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Abstract
We review some theoretical and experimental works describing the slow, thermally activated,
growth of a crack in a solid material under stress. Theoretical approaches fall into two main
classes: creep crack growth models and elastic trap models. On the one hand, creep crack
growth models describe the viscoplastic flow of matter until some characteristic rupture strain
is reached. This first category of models applies especially to the case of polymer rupture. On
the other hand, elastic trap models assume that a rupture energy barrier is overcome by elastic
stress fluctuations. While this second category of models is more restricted since it applies
only to materials with brittle rupture features, it offers a framework that can be interestingly
and importantly extended to the case of heterogeneous materials. Models will be discussed in
the light of recent experimental works.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding strength of solids has always been an important
concern in order to be able to design properly structures
of various kind (buildings, vehicles, ships, airplanes, etc).
Experimentally, the strength of solids is usually found much
lower than would predict a theoretical estimate assuming
rupture of covalent bonds. Griffith described how the
presence of flaws in a material and the corresponding stress
inhomogeneities resulting from it could explain a significant
decrease in strength [1]. It is also well known that the strength
of solids depends on the volume of the specimen, the strength
becoming smaller in larger samples. This property has been
mainly described as a statistical effect in a distribution of flaws
using the weakest link concept, originally introduced by Pierce
[2] and developed into a theory by Weibull [3]. This theory,
mathematically connected to the problem of extreme-value
statistics [4], has helped to understand how the strength of wires
depends on their diameter or their length, and explains why,
nowadays, very small objects such as nanotubes or nanowires
have often a very high strength. However, another well-known

observation, that cannot be described by Weibull’s statistical
theory, is the time-dependence of strength of solids, namely
the fact that materials will break at smaller loads when the
duration over which the load is applied becomes longer [5].
It has been recognized since at least the early 1940s that the
decrease in strength with time was due to rupture processes
that are thermally activated [6]. Several models involving a
thermally activated mechanism have been proposed to explain
the experimental observations. Nowadays, there are still
many unanswered questions on the proper way to describe
slow rupture, alternatively called subcritical rupture or time-
dependent rupture.

This paper intends to review historical and also more
recent works on time-dependent rupture with a focus on
slow crack growth dynamics in the second half of the paper.
Section 2 will first discuss various laws for the breaking
time of a material under a constant applied load. We will
see that many different kinds of materials can be described
according to a simple phenomenological law. We will discuss
the limits of this phenomenological law, in particular the
scale at which rupture is supposed to occur and the precise
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dependence with the applied stress. We will also review
various theoretical models that have been proposed in order
to predict the experimental observations on the breaking time.
Section 3 will discuss several models that can be used to
predict slow crack growth dynamics under a constant load.
We will concentrate on two models describing the case of
brittle materials, and compare their predictions with recent
experimental results. We will also discuss briefly the case of
viscoplastic materials for which predictions are more difficult
to make and often rely on very phenomenological descriptions
of the material mechanical properties.

2. Breaking time of materials under a constant load

2.1. Early experiments and the BBZ model

Time-dependent rupture, subcritical rupture, or more simply
put, slow rupture has been very early described as a
consequence of creep flow. Maybe the first historical evidence
for such a possible connection between creep flow and
slow rupture was made around 1830 by Vicat [5], a bridge
construction engineer who studied the creep of iron wires under
different loads. Vicat discovered that, even though corrosion
of the wire by the atmosphere was prevented with the use
of drying oil, wires that were submitted to the largest loads
would eventually break after some time, which meant in Vicat’s
experiments about three years!

A century after Vicat, Busse [6], a tyre engineer, studied
the slow rupture properties of cotton yarns, i.e. bundles of
cotton fibres. He found that the breaking time τ decreases
exponentially with the applied stress σ and he inferred from
his observations on various yarn lengths that this behaviour
was due to viscoplastic flow of individual fibres, but neither
slippage of the fibres between each other nor chemical
degradation. Busse proposed that the inverse of the breaking
time should be proportional to the viscous strain-rate predicted
by Eyring’s reaction-rate theory of viscous flow [7]:

τ−1 ∼ τ−1
0 exp

(−E0

kBT

)
sinh

(
σV

kBT

)
, (1)

where kB is Boltzmann constant, T the thermodynamic
temperature, E0 a characteristic energy barrier and V an
activation volume. In Eyring’s theory, the activation volume
is half the average volume occupied by a molecule. The sinh
term in equation (1) comes from the fact that molecules have a
thermally activated probability proportional to exp(σV/kBT )

to jump a unit distance in the direction of the flow but also
a small probability proportional to exp(−σV/kBT ) to jump
in the opposite direction. When the applied stress σ is large
enough so that σV � kBT , the probability to move backwards
is very small. In such a case, the rupture process is irreversible
and the rupture time takes a simpler form:

τ = τ0 exp

(
E0 − σV

kBT

)
. (2)

Busse found equation (2) to be in qualitative agreement
with his experimental observations. Shortly afterwards,

Tobolsky and Eyring [8] calculated the rupture time of a
fibre bundle submitted to a constant force, taking into account
the progressive increase in the load on the remaining fibres.
They found that, in the limit where σV � kBT , it added
only logarithmic corrections to equation (2). Along the same
line, Coleman described how knowledge of the statistical
distribution of breaking times under a constant load could be
used to predict breaking times for other load histories (linear
increase in time or sinusoidal) [9]. In particular, the stain-
rate dependence observed for the strength of some materials
(polymers, rocks) can be understood as a consequence of
the thermally activated behaviour predicted by equation (2)
[10, 11].

