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Starting from the classical formulation of the weak turbulence theory in a density stratified fluid, we
derive a simplified version of the kinetic equation of internal gravity wave turbulence. This equation allows
us to uncover scaling laws for the spatial and temporal energy spectra of internal wave turbulence which are
consistent with typical scaling exponents observed in the oceans. The keystone of our description is the
assumption that the energy transfers are dominated by a class of nonlocal resonant interactions, known as
the “induced diffusion” triads, which conserve the ratio between the wave frequency and vertical wave
number. Our analysis remarkably shows that the internal wave turbulence cascade is associated to an
apparent constant flux of wave action.
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Introduction.—Fluids that are stably stratified in density
support the propagation of a specific class of waves, called
internal gravity waves [1–3]. In the case of a linear density
gradient, their dispersion relation is

ω ¼ N
k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þ k2z
p ; ð1Þ

where ω is the angular frequency and k⊥ and kz are the
norm of the components of the wave vector k normal and
parallel to gravity, respectively. The buoyancy frequency
N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−g=ρ0dρ̄=dz
p

is set by the density gradient at rest,
dρ̄=dz < 0, and the acceleration of gravity g (with the
vertical coordinate z opposite to gravity). Equation (1) is
obtained from the Navier-Stokes equation under the
approximation of weak density variations with respect to
the reference density ρ0 [2,3].
A stratification in density of the fluid, and especially the

consequent internal wave dynamics, deeply modifies
hydrodynamic turbulence [4,5], which becomes anisotropic
and can develop in several regimes (see the introduction in
Ref. [6]). A remarkable regime is expected when the
Reynolds number Re ¼ ul=ν is large, whereas the
Froude number Fr ¼ u=Nl is low compared to the non-
dimensional frequency ω� ¼ ω=N (where u and ω are the
characteristic velocity and frequency of the structures at
scale l, respectively, and ν is the kinematic viscosity). This
is the “weak turbulence” regime [7,8], in which an energy
cascade is expected to result from triadic resonant inter-
actions within a statistical ensemble of weakly nonlinear
internal gravity waves [9].
This “weak internal wave turbulence” framework has

often been suggested as a potential explanation for the
oceanic dynamics at “small scales” [10,11], without,
however, a clear confirmation so far. This question is of

interest in view of the advance that a validation of the weak
turbulence theory could bring for the parametrization of the
oceanic small scales in climate models [12–15].
In practice, oceanic data classically reveal one-

dimensional (1D) energy spectra, in frequency ω or in
vertical wave number kz, following power laws with an
exponent of the order of −2 [10]. These scaling laws are
proposed to result from a cascade of energy from low to high
frequencies (periods typically in the range from12 h to a few
tens of minutes) and from large to small vertical scales
(typically from a few hundred meters to a few meters). This
small-scale high-frequency oceanic behavior is often sum-
marized by the two-dimensional (2D) energy spectrum
Eðkz;ωÞ ∼ k−2z ω−2 introduced by Garrett and Munk in the
1970s [16–18] andwhich postulates a decorrelation between
ω and kz.
Besides, the classical derivation of the wave turbulence

theory in stratified fluids, based on the assumption of local
interactions in the space of scales, led to an analytical
prediction for the 2D (axisymmetric) spatial energy spec-
trum scaling as Eðk⊥; kzÞ ∼

ffiffiffiffiffiffi
εN

p
k−3=2⊥ k−3=2z [19–21], with ε

the mean rate of energy transfer (per unit mass). This
derivation has, however, been achieved by ignoring a
divergence of the so-called “collision integral,” and the
relevance of this prediction is, therefore, highly
questionable [20]. Over the past 20 years, several theo-
retical works have searched to solve this issue by taking
into account nonlocal interactions [9,22]. These works first
suggested that a whole family of solutions with a constant
energy flux exists [9,23] before identifying that the spec-
trum Eðk⊥; kzÞ ∼ k2−a⊥ k−1z with a ≃ 3.69 is a remarkable
solution, because it leads to an exact compensation of two
diverging parts of the collision integral [9,22].
In this Letter, we present a derivation of the 1D energy

spectra of weak internal gravity wave turbulence based on a
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detailed analysis of the kinetic equation. The obtained
spectra are consistent with the previously mentioned typical
oceanic observations. A key step in this derivation is to
realize that the turbulent cascade is driven by a subset of
triadic resonant interactions, nonlocal in wave number and
frequency, which impose a constant ratio between the
frequency and the vertical wave number.
The kinetic equation.—Starting from the Euler equation

