded by non-contacting grains at the

initial fraction φ0 which have not moved yet. The posi-
tion rc(θ, t) of the corresponding front delimiting the inner
perturbed cluster zone to the outer unperturbed zone is
extracted from the simple criterion p(r > rc) = 0 for each
θ. A triangular zone with no grain inside, thus appearing
in white in fig. 1a, exists in the wake of the intruder as al-
ready reported and analyzed in details by [34] in bidimen-
sional experiments. In the present paper, we only focus on
the cluster zone upstream the intruder (−π/2 � θ � π/2)
which is the key region where the drag force originates,
with high stresses and strain rates inside. The upstream
extension of the cluster λ = rc − d/2 is averaged in the
small θ range −5◦ < θ < 5◦ around the x-direction of mo-
tion. As in one dimensional experiments where a straight
rake starts moving [35], we observe that the front position
λ moves away linearly in time, with a velocity that is pro-
portional to the intruder velocity and increases with the
initial fraction φ0. But in contrast to the one-dimensional
configuration of [35], this regime is here only transient
until a steady regime is reached with a constant value λc.
This steady regime appears when the grain flux upstream
the intruder is balanced by the grain flux on the intruder
sides which can not occur in the one-dimensional config-
uration of [35] as no grains can circumvent the rake. In
the following, we restrict our study to this steady state
regime which allows time averaging of the different mea-
sured quantities.

The steady size of the dynamic cluster that appears
around the moving sphere is observed to increase with
φ0 (see fig. 2a) from only a few grains at low φ0 (e.g.
λc � 3dg at φ0 = 0.3) to many grains at high φ0 (e.g., λc �
53dg at φ0 = 0.7). The radial variation of the local solid
fraction φ(r, 0) in the streamwise direction θ = 0 in front
of the moving sphere is displayed in fig. 2b for different
initial solid fractions φ0. For large enough φ0 (φ0 � 0.6),
φ reaches a plateau value φp � 0.83 in the cluster except
close to the intruder where φ decreases down to about
0.75 and near the front where φ decreases down to φ0.
This plateau value φp is not reached for low enough φ0

(φ0 � 0.6). As demonstrated by the log-log inset plot of
fig. 2a, λc diverges at the approach of a critical value φc

with the scaling λc/dg = α(φc−φ0)−2 where α = 1.5±0.3
and φc � 0.85 ± 0.01. The critical value φc found here
is very close to the jamming point φJ reported in other
studies [24,33]. Note that the local solid fraction φ does
not vary significantly with θ in a large azimutal range as
shown by the inset of fig. 2b.

4 Drag force

In the present simulations where no gravity acts and no
external pressure is imposed from any external boundary,
no stress scale exists except the kinetic pressure ρV 2

0 aris-
ing from collision processes. We have checked that the drag
force F exerted by the grains on the moving sphere indeed
scales as ρV 2

0 for any velocity range V0. The present regime
corresponds therefore to the inertial high velocity regime
found by [36,37] in their bidimensional experiments of a
disk dragged within a monolayer of steel beads and also
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Fig. 2. (Color online). (a) Cluster size λc as a function of
the initial solid fraction φ0. (�) Numerical results and (- - -)
best fit of equation λc/dg = α(φc − φ0)

−2 with α = 1.44 and
φc = 0.85. Inset: Log-log plot of λc/dg vs. φc − φ0. (b) Radial
variation of the local solid fraction φ in the direction of motion
(θ � 0) for different initial solid fractions φ0 = 0.3 (· · · ), 0.5
(- - -), 0.7 (- · -), 0.75 (—). Inset: Azimutal variations of φ at
the radial distance r � 8dg for φ0 = 0.3 (�), 0.5 (�), 0.7 (◦),
0.75 (�).

found by [29] in their numerical simulations of a bidimen-
sional assembly of disks with no friction with the bottom
plate. In our simulation, we do not observe any quasi-
static regime at low velocity where the drag force would be
velocity independent or would depend only weakly on the
velocity. The existence of such a quasi-static regime which
is the most often seen regime [19,20,38] arises from the ex-
istence of another natural scale of pressure in the system
which may come either from gravity or from wall friction.