Bueche, who was specifically interested in thermally
activated rupture of polymer chains, observed for glassy
polymers, i.e. at temperatures below the glass transition, an
exponential dependence of the rupture time with applied force
[12]. He derived a model where rupture occurs in a polymer
chain when bonds are pulled apart up to a critical distance δ that
is expected to be a fraction of an interatomic distance. He also
assumed that applying a constant force F to a bond decreases
the rupture energy barrier E to be overcome by thermal
activation such that E = E0 − Fδ, where E0 represents now
the bond energy. Finally, he suggested that the characteristic
frequency τ−1

0 should be of the order of the bond vibration
frequency. Finally, Bueche’s prediction can be put exactly in
the same form as equation (2) writing the activation volume:
V = A0δ, where A0 is the typical cross-sectional area per
monomer through the rupture plane.

Zhurkov’s kinetic theory of rupture [13] contains the
same ideas as Bueche’s theory. Zhurkov has verified
experimentally for a wide range of temperatures that the scaling
law equation (2) works reasonably well for many different
materials (polycrystalline metals, alloys, non-metallic crystals,
polymers). He compared the experimental value of the energy
barrier E0 with the sublimation energy and that found that
they were close. His numerous observations came in support
of the idea that time-dependent rupture results from thermally
activated bound cut. In the case of polymers, Zhurkov found
more direct evidence of bond rupture by measuring the rate
of radical formation using electron paramagnetic resonance
(EPR) and showed it had the same qualitative and quantitative
dependence on applied stress than the inverse of the rupture
time.

Even though Busse, Bueche and Zhurkov have different
physical arguments to justify their models (viscous flow, bond
rupture), they all have in common that they predict the same
dependence of the time to rupture on the applied stress. For
convenience, we shall refer to equation (2) as the BBZ model.

2.2. Problems with the BBZ model

2.2.1. The scale of rupture. Although the simplicity of the
BBZ model and the theories proposed to justify it are rather
appealing, some difficulties arise when looking at the scale
at which the rupture process occurs according to the models.
In table 1, we have reported or estimated the energy scale
and the activation volume extracted from several experiments
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Table 1. Characteristic energy E0 and volume V estimated for
various experimental data found in the literature using the BBZ
model. E0 is computed assuming τ0 = 10−13 s as discussed in [13].

T (◦K) V 1/3 (nm) E0 (eV)

Cotton yarns [6] 411 1.2 1.79
Nylon yarn [9] 296 2.56 0.9
PEMA [12] 375 0.95 ∅

Polystyrene [12] 393 0.98 ∅

Polystyrene [16] 293 1.4 1.56
PMMA [13] 291 1.1 2.74
Zn-polycrist [13] 291–523 1.03 1.31
Al-polycrist [13] 291–573 1.65 2.29
Granite [10] ∼300 2.4 1.9

published in the literature. While it seems true that E0 is of
the order of magnitude of an atomic bond energy, we see right
away that the length scale associated with the activation volume
is consistently of the order of a few nanometres. This means
that the thermally activated rupture process described by the
BBZ model should involve several hundred atomic bounds
simultaneously. If one tries to estimate the critical distance
δ in Bueche’s model with a typical value of the cross-sectional
area per monomer A0 = 70 Å2, one still finds δ ∼ 1 nm which
can clearly not be interpreted as a critical atomic bond distance
for rupture. Bueche was aware of this problem and tried,
unsuccessfully, to correct his model by taking into account
several possible effects, such as the progressive increase in
load on polymer chains due to viscous relaxation of the load
on the other chains [14].

2.2.2. The limit of long rupture times. Another serious
limitation of the BBZ model is the deviations from the linear
dependence of log(τ ) with applied stress σ observed in many
cases. For instance, both Bueche and Zhurkov have observed
that at very low stresses or high temperatures, the rupture
time is much longer than expected by simply extrapolating
the behaviour at high stress or low temperatures. Note
also that in the case of rubbery polymers, i.e. polymers at
temperatures above the glass transition, the deviations can be
especially large [15]. Bueche argued that, in the long rupture
time regime, glassy polymers tend to behave like rubbery
polymers for which he had made specific predictions based on
a non-standard model of rubbery elasticity, but the agreement
he found with experimental data remained qualitatively and
quantitatively unsatisfying.

Zhurkov suggested that the deviations might arise from the
reversibility of the rupture process at small applied stress [13],
with the probability for an atomic bound to heal becoming
equal to the probability to break at zero stress. Such a reversible
process is actually naturally included in the non-approximated
version of the BBZ model given by equation (1) which predicts,
in the limit of small applied stresses, τ ∝ σ−1. Following the
idea that rupture is a reversible process, Kausch et al [17] have
studied a fibre bundle model where the rate of bond rupture and
bond healing is given by Eyring reaction-rate theory. Their
model takes into account the progressive rupture of bonds,
the corresponding increase in the load shared equally by the
remaining bonds and assumes that the bonds break when a

critical load is reached. The model is able to reproduce the
divergence of rupture time at small stresses. However, in
order to fit experimental data, Kausch et al chose, without any
physical justifications, a time scale τ0, an energy scale E0 and
an activation volume V that were different for bond rupture
and for bond healing [17]. In practice, the activation volume
for bond healing was found to be 10 to 30 times smaller than
the activation volume for bond rupture and the elementary rate
of bound rupture 20 to 2000 times the elementary rate of bound
healing. Note that, as seen in the previous section, the order of
magnitude of the activation volume for bond rupture was still
about (1–2 nm)3.

2.3. Elastic energy barrier models

A completely different explanation for the deviations from
the BBZ model observed experimentally could be that the
linear decrease in the energy barrier with the applied stress
σ , assumed in Eyring reaction-rate theory, is simply not the
correct functional dependence, even at large stresses. Several
alternative scaling relations between the breaking time and the
applied stress have been proposed in the case of purely elastic
materials.