under the Boussinesq approximation (in the case of a linear
gradient of density at rest), the first step of the weak
turbulence theory consists in establishing an evolution
equation for the so-called wave action spectrum nk, a
quantity which can be related to the 2D axisymmetric
spatial energy spectrum by Eðk⊥; kz; tÞ ¼ k⊥ωknk [20].
This task was achieved by Caillol and Zeitlin in 2000 [20]
under the assumptions of weak nonlinearity, statistical
axisymmetry with respect to gravity, and strong anisotropy
k⊥ ≪ jkzj. Caillol and Zeitlin more precisely established
the so-called “kinetic equation” for nk, which reveals the
domination of the energy transfers by triadic resonances of
internal waves and which can be written as

∂nk
∂t

∝
Z

ðRk
pq −Rp

kq −Rq
kpÞdpdq; ð2Þ

with

Rk
pq ¼ Tkpqðnpnq − nknp − nknqÞδkpqδðΩk

pqÞ; ð3Þ

Tkpq ¼ ðk̃⊥ þ p̃⊥ þ q̃⊥Þ2
ðk2z − pzqzÞ2

16jkzpzqzjk⊥p⊥q⊥

×

�
k2⊥ − p̃⊥q̃⊥
k2z − pzqz

kz −
p2⊥
pz

−
q2⊥
qz

�
2

; ð4Þ

m̃⊥ ¼ sgnðmzÞm⊥ (with m ¼ k, p, or q), δkpq ¼ δðk−
p − qÞ, and Ωk

pq ¼ ω�
k − ω�

p − ω�
q (see Ref. [24] for a

review on the internal wave kinetic equation). The non-
dimensional angular frequencies ω�

m (withm ¼ k, p, or q)
verify the dispersion relation (1) which, in the considered
anisotropic limit, reduces to ω�

m ¼ m⊥=jmzj.
At this step, the usual strategy to find a physical solution

consists in searching for a stationary solution of the kinetic
equation (2) with a nonzero energy flux. To achieve this,
Caillol and Zeitlin [20] employed the Zakharov-Kuznetsov
transformation [7] in the right-hand side (rhs) of Eq. (2) and
finally identified the stationary solution mentioned earlier:

Eðk⊥; kzÞ ∼
ffiffiffiffiffiffi
εN

p
k−3=2⊥ k−3=2z : ð5Þ

In this paragraph, we explain how Eq. (5) can also be
derived from the kinetic equation (2) using phenomeno-
logical arguments. A key point is to assume the locality of
interactions in both wave number (jkj ∼ jpj ∼ jqj) and
frequency (ω�

k ∼ ω�
p ∼ ω�

q), which amounts to considering

that k⊥ ∼ p⊥ ∼ q⊥ and jkzj ∼ jpzj ∼ jqzj. Then, analyzing
the scaling of the transfer coefficients in Eqs. (2)–(4), we
can estimate the transfer time τtr as

τtr ∼
ω�
k

Tkpqnkk2⊥kz
∼

ω�
k

nkk5⊥
∼

ωk

k2⊥u2⊥
; ð6Þ

where Tkpq ∼ k3⊥=kz and u⊥ represents the typical velocity
at scale k. We used here the estimate nk ∼ u2⊥=k3⊥N
resulting from the definition of the wave action spectrum
nk ¼ Eðk⊥; kzÞ=k⊥ωk and the estimate of the power
spectral density Eðk⊥; kzÞ using u2⊥ ∼ Eðk⊥; kzÞk⊥kz. For
the last scaling law, we considered the fact that the kinetic
and potential energies of an internal gravity wave are equal.
Let us also highlight that, under the considered anisotropic
assumption k⊥ ≪ jkzj, the kinetic energy is dominated by
the horizontal component of the velocity, which explains
our notation u⊥. From Eq. (6), one can finally recover the
energy spectrum (5) considering that the transfer time τtr
should also verify ε ∼ u2⊥=τtr. Furthermore, introducing the
nonlinear time τnl ∼ 1=k⊥u⊥ [25], we can note that the
obtained transfer time scales as τtr ∼ ωkτ