Figure 3a shows that the present normalized drag force
F/ρdg

2V 2
0 increases with the initial solid fraction φ0 in

a linear way even at high φ0 when approaching φc. In-
deed, a linear fit F/ρdg

2V 2
0 = Kφ0 with K = 4.9 ± 0.1

passes quite well through the all data range. Thus, F
does not seem to diverge at the approach of φc in con-
trast to the cluster size λc. Hence, if the increase of F
may be related to the increase of λc at small φ0, this is
not the case at high φ0: F remains finite whereas λc di-
verges. Figure 3b displays the evolution of the drag force F
with the cluster size λc. From the previous simple scalings
λc/dg = α(φc − φ0)−2 and F/ρdg

2V 2
0 = Kφ0 found for

the φ0 dependence of F and λc, one can infer the simple
scaling F/ρV 2

0 d2 = K[φc − (αdg/λc)1/2]. The correspond-
ing law passes quite well through the data as shown in
fig. 3b where the normalized drag force is expected to sat-
urate at the value Kφc � 4 when λc/dg goes to infinity
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Fig. 3. Normalized drag force F/ρdg
2V 2

0 as a function of
(a) the initial solid fraction φ0 fitted by the linear equation
F/ρdg

2V 2
0 = Kφ0 with K = 4.9 (- - -), and (b) as a function

of the dimensionless cluster extension λc/dg fitted by equation
F/ρdg

2V 2
0 = 4.9[0.85 − (1.44dg/λc)

1/2] (- - -).

for φ0 approaching φc. The present saturation of the drag
force at high φ0 is a strong result. Indeed, the present find-
ing is different from the scaling prediction of [37] based on
their experimental measurements where the drag force F
seems to diverge for initial solid fractions approaching a
critical value. It is also different from the divergence of the
drag force observed in the numerical simulations of [29].
But the present finding is consistent with theoretical pre-
dictions of dense packing of spheres where the yield stress
is not expected to diverge when the system crosses the
jamming point [39]. The reason why we do not observe
any divergence for the force may be explained by the fact
that the grains at the outer limit of the growing cluster
do not touch any limit boundary in our simulations.

5 Local invariants

Let us now focus on the flow around the moving intruder.
As there is no grain motion and no contact force outside,
we will only consider the dense cluster zone in the study
of the invariants of both the local strain rate tensor and
the local stress tensor: the local dilation rate ε̇ and shear
rate γ̇ together with the local pressure p and shear stress
τ . Figures 4a and b display the spatial evolution of the
normalized dilation rate ε̇dg/V0 as a function of the nor-
malized radial distance r/dg in front of the moving sphere
(θ � 0) and as a function of the azimuthal angle θ close to
the moving sphere (r � 8dg) for three values of the initial
solid fraction φ0 with a significant cluster size (λc > 10dg).
We can see in fig. 4a that ε̇dg/V0 is about zero in the over-
all cluster except near the cluster rim at the front where a
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Fig. 4. (Color online). Spatial evolution of the four invariants
of the strain rate and stress tensors around the intruder for
different initial solid fractions φ0 = 0.5 (- - -, �), 0.7 (- · -,
◦), 0.75 (—, �): (a-b) dilation rate ε̇, (c-d) shear rate γ̇, (e-f)
pressure p, and (g-h) shear stress τ . Plots (a, c, e, g) are for the
radial variations along the direction of motion (θ � 0) whereas
plots b, d, f, h are for the azimuthal variations at the radial
distance r � 8dg from the intruder. The vertical dashed lines
correspond to the front position rc = d/2 + λc.

