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We experimentally characterize the fluctuations of the nonhomogeneous nonisotropic turbulence in an

axisymmetric von Kármán flow. We show that these fluctuations satisfy relations, issued from the Euler

equation, which are analogous to classical fluctuation-dissipation relations in statistical mechanics. We

use these relations to estimate statistical temperatures of turbulence.
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Fluctuation-dissipation relations (FDRs) are one of the
cornerstones of statistical mechanics. They offer a direct
relation between the fluctuations of a system at equilibrium
and its response to a small external perturbation. Classical
outcome of FDRs are Einstein or Nyquist relations, or,
more generally, measures of the susceptibility, dissipation
coefficient or temperature of the system. The hypothesis
behind the FDRs restrict their applicability to systems that
are close to equilibrium. Theoretical extrapolation of the
FDRs to systems far from equilibrium is currently a very
active area of research [1]. In this context, experimental
tests in several glassy systems have evidenced violation of
FDRs [2]. Furthermore, general identities about fluctua-
tions and dissipation, theoretically derived for time-
symmetric out-of-equilibrium systems [3], have been
tested in dissipative (non-time-symmetric) systems like
electrical circuit or turbulent flow [4]. Turbulence is ac-
tually a very special example of a far-from-equilibrium
system. Because of its intrinsic dissipative nature, an un-
forced turbulent flow is bound to decay to rest. However, in
the presence of a permanent forcing, a steady state regime
can be established, in which forcing and dissipation equili-
brate on average, allowing the maintenance of nonzero
averaged velocities, with large fluctuations covering a
wide range of scales. We use measurements performed in
a turbulent von Kármán flow to show that there is actually a
direct link between these fluctuations and the mean flow
properties, in a way analogous to classical FDRs. This
approach provides an estimate of effective statistical tem-
peratures of our turbulent flow.

Theoretical background and definitions.—Describing
turbulence with tools borrowed from statistical mechanics
is a long-standing dream, starting with Onsager [5].
Advances in that direction have been recently made for
flows with symmetries (2D [6], axisymmetric [7]) using
tools developed independently by Robert and Sommeria
and Miller [8]. They consider freely evolving flows de-
scribed by the Euler equation (no forcing and no dissipa-
tion). The Euler equation conserves the energy and, for
axisymmetric and shear flows, the helicity. In addition,
owing to the symmetry, there is conservation of a local

scalar quantity along a velocity line (vorticity in 2D,
angular momentum for axisymmetry) resulting in a
Liouville theorem and additional global conserved quanti-
ties as Casimirs of the local scalar quantity. In the Miller-
Robert-Sommeria theory, the Euler equation develops a
mixing process leading to a quasistationary state on the
coarse-grained scale. This state is determined by the initial
conditions and maximizes a mixing entropy under conser-
vation of all the inviscid invariants. For forced dissipative
flows, the strict conservation of the inviscid invariants is
lost. However, an equilibrium between forcing and dissi-
pation can establish itself and the system can reach a steady
state that is a combination of a stationary solution of the
Euler equation and fluctuations. This steady state is se-
lected by forcing and dissipation. Some authors [6,9] have
proposed to describe this state by maximizing a mixing
entropy under only particular constraints [see, for example,
Hf and Ig in Eq. (1)] selected implicitly by forcing and

dissipation. This allows the derivation of Gibbs states of
the system from which one derives general identities char-
acterizing the steady states, as well as relations between
these steady states and their fluctuations.
We apply this approach to the axisymmetric case which

is relevant to our experimental device. In that case, the
variables describing the system are the angular momentum
�, the stream function c and the rescaled azimuthal vor-
ticity � ¼ r�1!� [7,10]. The representation of the flow
through (�, c , �) or through the classical velocity compo-
nents (ur, u�, uz) in cylindrical coordinates (r, �, z) are
equivalent since ður; 0; uzÞ ¼ r� ðr�1c e�Þ and u� ¼
�=r. Furthermore, r�1@rðr�1@rc Þ þ r�2@2zc ¼ ��. In
the inviscid, force-free limit, the global quantities con-
served by the Euler equation are the energy E, the gener-
alized helicities Hf and the Casimirs Ig, given by [7]:

E ¼ 1

2

Z
�c rdrdzþ 1

2

Z �2

r2
rdrdz;

Hf ¼
Z

�fð�Þrdrdz; Ig ¼
Z

gð�Þrdrdz;
(1)

where f and g are arbitrary functions. For forced dissipa-
tive flows, it has been suggested to conserve only the
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energy E and two particular integrals Hf and Ig where the

functions f and g are selected through forcing and dissi-
pation [10]. For Beltrami flows, in which vorticity is pro-
portional to velocity everywhere, i.e., u ¼ �r� u, the
relevant conserved quantities are the energy E and the
helicity H so that fð�Þ ¼ � and g ¼ 0 [7].