2
nl. This scaling is

classical of wave turbulence systems where energy trans-
fers are governed by triadic and local wave interactions [8].
As mentioned in the introduction and regardless of the

beauty of this result, injecting a posteriori the solution (5)
in the collision integral, i.e., the right-hand side of Eq. (2),
leads to a divergence [20]. This renders the solution (5)
unacceptable. This “failure” of the Zakharov transforma-
tion illustrates the fact that it is relevant only when
interactions local in wave numbers and frequencies are
dominant. It actually suggests that “nonlocal” triadic
interactions are most probably driving the turbulent
dynamics.
Nonlocality.—To support this idea, we can evaluate the

transfer coefficients Tkpq, Tpkq, and Tqpk of the collision
integral. For each of them, the analysis must be conducted
on the resonant manifold, defined by k ¼ pþ q and ω�

k ¼
ω�
p þ ω�

q for Tkpq and their relevant permutations for the
two other coefficients, in line with the delta functions in
Eq. (3). The coefficients Tkpq, Tpkq, and Tqpk are, thus,
nine-variable functions constrained by four resonance
equations. Further fixing the wave vector q, the resonance
manifolds can be parametrized by two variables only and
the coefficient Tkpq (or its permutations) mapped on these
two variables (we will choose ω�

p ¼ p⊥=jpzj and pz).
Without loss of generality, we choose qz > 0, and, since
there is no viscosity, we can also take qz ¼ 1. Furthermore,
due to axial symmetry, we can choose qy ¼ 0 and qx > 0.
Finally, we choose a low frequency ω�

q ¼ 0.001, which sets
qx ¼ 0.001, in order to fulfill the strong anisotropy
condition.
Thus, Fig. 1 shows the logarithm of the coefficients

Tkpq, Tpkq, and Tqpk evaluated on their respective resonant
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manifold for q ¼ ð0.001; 0; 1Þ. A careful analysis of the
different panels reveals that two specific branches of the
resonant manifolds are associated to transfer coefficients
several orders of magnitude larger than everywhere else.
These resonances are found in Figs. 1(a) and 1(b) (for Tkpq

and Tpkq, respectively) along the line of equation
ω�
p=jpzj ¼ ω�

q=jqzj and for ω�
p and jpzj much larger than

ω�
q and jqzj, respectively.
These observations suggest that the energy transfers of a

strongly anisotropic weakly nonlinear stratified turbulence
are mediated by resonant wave triads verifying

ω�
q ≪ ω�

p ∼ ω�
k; ð7Þ

jqj ≪ jpj ∼ jkj: ð8Þ
In the literature, the resonant triads fulfilling these con-
ditions are referred to as the “induced diffusion” triads [27].
Their domination over the energy transfers in the weak
internal wave turbulence regime has already been evi-
denced by previous analyses [9,22].
Another key feature that is specific to the induced

diffusion triads is the conservation of the ratio

ω�
q

jqzj
¼ ω�

p

jpzj
¼ ω�

k

jkzj
: ð9Þ

This feature can be seen in Fig. 1, but Eq. (9) can actually
also be demonstrated from Eqs. (7) and (8), the wave

dispersion relation, and the resonance conditions (see
Supplemental Material [28]). This property will be central
in the description of the internal wave turbulence that we
propose in the following.
A description of the induced diffusion wave

turbulence.—We proceed by assuming that internal wave
turbulence is driven only by triadic resonant interactions
verifying Eqs. (7) and (8). We introduce the characteristic
length ξ, such that ω�

k ¼ ξjkzj and k⊥ ¼ ξk2z , which is
expected to be conserved along the turbulent cascade.
Thanks to this induced diffusion assumption, we can

simplify the kinetic equation [i.e., Eqs. (2)–(4)]. First, we
can show that the coefficients Tkpq and Tpkq (when
evaluated on their respective resonant manifolds) can be
written as