2.3.1. Taylor’s model. In order to explain early experiments
on time-dependent rupture in glass by Baker and Preston [18],
Glathart and Preston have suggested the following empirical
fit of their data [19]:

τ = τ0 exp
(σ0

σ

)
. (3)

In order to justify this empirical scaling, Taylor introduced
shortly afterwards a model where a perfectly elastic material
breaks when it reaches a critical elongation. Although the
physical justifications behind Taylor’s model are quite unclear,
his core assumption is that the volume of material involved in
the calculation of the energy barrier decreases proportionally
to the inverse of the applied stress [20]. In the specific case of
glass, Baker et al have shown that in addition to temperature,
the atmospheric conditions (humidity) have a strong influence
on the rupture dynamics (this behaviour has been studied
extensively later by Wiederhorn [21], see also [22] for a recent
review). This rupture regime, called stress–corrosion, comes
from the fact the energy barrier for bond rupture in silicate glass
involves a chemical reaction with water molecules and thus
depends on the specific amount of humidity in the environment.
Such effects involving a chemical reaction and the detailed
change in the energy barrier related to it are out of the scope
of this paper.

2.3.2. Global energy balance (GEB) models. More recently,
Pomeau [23, 24] has determined the breaking time of materials
under a constant load by assuming that it comes from the
nucleation of a critical crack with a size determined according
to Griffith’s rupture criterium [1]. Indeed, Griffith idea of
energy balance between the energy required to create a crack
surface and the total mechanical energy (elastic + potential
energy of the external load) predicts that a solid stretched
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at constant load is in a metastable state. The energy barrier
to overcome is then the one corresponding to the nucleation
of a critical crack. This approach assumes that the material
response is elastic up to the rupture point, a case which is
usually referred to as brittle rupture. For a 2D geometry, i.e. a
plane of small thickness e, the nucleation of a critical Griffith
crack across the plane will take a time:

τ = τ0 exp

(
σ 2

0

σ 2

)
, (4)

where σ 2
0 ∼ γ 2Ye/kBT , Y is the Young modulus and γ is

the energy needed to create a unit surface of the crack. For
a 3D geometry, where the nucleated crack can be thought in
first approximation as a spherical cavity, the breaking time is
predicted to be

τ = τ0 exp

(
σ 4

0

σ 4

)
, (5)

where σ 4
0 ∼ γ 3Y 2/kBT . Note that if one considers in 3D the

nucleation of a crack corresponding to a straight needle cut of
atomic diameter, one could expect to get a scaling with applied
stress corresponding to the case of the 2D geometry where the
thickness of the crack e is of the order of magnitude of an
atomic size. Some authors have shown that the breaking time
keep the same dependence on applied stress if one includes the
effect of curviness of the crack [25]. The case where a crack
pre-exists in the material changes the energy barrier slightly
and has been expressed both for the 2D and 3D geometry
[26, 27].

In the last 15 years, several experimental works have tried
to verify Pomeau’s prediction. Experiments in 2D rods of
NBD stearic acids [28] seem to agree with the 2d prediction
of equation (4) while experiments in wood composites [29],
fibre glass composites [30] or sintered glass beads [31] agree
better with the 3D prediction of equation (5). Some authors
even generalized Pomeau’s prediction to fractal dimensions
arguing it corresponds to the case of gels [32]. However, note
that from the experimental values of σ0, Y and T , obtained for
instance in [30], one would find using a fit with equation (5)
a value γ ∼ µJ m−2 [27]. This is an abnormally low value
for the fracture energy suggesting that the energy barrier in
equation (5) has been strongly overestimated.

One of the main fallout of Pomeau’s model [23] and
derivatives is that they neglect the possibility that rupture
results from the accumulation of small irreversible rupture
events in the material that would require a much lower energy
barrier. Indeed, according to Pomeau’s initial idea, a crack
is supposed to reversibly explore due to thermal noise several
sizes until it reaches the critical one. This might be relevant in
the case of very large loads for which the critical crack size,
and thus the energy barrier, is very small, but it will not in
general describe properly the practical case of materials that
can have rather large pre-existing flaws that will not be able to
close back in a reversible manner. Golubovic and Feng [33]
have suggested that irreversibility of the rupture process arises
as soon as the distance between the two crack lips is larger than
an atomic size. Following this idea, they defined a critical crack
size as the crack for which the maximum opening is larger than

an atomic size. Their prediction yields a change in the stress
dependence of the energy barrier such that, in a 2D geometry,
the rupture time takes the form corresponding to equation (3)
while in 3D, it takes the form of equation (4). Note that this
approach neglects the time it takes afterwards for the crack to
grow until it reaches the Griffith length. In order to predict what
would happen in that case, the energy barrier corresponding
to the progressive growth of a crack has been expressed by
Santucci et al [26] assuming that, due to irreversibility, the
Griffith potential could be progressively climbed in elementary
steps δ, possibly of atomic size, up to the Griffith critical crack
size. For a 2D geometry, this will give an energy barrier per
unit thickness:

E = (Gc − G)δ, (6)

where Gc = 2γ is the critical elastic energy release rate
corresponding to Griffith rupture criteria and G the elastic
release rate corresponding to the actual crack length3, assumed
here smaller than the Griffith critical size (G < Gc).

Another way to go around the problem of oversized
barriers in Pomeau’s model is to take into account the effect
of disorder (or heterogeneity) in the material properties. For
instance, in order to explain their experimental observations,
Guarino et al [29] introduced the idea that the disordered
nature of the samples could result in an effective temperature
at least an order of magnitude higher than the thermodynamic
temperature T . This idea has been mainly discussed
in the context of local elastic barrier (LEB) models (see
section 2.3.3). In the context of GEB Models, Nattermann et al
have shown how disorder could decrease the energy barrier
and thus the critical crack size for rupture [34]. However,
relying also on GEB models, Kierfeld and Vinokur [35, 36]
have recently shown that, for a single crack, disorder might
instead have the effect to slow down rupture and even cause
the complete arrest of the crack (see also [37], for a similar
prediction in the context of LEB models).