Let us now apply the statistical mechanics approach
introduced in the previous paragraph to a Beltrami flow.
The detailed procedure is described in [7,11]. The mixing
entropy of the flow S½�� is defined using the probability
density �ð�; �; rÞ to have a certain couple of values for �
and � at each position r. Because of the Beltrami hypothe-
sis, the steady state of the flow maximizes S½�� at fixed
energy E and helicity H. Then, writing �S� ��E�
��H ¼ 0 (where ��1 is a temperature and � an ‘‘helical
potential’’) and using two different mean field approxima-
tions, one finds two relations for the averaged fields [12]:

��c þ��� ¼ 0; (2a)

���

r2
þ��� ¼ 0; (2b)

as well as two expressions for the probability density
��ð�; rÞ and ��ð�; rÞ, which happen to be Gaussian func-

tions. The two mean field approximations consist in fixing
independently � or � to their time average. The thermody-
namic coefficients� and � have been labeled accordingly.
Considering the first moment of ��, one gets an additional

relation for the averaged fields:

���

r2
þ��� ¼ 0: (3)

Finally, considering the second moment of ��ð�; rÞ and
��ð�; rÞ, we obtain relations for fluctuations:

�2 � �2 ¼ r2

��

; �2 � �2 ¼ ��

�2
�r

2
: (4)

Comparing Eq. (2b) with Eq. (3), we see that the four
thermodynamic coefficients in these equations obey

��

��
¼ ��

��

: (5)

Dividing Eq. (2a) by r and taking its curl, we obtain a
relation between the poloidal components, i.e., the compo-
nents in r-z plane, of the velocity and vorticity: up ¼
���=��!p. Then, multiplying Eq. (2b) by r, we obtain

the following relation for the toroidal, i.e., azimuthal,
components: u� ¼ ���=��!�. Finally, using Eq. (5),
we get

u ¼ ���

��

r� u; (6)

and verify that the averaged flow is a Beltrami flow with a
constant � ¼ ���=�� ¼ ���=��. Note that this flow

minimizes the coarse-grained energy at fixed helicity.
Additionally, combining Eqs. (2a) and (2b), we find that

up ¼ ��

��

��

��

r� ð!�e�Þ ¼ �2r� ð!�e�Þ; (7)

namely, that a spatial variation of the azimuthal vorticity
creates a poloidal velocity with a proportionality constant
�2. This relation can be used to define a susceptibility 	 �
1=�2 which happens to be always positive.
Equations (4) can easily be recast into

u2� � u2� ¼
1

��

; (8a)

!2
� �!2

� ¼
	

��

; (8b)

predicting uniformity of azimuthal velocity and vorticity
fluctuations. Equation (8a) shows that the azimuthal veloc-
ity fluctuations define an effective statistical temperature
1=��. Equation (8b) links the vorticity fluctuations to the

susceptibility 	 and a vortical effective temperature 1=��.
This is a formal equivalent of the Einstein relation for the
Brownian motion. These equations may be regarded as
formally analogous to FDRs since they link fluctuations,
susceptibility and temperature. These predictions enable
the measurements of turbulence effective temperatures
through fluctuations of u� and !� in a Beltrami flow.
Because variances are positive, �� and �� are always

positive (since 	> 0), unlike in the 2D situation where
	 can be negative [13]. In contrast, �� and �� can take

positive or negative values, depending on the helicity sign.
The analogy between our predictions and FDRs can

actually be pushed forward. Another possible way to derive
Eqs. (4) is to introduce, as in classical statistical mechan-
ics, the partition function Z�;� describing the Beltrami

equilibrium state in each mean field approximation:

�2 � �2 ¼ 1

�2
�

�2 logZ�

��2
¼ � 1

��

��

��
; (9a)

�2 � ��2 ¼ 1

�2
�

�2 logZ�

��2
¼ � 1

��

��

��
: (9b)