strong peak emerges at low φ0. This result is in agreement
with the measured field of the local solid fraction φ in the
cluster zone which shows a constant plateau value φp ex-
cept in a narrow crown around the moving sphere and
at the cluster front. Indeed, mass conservation equation,
which reads φ ε̇ + v · ∇φ = 0 where v is the local veloc-
ity of the grains, thus leads to ε̇ � 0 for ∇φ � 0 where
φ = φp in the nearly overall cluster (fig. 2a). In the less
dense zone close to the moving sphere (r � d/2), ∇φ �= 0
but is mainly radial and thus normal to v which is here
mainly azimuthal, so that v ·∇φ � 0 which again leads to
ε̇ � 0. By contrast v · ∇φ �= 0 at the cluster front (r � rc)
where ∇φ �= 0 and is now nearly parallel to v � V0, so
that a significative peak of non-zero ε̇ appears here. This
peak is higher for smaller φ0 values as ε̇dg/V0 is expected
here to scale with φc − φ0. We can conclude that even if
the local density presents some spatial variations, the flow
can be considered as incompressible in the overall cluster
except in a narrow external cluster rim around r = rc.

The corresponding spatial evolutions of the normalized
shear rate γ̇dg/V0 as a function of r/dg and θ are shown
in fig. 4c and d respectively. The shear rate is observed to
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Fig. 5. (Color online). (a) Radial and (b) azimutal variation
of the inertial number I in the dense zone around the intruder
for different initial solid fractions φ0. Same symbols as in fig. 4.

be maximum close to the moving sphere at r � d/2 and
then strongly decreases away from it at larger r roughly
as γ̇ ∼ 1/r2. At the front of the dense zone (r � rc), a
peak of γ̇dg/V0 arises from large velocity gradient in this
transition zone, especially when the dense moving zone
is of small extension for low φ0 values. This peak almost
disappears for a large enough dense zone at high enough
φ0 values as for the peak of ε̇ already seen in fig. 4a. The
key point is that the maximal shear rate does not depend
significantly on the initial solid fraction φ0 neither does its
radial decreasing rate. This means that an intrinsic flow
appears close to the moving sphere within the cluster zone
independently of its possible diverging size. This flow has
an intrinsic length scale which is thus independent of φ0

and is of the order of 1d and thus of about 10dg for the
present size ratio d/dg = 10. This flow zone corresponds to
the narrow crown of lower solid fraction φ < φp. Note that
we do not observe here the triangular static zone reported
by [40] in their experimental granular chute flow around
a large disk confined between two glass plates.

Let us now look at the spatial variations of the stresses
in fig. 4e-h. As expected, the local pressure p is maximal
at the sphere surface in front of the moving sphere (r �
d/2, θ � 0) and decreases radially away from it and toward
the equator. As the drag force on the intruder was shown
to increase linearly with φ0 (fig. 4a), the good rescaling
for the stresses should be φ0ρV 2

0 . This is the case as the
maximal value of p/(φ0ρV 2

0 ) (and τ/(φ0ρV 2
0 ) resp.) at the

sphere surface is the same whatever φ0. Moreover, all the
curves of figs. 4e and f collapse on a same master curve
except near the cluster front. The spatial variations of the
shear stress τ are very similar to those of the pressure p
with always τ < p. The stresses p and τ scale roughly as
1/r. Note that γ̇, p, τ does not vanish at large r.

6 Local rheology

Let us now consider any possible local relation that may
exist between each of the local invariants of the strain rate
tensor and stress tensor. As already discussed, we can con-
sider the flow as incompressible (ε̇ = 0) within the over-
all dense cluster zone (except at the cluster rim r � rc)
so that we can discard any key role of the dilation rate
ε̇ and focus on the possible relations between the three
other invariants γ̇, p and τ . The strong coupling between
τ and p means that the rheological behavior appears to
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be of frictional type although no microscopic friction ex-
ists in the system. We thus test the possible existence of
the local rheology μ(I) [7] where the local friction coeffi-
cient μ = τ/p would be linked to the local inertial number
I = γ̇dg/

√
p/ρφ related to the local shear rate γ̇, the lo-

cal pressure p and local density ρφ. As τ and p have the
same scaling in V0, the local friction coefficient μ will not
depend here on the velocity V0. Also the local inertial
number I that arises in the dense cluster zone will not de-
pend on the intruder velocity V0 as both γ̇ and