2.3.3. LEB models. In order to explain slow rupture at
high temperature of sapphire whiskers, Brenner [38] took
into account a preexisting crack and proposed that the energy
barrier to overcome should correspond to the elastic energy
increment needed to reach in a small volume near the crack
tip a local rupture threshold. Brenner predicted that the rate of
rupture p at the crack tip should have the following form:

P ∝ exp

(
− (σc − σm)2V

2YkBT

)
, (7)

where σc is the local value of the rupture stress and σm the
mean stress in volume V . In order to understand Brenner’s
formula, let us consider for an elastic material the temporal
stress fluctuations σf that occur around the statistical mean
value σm in a given fixed volume V . Statistical physics predicts
that these fluctuations follow a normal distribution:

p(σf) =
√

V

2πYkBT
exp

[
− (σf − σm)2V

2YkBT

]
. (8)

3 The elastic energy release rate is defined by the relation G = −∂Um/∂A,
with Um the sum of the elastic energy and the potential energy of the external
loading and A the fracture surface area.

4



J. Phys. D: Appl. Phys. 42 (2009) 214007 L Vanel et al

The probability to break, i.e. to have a fluctuation larger than
the breaking threshold, is then P(σc −σm) = ∫ ∞

σc
p(σf) dσf =

1
2 erfc[(σc − σm)

√
V/2YkBT ]. If the energy barrier is large

compared with the energy of thermal noise, i.e. if (σc −
σm)2V � 2YkBT , then it is possible to show that the volume
V will break after a time:

τ = τ0

√
2πV

YkBT
(σc − σm) exp

[
(σc − σm)2V

2YkBT

]
. (9)

Equation (9) indeed shows that the rate of rupture (∝ τ−1) is
dominated by the same exponential term as the one proposed by
Brenner. Thanks to the local nature of the rupture process, the
local energy barrier models have been very useful to describe
thermally activated rupture in elastic disordered materials
[37, 39–44].

3. Slow crack growth under a constant load

The predictions of time to rupture presented in section 2
very often ignore the fact that rupture is usually a gradual
process, involving many elementary rupture events. Two main
scenarios of progressive rupture are often referred to in the first
one, the material break after the accumulation of many diffuse
rupture events; in the second one, there is a main defect, a main
crack, that will grow slowly until reaching a critical size. In
this second part of the paper, we will be discussing mainly
the slow growth of a crack. As we have seen previously,
there is some uncertainty regarding the precise dependence
of the energy barrier with the applied stress. Looking at the
detailed dynamics of slow crack growth under constant stress
can, in principle, help to discriminate between the various
predictions. Indeed, under a constant load, the stress intensity
factor will increase as the crack grows and the crack will
accelerate. But, the acceleration of the crack will depend on
the precise functional form of the energy barrier so that the
crack length evolution with time will have different shapes for
various models of the energy barrier. In addition, one might
wonder if the experimental values of the activation volume,
observed to be larger than expected for a model of bound
rupture at the atomic scale, might be due to the failure of
properly describing the progressive damage processes leading
to rupture. In the following, we review some predictions made
by models of brittle rupture where the material is assumed to be
elastic up to the rupture point. Afterwards, we discuss the case
of viscoplastic rupture for which predictions are more difficult
to make and often rely on very phenomenological descriptions
of the material mechanical properties.

3.1. Brittle materials

3.1.1. Slow crack growth in the GEB model: lattice trapping.
Brittle materials are assumed to behave elastically up to
the rupture point. For elastic materials, the Griffith energy
balance approach predicts that, under a constant load σ , there
exists a critical crack length �g corresponding to an unstable
equilibrium point that verifies exactly the condition: G = �,
where G is the elastic energy release rate and � = 2γ the

Figure 1. Thomson potential energy as a function of crack length �
and for a constant applied stress σ . For �− < � < �+, the crack can
be trapped in metastable states, while for � < �− and � > �+ it is
always unstable. The Griffith length �g corresponds to a case where
statistically the crack has the same probability to move forwards or
backwards.

energy cost per unit area to create two fracture interfaces.
Note that G is here an increasing function of the crack length
�. If rupture is a reversible process and the crack length is
such that � < �g (equivalently G < �), the crack will be
unstable and close back entirely. On the other hand, if the
crack length � is such that � > �g (equivalently G > �), the
crack will also be unstable and grow indefinitely. In order to
explain the existence of stable cracks under a tensile load at
zero temperature and their slow growth at finite temperature,
Thomson et al have developed a lattice theory where the crack
is trapped due to the discreteness of matter at the atomic scale
δ [49]. The model assumes that this discreteness introduces
a frozen spatial modulation of the fracture energy, with a
minimum value �− < 2γ and a maximum value �+ > 2γ .
When �− < G < �+, the crack will be in a metastable state
due to what Thomson et al have called a lattice trapping effect.
At constant load, there will exist a length �− < �g and a length
�+ > �g between which the crack can move only by thermally
activated jumps over energy barriers (see figure 1). As shown
below, the resulting motion will be either a slow growth or
a slow healing of the crack depending on the value of the
crack length. For � > �+ (respectively � < �−), the trapping
barrier becomes zero and the crack can grow (respectively
heal) quickly. The trapping model explains the existence
of a lower threshold for a crack to be able to start growing
and also an upper threshold above which the crack becomes
mechanically unstable has made this model realistic and thus
attractive [50–57]. Linearizing the trapping energy barrier, in
the same spirit as done originally by Hsieh and Thomson [50],
we can write the energy barrier to move a discrete step δs

forwards E+ and the energy barrier to move a discrete step
δs backwards E−:

E+ = (�+ − G)δs and E− = (G − �−)δs. (10)