T ¼ Tkpq ¼ Tpkq ¼ q⊥
jqzj

k2⊥cos2ðφkqÞ; ð10Þ

where φkq denotes the angle between the projections of k
and q in the horizontal plane (see Supplemental
Material [28] for the demonstration). We remark that
the coefficient T vanishes when the projections of k
and q in the horizontal plane are orthogonal, i.e., when
φkq ¼ �π=2. This cancellation is visible in Fig. 1, where
we see in Figs. 1(a) and 1(b) a dark blue “cancellation” line
in the middle of the induced diffusion branches. On the
other hand, the transfer coefficient (10) is maximized when
k, p, and q lie in the same vertical plane.
Using methods inspired by Refs. [8,29,30] and horizon-

tal isotropy, we can further show that the kinetic equation
simplifies to

∂nk
∂t

∝
3

4k⊥
∂

∂k⊥
k⊥D⊥ðkÞ

∂nk
∂k⊥

þ ∂

∂kz
DzðkÞ

∂nk
∂kz

; ð11Þ

with

DiðkÞ ¼
Z

q2⊥q2i k2⊥nqδ
�
q⊥ − q2z

k⊥
k2z

�
dq⊥dqz; ð12Þ

where i ¼ ⊥ or i ¼ z (see details in Supplemental Material
[28]). Following from the assumption that the energy
transfers are nonlocal, controlled by induced diffusion
triads, the integration in Eq. (12) is restricted to a
“large-scale” domain jqj ≤ q̃ defined by an arbitrary cutoff
wave number q̃much smaller than the norm of wave vector
k. One should note that McComas and Bretherton obtained
a similar equation in cartesian coordinates in Ref. [27]. It is
also worth to remark that the induced diffusion relation
k⊥=k2z ≃ q⊥=q2z , equivalent to (9), naturally emerges here
from Eq. (11) through the Dirac delta function in Eq. (12).
We then search for a power-law steady solution to this

equation of the form nk ∝ kα⊥k
β
z . Introducing this ansatz in

Eq. (11) (see Supplemental Material [28]), we find that the
only couple of exponents canceling the rhs of the equation
leads to a wave action spectrum scaling as

10-4
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10-2

10-1

-10

-8

-6

-4

-2

10-2 100

10-4

10-3

10-2
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10-2 100 102

(a)

(b) (c)

FIG. 1. Logarithm of the coefficients Tkpq, Tpkq, and Tqpk
evaluated on their respective resonant manifold for
q ¼ ð0.001; 0; 1Þ. The x axis shows −pz in panels (a) and (b)
and pz in panel (c). The red point highlights the point
ðjpzj;ω�

pÞ ¼ ðjqzj;ω�
qÞ, and the dashed lines correspond to the

condition ω�
p=jpzj ¼ ω�

q=jqzj.
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nk ∼ k−3⊥ k−1z : ð13Þ

This scaling law corresponds to a 2D axisymmetric spatial
energy spectrum following Eðk⊥; kzÞ ∼ k−1⊥ k−2z .
To derive Eq. (11), we split in the Fourier space the flow

in two subsystems, separated by an arbitrary wave number
q̃ and which are exchanging energy via nonlocal induced
diffusion triads. It is important to note that Eq. (11), which
describes the dynamics of the small-scale subsystem, has
the structure of a diffusion equation for the wave action
spectrum nk. In Eq. (11), the transfers of energy of the
small-scale subsystem with the large scales are accounted
for by the effective diffusion coefficients (12) which are
dependent on the amplitude of the large-scale modes. It is
this property that actually led to the name of induced
diffusion triads. This type of diffusion equation conserves
the wave action of the small-scale subsystem as noticed by
McComas and Bretherton [27] as well as by Nazarenko [7]
in the description of nonlocal Rossby drift wave turbulence.
This conservation implies that the turbulent cascade
described by Eq. (11) is associated to an apparent constant
local flux of wave action ζ and to an apparent local flux of
energy εapp ≡ ζωk ∼ ζNξkz which is not constant. These
features are in line with the fact the energy of the small-
scale subsystem described by Eq. (11) is not conserved.
There is, however, no contradiction with the conservation
of the energy of the whole system. Indeed, because of the
nonlocality of the energy transfers, the large-scale sub-
system behaves as a source of energy at each scale of the
small-scale subsystem.
To identify the prefactor of the spectrum (13), we write

the scaling law expected for the diffusive time τd from the
analysis of Eqs. (11) and (12). This leads to the relation
1=τd ∼ NΨk2⊥=k2z , where Ψ is a nondimensional number
defined by the integral