Formally, the mathematical objects ��=�� and ��=��
can be seen as response functions. With this point of
view, Eqs. (9) again reflect a formal analogy with FDRs
since another classical way to write it down is to link the
fluctuations of a field to its response to a perturbation.
The challenge is to face such fluctuation relations with

experimental data. For this, we use a turbulent von Kármán
flow that has already been shown to tend to a Beltrami flow
at large Reynolds number [10].
Experimental flow and measurement techniques.—Our

experimental setup consists of a plexiglas cylinder (radius
Rc ¼ 100 mm) filled up with water. The fluid is mechani-
cally stirred by a pair of impellers driven by two indepen-
dent motors in exact counterrotation. The resulting flow
belongs to the von Kármán class of flows with a mean flow
divided into two toric cells separated by an azimuthal shear
layer. We define the Reynolds number as Re ¼ UL=
 ¼
2�FR2

c=
, where F is the impeller frequency and 
 the
water viscosity. Rotating the impellers from 2 to 8 Hz, we
can achieve Reynolds numbers from 125 000 to 500 000.
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Our two models of impellers, TM60 and TM73, are flat
disks of respective radius 0:925Rc and 0:75Rc, fitted with
radial blades of height 0:2Rc and respective curvature
0:50Rc and 0:925Rc. The inner face of the discs are
1:8Rc apart. Different forcings are associated with the
convex or concave face of the blades going forward, de-
noted in the sequel by senses (þ) and (�). Velocity mea-
surements are done with a stereoscopic particule image
velocimetry system [11] provided by DANTEC Dynamics.
The cylinder is mounted inside a water filled square plexi-
glas container in order to reduce optical deformations. Two
digital cameras are aiming at a meridian plane of the flow
through two perpendicular faces of the square container
giving a 2D-three components velocity field map.

Correlation calculations are done on 32� 32 pixels2 win-
dows with 50% overlap. As a result, each velocity is
averaged on a 4:16� 4:16 mm2 window over the 1.5 mm
laser sheet thickness. The spatial resolution is 2.08 mm. A
basic measurement is a set of 5000 acquisitions at a rate of
4 images per second. From this set, we compute time-
average and fluctuations of the three velocity components.
From now on, all physical quantities and equations will

be considered in their nondimensionalized form using F
and Rc. For each of the four forcing configurations, we
made between five and seven tests that show no
Redependency for these nondimensionalized quantities.
Test of the mean flow relations.—Relations (2a) and (2b)

can be tested by plotting c and �r2 with respect to �� for
each experiment. Two of them are plotted in Fig. 1. As in
Ref. [10], we focus on the flow bulk, i.e., jzj � 0:5 and
jrj � 0:5, where the von Kármán flow is close to a
Beltrami flow. Linear dependencies of Eqs. (2) are con-
firmed [10] and enable estimation of the slopes��=�� and
��=�� (see caption of Fig. 1 for details and Table I for

averaged results). Depending on the forcing, the two mea-
surements of �=� differ from 1 to 13%, verifying Eq. (5)
and giving a unique mean value of �=� or � (see Table I,
line 3). The quality of the test of Eq. (5) is evaluated by
��=�� � ��=�� (line 4). One can see that the two 68%
confidence intervals of��=�� and��=�� always overlap.

Test of the fluctuation relations.—Now, we turn to ex-
perimental test of fluctuation relations (8) and to complete
determination of the four a priori independent coefficients:
��, ��,�� and��. Because of Eq. (5), only three of them
are independent and the previous test already provided a
measurement of �=�. So, we can use the fluctuation
relations of Eqs. (8) to compute the remaining parameters
1=�� and ��=�

2
�.

Figure 2 presents the analysis of the fluctuation relations
for angular velocity u� and vorticity !�. On the top plots,
we test relation (8a). Over the whole flow, the velocity
fluctuations are roughly constant. The relative scattering,

FIG. 1 (color online). c (top) and �r2 (bottom) versus �� for
two experimental von Kármán flow with TM60 impellers at F ¼
6 Hz, sense (þ) at left, (�) at right. Black dots correspond to
flow bulk data (jzj � 0:5, jrj � 0:5) and define mostly linear
functions. The slopes of the dot-dashed lines is given by the first
order coefficient of an odd cubic fit of the data. Corresponding
values of ��=�� and ��=�� are used to compute Table I.