Note that the expression for E+ is very similar to equation (6),
except that the threshold �+ is now larger than the Griffith one
2γ . Also, in equation (10), the energy E+ and E− have been
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written per unit width of the crack front. If the crack front
were to move at once, the energy barriers E+ and E− would
have to be multiplied by the width of the crack front to get the
actual energy barrier of the rupture process. Realizing that this
was not very realistic since it would lead to very large energy
barriers when the crack front is of macroscopic size, Hsieh and
Thomson [50] had originally suggested that the crack could
advance by forming a small kink at the atomic scale and that
afterwards the kink would propagate along the width of the
crack front. With a kink mechanism, the energy barrier of
the process can be roughly obtained by multiplying the energy
barriers in equation (10) by a scale δk of the order of a few
atomic sizes. The kink propagation mechanism itself has been
described in detail by Marder [56]. Assuming that the healing
of the crack is possible, the crack velocity can be written:

v ≡ d�

dt
= v0 exp

[
−E+δk

kBT

]
− v0 exp

[
−E−δk

kBT

]
(11)

which can be rearranged so that

v = 2v0 exp

[
−	�δsδk

kBT

]
sinh

[
(G − �0)δsδk

kBT

]
, (12)

where

	� = �+ − �−
2

and �0 = �+ + �−
2

. (13)

The quantity �0 represents the average value of the fracture
energy, and when there is no lattice trapping (�+ = �−), the
usual Griffith condition gives G = �0. In equation (12), one
notices that the crack velocity is zero when G = �0, hence
when the crack verifies Griffith condition for the mean value
of the fracture energy. It is important to realize that while
�0 gives a threshold for crack propagation, it does not give a
threshold for spontaneous healing which will occur only when
G < �−(< �0). Spontaneous fracture will on the other hand
occur only when G > �+(> �0). Note that in order to observe
spontaneous healing in the lattice trapping model, one will have
to decrease G below �0 by the same amount we would need to
increase G above �0 to observe spontaneous crack growth. If
a thermally activated rupture process is allowed, slow healing
of the crack will occur when �− < G < �0 and slow crack
growth when �0 < G < �+.

In practice, slow crack growth will be observed in a
reasonable amount of time if (G − �0)δsδk � kBT . In that
case, equation (12) reduces to

v = v0 exp

[
(G − �+)δsδk

kBT

]
. (14)

One can apply equation (14) to determine the velocity of a
crack of length � centred in a plane sheet under a constant
tensile stress σ perpendicular to the crack direction. In that
case, G = K2/E = πσ 2�/2Y , where K = σ

√
π�/2 is the

mode I stress intensity factor. The upper limit of the fracture
energy �+ can be used to define a critical crack size �c ≡ �+

and a critical stress intensity factor Kc through the relation:

�+ = K2
c /E = πσ 2�+/2Y . Then, one can write the velocity:

v = v0 exp

[
− (K2

c − K2)δsδk

Y kBT

]

= v0 exp

[
−πσ 2(�c − �)δsδk

2YkBT

]
. (15)

Note that this velocity increases exponentially with the crack
length. Equation (15) is a differential equation that can be
solved to find �(t) with the initial condition that at t = 0,
� = �i:

t = τG

[
1 − exp

(
−� − �i

ζG

)]
, (16)

where we have introduce the characteristic length scale ζG:

ζG = 2YkBT

πσ 2δsδk

(17)

and the characteristic time τG:

τG = ζG

v0
exp

[
UG

kBT

]
(18)

with

UG = (K2
c − K2

i )δsδk

Y kBT
= πσ 2(�c − �i)δsδk

2YkBT
. (19)

Derivating again the solution with respect to time, one can
write

v = ζG

τG − t
. (20)

It is clear from the last formula that τG will represent the rupture
time of the sample while, as can be seen from equation (16),
ζG sets a typical growth length before the crack length starts to
diverge. We will compare these predictions with experimental
results in section 3.1.3.

3.1.2. Slow crack growth in the LEB model. In section 2.3.3,
we have introduced the LEB model which corresponds to a
description where an intrinsic rupture threshold exists at a local
scale. We insist that this rupture threshold does not come from
a Griffith rupture criteria or from any GEB reasoning. In the
LEB model, the stress at the crack tip is assumed to have a
finite value and if this value is smaller than a rupture threshold
σc, the crack will be effectively trapped. Contrary to what
has been discussed previously, there is no need at this point to
introduce a discretization at the atomic scale in order to create
a trap. There are many possible reasons why, in an elastic
material, one can expect to have a finite value of the stress at
the crack tip. It will occur for instance if the crack tip has
a well-defined radius of curvature. Alternatively, there might
exist some cut-off length, related to the microstructure of the
material, below which the stress cannot diverge. Finally, in
the spirit of Barenblatt, there might exist a cohesive zone of
small fixed size that will prevent divergence of the stress [58]
(the same calculation was also derived in a different context by
Dugdale [59]). In any case, we will introduce a characteristic
size λ so that the stress at the crack tip can be written:

σm = K√
λ

where K = σ

√
π

2
�. (21)
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Figure 2. Experimental characteristic growth length extracted from average crack growth curves in a sheet of paper [45] compared with the
prediction of (a) the GEB model and (b) the LEB model. Note that several values of initial crack length �i have been used. A linear fit
allows to extract very similar values for the combined scales δsδk and V/λ.

Now, the scale d at which thermally activated rupture occurs
has nothing to do with the scale λ that acts as a cut-off for
the stress divergence. Remember for instance that, in the BBZ
model, the rupture scale was about a nanometre (see table 1),
and we expect a similar order of magnitude in the LEB model.
The time τ to rupture a volume V = d3 at the end of each
crack tip is known from equation (9). The crack velocity can
be defined as

v ≡ 2d

τ
= v0

√
2YkBT

π(σc − σm)2V
exp

[
− (σc − σm)2V

2YkBT

]
, (22)

where we set v0 = d/τ0. This differential equation is not
as easy to solve as equation (15). However, it is possible to
solve an approximate version of this equation valid as long as
the critical crack size �c is not too large compared with the
initial crack size �i [26, 46]. With the initial condition that at
t = 0, � = �i and defining σi = σm(�i), the solution �(t) of
equation (22) can be expressed as

t = τL

[
1 − exp

(
−� − �i

ζL

)]
, (23)

where we have introduced the characteristic length scale ζL:

ζL = 2YkBT �i

σi(σc − σi)V
= 4πYkBT �i

Ki(Kc − Ki)

λ

V
. (24)

and the characteristic time τL:

τL = ζL

v0

√
πUL

kBT
exp

[
UL

kBT

]
(25)

with

UL = (σc − σi)
2V

2Y
= (Kc − Ki)

2V

2Yλ

= πσ 2(
√

�c − √
�i)

2V

4Yλ
. (26)

The prediction of the crack growth dynamics given by
equation (23) is qualitatively the same than the one obtained
with the GEB model. However, the characteristic length
ζL, rupture time τL and energy barrier UL have a different
dependence on the physical parameters. In the next section,
we will compare both the LEB and GEB model predictions
with experimental observations. The detailed statistics of
crack jumps that are observed in these experiments and that
can be successfully understood in the framework of the LEB
model [60] will not be discussed here (for a review, see [46]).

3.1.3. An experimental test of the GEB and LEB models.
We will now compare the predictions of both the GEB and
LEB models with the experiments of Santucci et al [45, 46] on
slow crack growth in a sheet of paper under a constant applied
load. In addition to measuring the rupture time, Santucci et al
have measured the crack length as a function of time and after
averaging over several experiments in the same conditions,
they have determined the characteristic growth length ζ using
a fit with equation (16) or equivalently, equation (23) [45, 46].
In figures 2(a) and (b), we compare the experimental values
of ζ with the predicted values ζG · (δsδk) and ζL · (V/λ) that
can be computed using the experimental values of the applied
stress σ , the initial crack length �i, the critical crack length �c

(or critical stress intensity factor Kc), the temperature and the
measured tensile modulus of paper E = 3.3 × 109 GPa. We
note in both cases that there is good correlation between the
experimental values and the models. From a linear fit, we can
obtain the following values for the combined scales of rupture:√

δsδk = 2.1 pm and
√

V/λ = 3.3 pm. In figures 3(a) and (b),
we compare the logarithm of the rupture time with the energy
barriers corresponding to both models, and we also find that
they describe the experiments equally well. A fit enables us to
extract independently another set of values for the combined
scales of rupture:

√
δsδk = 3.3 pm and

√
V/λ = 5.5 pm.

Although the combined scales determined from the rupture
time τ and the ones from the characteristic length ζ are not
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Figure 3. Experimental breaking time extracted from average crack growth curves in a sheet of paper [45] compared with the prediction of
(a) the GEB model and (b) the LEB model. Note that several values of initial crack length �i have been used. A linear fit allows to extract
very similar values for the combined scales δsδk and V/λ.

exactly the same, they are close enough to consider that both
the GEB and LEB models give a consistent picture of slow
crack growth. Overall, there is apparently not much difference
between the two models.

Let us now discuss in more details the scales involved in
both models. In the GEB model, δs is supposed to correspond
to an interatomic distance while δk is supposed to be several
interatomic distances. However, choosing δs = δk , we see
from the comparison of this model with the experimental data
that the typical scale is δs ∼ 3 × 10−12 m, which is clearly
non-physical. If we force a more physical value for δs ∼ Å,
then the result is even worst since it yields δk ∼ 10−14 m.
In the LEB model, although the ratio V/λ is of the same
order of magnitude than δsδk , the physical interpretation is
quite different. The scale λ is a cut-off length at which the
divergence of stress is suppressed. Santucci et al initially
assumed that a natural cut-off length was the scale of the paper
fibres, i.e. about 20 µm in diameter, which leads here to a value
V 1/3 = 7±1 Å. This value is much more reasonable physically
than the values obtained for δs or δk in the GEB model. Also,
it is quite remarkable that we have now an activation volume
that turns out to be not so different from the one usually found
with the simpler BBZ model (see table 1). Furthermore, it
is important to realize that the results obtained with the LEB
model would still give physical estimates of rupture scales
if we had chosen a very different scale for the cut-off λ. For
instance, it is well known that paper fibres are made of cellulose
which contain fibrils of diameter D = 2.5 nm [47] and Young
modulus Y = 138 GPa [48]. These fibrils are nanofibres with
a cristalline structure for which the LEB model is especially
appropriate since they will break in a brittle manner. If we
compute the stress at the scale of the nanofibres choosing
λ = 2.5 nm and use the elastic modulus of the nanofibres, one
finds now V 1/3 = 1.4 Å. Although it is questionable that the
nanofibres are a physically correct cut-off scale for the stress
divergence, the value obtained for the volume is now very close

to an interatomic distance and thus is very consistent with the
idea that thermally activated rupture occurs at the level of single
atomic bonds.

3.2. Viscoplastic materials

3.2.1. Introduction. Many models of viscoplastic slow
crack growth have been developed with the specific case of
polymers in mind [54, 61–67]. However, most of these models
correspond to the case of a linear viscoelastic material, and they
have been shown to predict the correct behaviour mostly for
elastomeric polymers or polymers in a rubbery state, i.e. at
temperatures above the glass transition [63, 67]. Furthermore,
breaking time laws such as the one given by the BBZ model
discussed in section 2, work better in the case of polymers in a
glassy state, i.e. below the glass transition temperature [12].
This is probably because viscous flow in glassy polymers
typically follows an Eyring law, as in most solids, while the
viscous flow of polymers in a rubbery state resembles more
viscous flow in a fluid. Recent, direct evidence of fluid-like
viscous crack propagation has been observed in gels for which
the crack velocity can be either proportional to the elastic
energy release rate [68] or have a power law dependence
[69]. In our brief review of slow crack growth in viscoplastic
materials under a constant load, we will mostly focus on the
case of glassy polymers. Modelling the mechanical behaviour
of polymers in a glassy state, and particularly the appearance
of a yield stress and of strain hardening at large strains, has
recently been a very active topic [70–75]. On the other hand,
experimental works have mostly focused on understanding the
fracture energy needed to propagate a crack, including the
influence of strain rate [76, 77]. Overall, there is relatively
much less work regarding the slow crack dynamics in glassy
polymers, both from an experimental and a theoretical point
of view.
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Figure 4. Image of a crack in a polycarbonate film with its
macroscopic plastic zone at each tip. � is the crack length and �pz

is the plastic zone length from tip to tip.