√
p scales

as V0. The only spatial variation of I will come from the
weak difference of the spatial scalings of γ̇ and

√
p, to-

gether with the weak spatial variation of the local solid
fraction φ. Figure 5 shows the variations of I in the clus-
ter with (a) the radial position r and (b) the azimuthal
position θ relative to the intruder. We see in fig. 5a that I
has its highest value of about 5 close to the intruder and
decreases away from it following the same master curve
whatever the cluster size except at the cluster front. For
the largest cluster size (φ0 = 0.75), we see that I tends to-
wards a non-zero asymptotic value close to 1/2. Figure 5b
shows that there is only weak azimuthal variations of I
around the intruder.

In fig. 6a where the local friction coefficient μ is plotted
as a function of the local inertial number I, all data col-
lapse in one master curve which means that a local rheol-
ogy appears in the present flow. A fit through the data by
the often used empirical law [11] μ=μs+(μ2−μs)I/(I0+I)
works quite well with the values μs = 0.25 ± 0.05, μ2 =
0.78 ± 0.02 and I0 = 1.0 ± 0.3. To describe completely
the rheological behavior of the grains in the present flow,

the local solid fraction φ inside the cluster is now shown
as a function of I in fig. 6b. Again all data collapse on
a master curve, which is well described by the linear de-
crease φ = φm(1 − aI) with φm = 0.846 ± 0.002 and a =
0.025 ± 0.001. As expected the maximal value φm found
here for φ at vanishing I is slightly larger than the plateau
value φp � 0.83 found previously in the core of the cluster
flow. Moreover, φm value is found very close to the critical
value φc � 0.85 found for the divergence of λc. We believe
that φc and φm both correspond to the jamming point φJ

of the system. The plateau value φp observed in the clus-
ter core corresponds to the asymptotic minimum value of
Ip � 1/2 reached in the flow. The observed μ(I) and φ(I)
variations are very similar to what have been already ob-
served in other granular flow configurations. In the present
configuration, the inertial number I that naturally arises
is of order one and ranges within only one decade from
about 0.5 to 5. As a consequence the local friction coeffi-
cient only varies roughly from 0.45 to 0.70 and the local
solid fraction roughly from 0.75 to 0.83. The region of high
I (high μ and low φ) is close to the moving sphere but it
is worth noting that I does not vanish far away.

7 Conclusion

Our simulation results show that a steady state regime
arises for an intruder sphere moving at constant velocity
within a cloud of spherical grains initially at rest and
without contact between them and any boundaries. In the
present case of dissipative collisions between the grains,
a dense cluster of high packing fraction φp � 0.83 builds
progressively around and reaches a dynamical steady state
with a constant size that increases with the initial solid
fraction φ0 of the grains and diverges when φ0 approaches
the jamming point φJ � 0.85. The drag force exerted by
the grains on the moving sphere increases linearly with
φ0 and does not present any diverging behavior close to
φJ by contrast to the cluster size. A detailed inspection of
the velocity and stress fields inside the cluster reveals that
the strongly non-parallel flow can be considered as incom-
pressible inside the overall cluster except at its rim. This
flow is observed to be strongly localized within a few grains
close to the sphere surface in the direction of motion with
a maximal shear rate γ̇, pressure p and shear stress τ that
decreases away. The granular flow is found to obey a local
rheology where the local friction coefficient and the local
solid fraction are given by the sole inertial number I even
if no microscopic friction between the grains is considered
here. The scalings of γ̇, p and τ are such that I does
not depend on the flow velocity and varies only by one
decade around one inside the overall cluster. This specific
behavior originates from the fact that no pressure scale
exists in the present configuration that would come from
gravity or solid walls, so that the pressure that builds in
the system arises from the cluster flow itself. The present
simulation results show thus that a local rheology may
exist within dense granular materials even for non-parallel
flow at least when boundaries do not play any role.
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