TABLE I. Nondimensionalized statistical coefficients measured in our experiments following Eqs. (2) and (8) for the four forcings
studied (two impellers, two senses). Raw measurements (lines 1–2 and 5–6) allow to calculate a Beltrami factor (line 3–4) and
statistical coefficients (lines 7–10). Errors are calculated with standard 68% confidence intervals as the sum of the error on data fits (see
Figs. 1 and 2) and of the statistical dispersion over the different runs. Each measurement is an average over 5 to 7 experiments
performed at high Re between 1.2 and 5� 105.

Impellers TM73 TM60

Rotation sense (þ) (�) (þ) (�)

��=�� 4:64� 0:25 �4:92� 0:12 3:76� 0:28 �4:11� 0:31
��=�� 4:31� 0:20 �4:88� 0:17 3:55� 0:20 �3:61� 0:23
h�=�i 4:47� 0:22 �4:90� 0:15 3:66� 0:24 �3:86� 0:27

��=�� � ��=�� 0:33� 0:45 �0:04� 0:29 0:21� 0:48 �0:50� 0:54

1=�� 0:0452� 0:0040 0:0673� 0:0035 0:0481� 0:0056 0:0922� 0:0086
��=�

2
� 9:1� 0:5 13:4� 0:7 10:4� 1:4 16:4� 0:9

�� 22:1� 2:0 14:9� 0:8 20:8� 2:4 10:8� 1:0

�� 2:04� 0:31 1:77� 0:21 1:22� 0:31 0:79� 0:14
�� 4:77� 0:68 �3:02� 0:23 5:53� 1:06 �2:64� 0:45
�� 0:47� 0:05 �0:36� 0:03 0:34� 0:07 �0:22� 0:03
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which mostly tracks the z dependance, increases with r.
Focusing again on the flow bulk, we observe a reduced
scattering and measure 1=�� with a simple average. On the

bottom plots, we perform the same analysis for vorticity
fluctuations and relation (8b). The vorticity fluctuations
displays a scattering of the same order of magnitude than
angular velocity fluctuations. Once again, an average over
the bulk allows to measure ��=�

2
�. We conclude that, for

these von Kármán flow, the variances of azimuthal velocity
and vorticity are constant in the flow bulk. This result is
compatible with the mean field analysis drawn in the first
part of this Letter for a Beltrami flow. Combining the two
sets of results described above, we can independently
evaluate (��, ��) and (��, ��). Standard error estimates

are typically 10%, ranging from 5% to 20%. Table I shows
that these two couples are not equal to each other and even
differ by 1 order of magnitude. This result is discussed in
the next section.

Conclusion.—We have derived predictions concerning
the mean flow and the fluctuations in an axisymmetric
Euler-Beltrami flow using tools borrowed from statistical
mechanics. These predictions, and especially the uniform-
ity of the variances of u� and!� [Eqs. (8)], have then been
experimentally confirmed in the specific case of a turbulent
von Kármán flow at large Reynolds number. This result is
a priori unexpected since the theory, issued from the Euler
equation, does not explicitly take into account the forcing
and the dissipation which implicitly determine the form of
the steady state. This is an additional confirmation that out-
of-equilibrium steady states of a real turbulent flow may be
described as equilibrium states of the Euler equation as

suggested in [10]. Additionally, these relations provide two
different values for an effective statistical temperature 1=�
of our system depending on the selected variable. Such
nonuniqueness of statistical temperature in out of equilib-
rium systems has already been encountered in the context
of glassy systems [14]. Turbulent flows may be another
example of this out of equilibrium property. Meanwhile,
one could possibly use correlation with hydrodynamics
properties (such as variation with forcing, fluctuation rate
or Reynolds number [15]) to decide whether one of the
temperatures we measure is more relevant than the other to
stand for a statistical temperature of the turbulence.
Finally, in order to test further the physical relevance of
the FDR analogy, one should perform direct measurements
of response functions as suggested by the right-hand side
of Eqs. (9). This is a yet unresolved and challenging
experimental issue.
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FIG. 2 (color online). Evolution of angular velocity fluctua-
tions (top) and angular momentum fluctuations (bottom) with the
radial coordinate r for the same flows as in Fig. 1. Black dots
correspond to flow bulk data (jzj � 0:5, jrj � 0:5). The corre-
sponding mean values and standard deviations at each z are
plotted by red lines and error bars. Horizontal dot-dashed lines
show the averages over the flow bulk, i.e., measured values for
1=�� and ��=�

2
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