3.2.2. Slow crack growth in a polycarbonate film. We
describe here some recent experimental results obtained on
slow crack growth in polycarbonate films (for more details,
see [78, 79]). A centred crack of initial length �i is loaded
in mode I at constant velocity until reaching a stress σ

that is kept constant during the slow growth of the crack
until complete rupture of the sample. During the loading
phase of the film, a macroscopic flame-shaped plastic zone
appears at each tip of the crack and grows with the applied
stress (cf figure 4 where are defined �, the crack length
and, �pz the plastic zone length from tip to tip). This
zone was previously observed by Donald and Kramer [80].
The formation of the plastic zone corresponds to a necking
instability which brings the film thickness from 125 µm to
about 75 ± 5 µm. Our polycarbonate films are isotropic
and have the same mechanical properties than annealed
polycarbonate. Consequently, the thickness of the plastic zone
can be considered constant and uniform except in two small
neighbourhoods close to the crack tip and close to the plastic
zone tip [80].

Due to the influence of rate-effect on the polymer
mechanical properties, the stress level in the plastic zone is
expected to be dependent on the growth dynamics and must
be understood as a dynamical stress. In order to estimate
the stress in the plastic zone, we can use the Dugdale–
Barenblatt cohesive zone model [58, 59] which predicts the
relation between �pz and � at equilibrium. Assuming that the
stress in the plastic zone is uniformly equal to the plastic yield
stress σy of the material, Dugdale predicts

σy = π

2

σ

arcos

(
�

�pz

) . (27)

The experimental values of �, �pz and σ can be used to estimate
σy. Here, we are using engineering stresses but could have
equivalently used true stresses since, as mentioned above, the
thickness of the plastic zone can be considered constant almost
everywhere. Note that equation (27) does not require the
plastic zone to be small compared with the crack size and is
obtained from the condition that the stress intensity factor is
zero at the tip of the plastic zone. It is also important to realize
that the values of σy obtained in that way are very consistent
with the values of the yield stress that can be determined
directly from a tensile test in a polycarbonate strip without
any cracks [79, 81].

Typical growth curves of the fracture and plastic zone are
shown in figure 5. We can see right away that the prediction
of slow crack growth for brittle materials, equation (16) or
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Figure 5. Time as a function of both the crack and plastic zone
lengths for an imposed stress experiment (�i = 1.5 cm, F = 900 N).
We indicate the position of the inflexion point tx , �x of the crack
growth curve.

(23), cannot describe the shape of the crack growth curve
observed here, showing first a slowing down of the growth until
the length �x and an acceleration afterwards. Furthermore,
the shape of the accelerated part of the crack motion is
incompatible with the prediction obtained for brittle crack
growth [81].

We have seen in section 2 that the Eyring model for
creep flow had been proposed as a possible interpretation of
the observed stress dependence of breaking times for many
different materials. In addition, several authors have observed
that plastic zones formed during a necking instability can grow
in creep conditions and that their growth velocity also follow
an Eyring law [79, 82]. Thus, we could expect that the crack
growth dynamics is controlled, at least partly, by the creep
dynamics of the plastic zone. In figure 6(a), we plot the
instantaneous crack growth velocity as a function of the stress
σy for eight experiments performed with various experimental
conditions. Although there is not a direct correlation between
crack velocity and the plastic stress σy, it is important to realize
that the behaviour observed at the beginning of the experiment,
when the crack is slowing down, gives a correlation that is
not very far from an Eyring law with a slope quantitatively
close to the one observed for the creep velocity of the necking
instability [79]. We discovered that introducing a correction
to σy linear with the crack length � allows us to collapse the
experimental data on a straight line (cf figure 3(b)). This
correction can be written

σ corr
y = σy + κ(� − �x), (28)

where it is found that κ = (3.4 ± 0.6) × 108 N m−3. This
rescaling means that the crack growth velocity follows

v = v0 exp(ασ corr
y ), (29)

where α = 6.8 × 10−7 m2 N−1. Interestingly, there are
indications that κ�x = σs−σ , where σs represents the breaking
stress of the polycarbonate film when there is no crack [79].
In the following, we emphasize two important features of
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Figure 6. Natural logarithm of the instantaneous crack growth velocity as a function of (a) the Dugdale–Barenblatt stress, (b) the corrected
Dugdale–Barenblatt stress σ corr

y according to equation (28) for eight experiments performed with various experimental conditions
(�i = 1.5,2,3 cm and 2.9 < σ < 3.8 × 107 N m−2). In figure (b), the black line is the result of a linear data fit.

the phenomenological law, equation (29), obtained for the
instantaneous crack velocity.

First, one can interpret the exponential dependence of
the velocity as a function of σ corr

y in a rather simple way
if one compares this scaling with the Eyring creep law of
polycarbonate relating its strain rate ε̇ to the applied stress
σ [8]:

ε̇ = ε̇1 exp(σV/kBT ). (30)

Creep experiments performed at room temperature on our own
polycarbonate samples give V/kBT = 7.67 × 10−7 m2 N−1

[79]. The fact this prefactor V/kBT is of the same
magnitude than α in the exponential law for the crack velocity
(cf equation (29)) reinforces the idea that the creep of the
plastic zone plays an important role in the mechanisms of
crack growth. If one identifies now α � V/kBT , we find
V 1/3 = 1.4 nm. This value is close to the one normally
obtained for the breaking time of polymers when the BBZ
model is used (see table 1).

Second, it is striking that the linear correction in � that was
added to define σ corr

y introduces an exponential dependence
of the instantaneous velocity on the crack length �. Such
a dependence was already predicted in the case of brittle
slow crack growth, both in the GEB and LEB models. The
characteristic growth length scale ζVP = (ακ)−1 � 4.3 mm is
also of the same order of magnitude than the one obtained in the
case of slow crack growth in a sheet of paper (see section 3.1.3).
However, it is not clear yet whether or not ζVP depends on the
applied stress σ in the same way as in the GEB and LEB
models.

Thus, equation (29) means that the crack growth velocity
in a glassy polymer such as polycarbonate can be expressed
roughly as the product of a creep velocity, that takes into
account the rate dependence of the plastic stress, times a brittle-
like velocity, that depends exponentially on the crack length.
As a consequence of this important property, we can expect
that slow crack growth curves in any solid materials, even
viscoplastic ones, will have the same shape than for a brittle
material as long as the influence of rate effects on the plastic
stress remains small, such that it can be considered constant
during the whole crack growth.

3.2.3. Possible origin of the brittle-like term in viscoplastic
materials. Here, we want to emphasize that it is not
obvious to understand the physical reason behind the
observed dependence of the crack velocity on crack length in
polycarbonate films. The size of the plastic zone that Dugdale
predicted was obtained by noting that the total stress intensity
factor at the tip of the plastic zone must vanish. Hence, as it
was already discussed by Rice [54], the elastic energy release
rate must also be zero. All the variations of elastic energy
during crack growth have to go into the plastic zone so that
nothing can be used to help the crack grow. This argument has
led Chudnovsky and Shulkin [67] to postulate the existence of
an out of equilibrium situation where the total stress intensity
factor is not exactly zero. However, allowing for a time
relaxation of the fracture energy needed to propagate a crack,
Chudnovsky finds a crack growth law that has exactly the same
form than the one obtained in linear viscoelastic models [62].

Another approach to solve the problem could be to
recognize that, once the plastic zone has been formed by
necking, it can behave again elastically (it is well known that
the plastic plateau ends after the necking instability occurred
and is followed by an hardening elastic response [83]). Then,
it is very likely that there will be a stress intensification at
the crack tip. A rough estimate of the stress intensification
for an ideally straight crack and assuming that the plastic
zone behaves with the same elastic response as the rest of
the film, would predict that the stress is larger than twice
the applied stress σ at distances from the crack tip smaller
than about 0.16�. Since we have a ratio �pz/� ∼ 2 and thus
σy/σ ∼ 1.5 [79], we can conclude right away that most of the
plastic zone is submitted to a Dugdale plastic stress while stress
intensification remains confined in a smaller region close to the
crack tip. Now, if one applies the LEB model using the local
stress at the crack tip, the rate of rupture will increase with crack
length and we can expect to recover the observed dependence
on crack length. Thus, we reach again the conclusion that
it is easier to understand the experimental observations by
reasoning at a local scale rather than by reasoning using GEB
models.
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4. Conclusion

A large corpus of experiments shows that the breaking time
of solid materials submitted to a constant load is proportional
to an Arrhenius factor with an energy barrier that decreases
with the applied stress. An exception is, for instance, the
case of polymers in a rubbery or elastomeric state. The
Arrhenius behaviour is a clear sign that thermally activated
processes cause rupture and this picture is reinforced by
several experiments showing how breaking time depends on
temperature. We have reviewed several models that are
consistent with experiments and differ mainly with the precise
functional dependence of the energy barrier on the applied
stress. The BBZ model, that can be viewed as a first order
approach to describe experimental data, leads to experimental
values of the maximum energy barrier close to the theoretical
value for the rupture of atomic bonds. On the other hand, it
predicts a scale of rupture of the order of a few nanometres
which is a little bit too large if bond rupture is to be the correct
mechanism. We have also discussed various GEB models,
based on GEB as inspired by Griffith’s original approach, and
have shown they often tend to overestimate the size of the
energy barrier, and thus lead to unphysical predictions. Finally,
we have introduced the LEB model which considers that the
rupture rate depends only on the local state of stress in the
material and how far this stress is from an intrinsic rupture
threshold. A major fault of many of the models presented here
is that they neglect the progressive accumulation of damage
before complete macroscopic rupture of a sample.

In the second part of this paper, we have focused on the
growth of a single crack under a constant load, which is a
very simple case where the slow dynamics of rupture can
be followed in time. We have first discussed the case of
brittle materials that have a simple linear elastic response up to
rupture. In the framework of the GEB model, lattice trapping
effects can help in understanding the existence of a range of
crack length for which thermally activated crack growth exists.
In the framework of the LEB model, the crack is naturally in
subcritical condition as long as the local stress at the crack
tip is smaller than the rupture threshold. Both the GEB and
LEB model predict that the crack velocity should increase
exponentially with crack length. Both models also introduce
two characteristic length scales in the problem. However,
comparisons with recent experiments on paper sheets, show
that the GEB model fails to predict physically realistic values
for both length scales that are found to be much too small. This
is in our view another proof that the GEB model overestimates
the energy barrier. On the other hand, the LEB model leads
to much more physical values for the length scales. One
of them seems to correspond well to a characteristic cut-off
scale of the stress divergence at the crack tip while the other
one is coherent with a rupture process at the atomic scale.
Finally, we have discussed the case of viscoplastic materials
by focusing on recent experimental results obtained by us. We
have shown that in a glassy polymer such as polycarbonate
the crack velocity can be obtained, roughly, as the product
of a creep velocity, taking into account strain-rate effects on
the plastic stress, times a velocity with the same functional

dependence on crack length than the crack velocity in brittle
materials. We argue that the LEB model is the best framework
to understand the remarkable appearance of a brittle-like term
for the instantaneous crack velocity in a glassy polymer.
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