Ψ ¼
Z

q2⊥q2z
N

nqδðq⊥ − ξq2zÞdq⊥dqz ð14Þ

over the large-scale domain (jqj ≤ q̃) and where
ξ ¼ k⊥=k2z . Let us note that we considered the second
term of the rhs of Eq. (11), since using the first term would
lead to a time larger by a factor of ω2

k=ω
2
q. Using ξ ¼ k⊥=k2z

and the scaling relation ζ ∼ nkk2⊥kz=τd between the appar-
ent flux of wave action ζ and the wave action spectrum nk,
we find a scaling law in line with Eq. (13):

nk ∼
ζ

ΨξN
k−3⊥ k−1z : ð15Þ

At this step, we note that, since the cutoff wave number q̃
can be chosen arbitrarily, Eq. (15) should remain valid for
all wave vectors k, with Ψ being a constant. We can then
inject Eq. (15) in Eq. (14) and find an estimate ofΨ in terms

of ζ and ξ only: Ψ2 ∼ ζ=ðN2ξ2Þ. Using the relation
Eðk⊥; kzÞ ¼ k⊥ωknk, we finally obtain a comprehensive
scaling law for the 2D spatial energy spectrum:

Eðk⊥; kzÞ ∼
ffiffiffi
ζ

p
Nk−1⊥ k−2z : ð16Þ

Following this result, we obtain a scaling law for the 1D
“vertical” spatial energy spectrum EðkzÞ ∼ Eðk⊥; kzÞk⊥ of
the form

EðkzÞ ∼
ffiffiffi
ζ

p
Nk−2z : ð17Þ

Furthermore, using the correspondences between the scal-
ing law of the different 1D energy spectra, EðkzÞkz∼
Eðk⊥Þk⊥ ∼ EðωÞω, coupled to the induced diffusion rela-
tion k⊥ ¼ ξk2z , we obtain the scaling laws of the “hori-
zontal” and “temporal” 1D energy spectra:

Eðk⊥Þ ∼
ffiffiffiffiffi
ζξ

p
Nk−3=2⊥ ; ð18Þ

EðωÞ ∼
ffiffiffi
ζ

p
ξN2ω−2: ð19Þ

It is remarkable that the exponents reported for the 1D
energy spectra, as a function of kz in Eq. (17) and as a
function of ω in Eq. (19), are compatible with classical
in situ observations in the oceans [10]. We should also
recall that, since for an internal wave the kinetic and
potential energies are equal, the spectra (17)–(19) can be
understood as kinetic, potential, or total energy spectra.
Beyond wave turbulence.—The primary assumption of

the wave turbulence theory is weak nonlinearity, meaning
that the nonlinear time τnl is much larger than the wave
period, i.e., ωkτnl ≫ 1. Using the scaling τnl ∼ 1=k⊥u⊥ of
the nonlinear time in the anisotropic limit k⊥ ≪ jkzj [25],
Eq. (18) leads to the scaling ωkτnl ∼ N1=2ξ1=4ζ−1=4k−1=4⊥
for the nonlinearity parameter. To derive this relation, we
used the fact the length ξ ¼ ω�

k=jkzj ¼ k⊥=k2z is conserved
under the induced diffusion assumption. This scaling
implies that the turbulent cascade will depart from the
weak nonlinearity condition beyond the cutoff wave vector

ðκ⊥; κzÞ ¼
�
N2ξ

ζ
;
Nffiffiffi
ζ

p
�

¼
�
N6ξ3

ϵ2
;
N3ξ

ϵ

�
: ð20Þ

At larger wave vectors, the turbulence is expected to
enter the so-called “strongly stratified turbulence” regime
[31–34]. This regime involves local triadic and strongly
nonlinear interactions driving a constant energy flux ϵ (equal
to εapp ∼ ζωk at the crossover scale). It leads to vertical and
horizontal 1D kinetic energy spectra scaling as EðkzÞ ∼
N2k−3z and Eðk⊥Þ ∼ ϵ2=3k−5=3⊥ , respectively. Remarkably,
evidences of such a transition from weakly to strongly
nonlinear stratified turbulence have been reported at small

PHYSICAL REVIEW LETTERS 131, 264001 (2023)

264001-4



oceanic scales in the literature (see, e.g., Fig. 1 in Ref. [35]
and Fig. 21 in Ref. [10]).
Conclusion.—In this Letter, we derive scaling laws for the

energy spectra of internal gravity wave turbulence. We start
from the kinetic equation obtained under the assumptions of
weak nonlinearity, statistical axisymmetry, and strong
anisotropy k⊥ ≪ jkzj [20]. Following previous works
[9,22], our numerical analysis of the collision integral
suggests that the energy transfers are dominated by a specific
class of nonlocal triadic resonant interactions which are
referred to as the induced diffusion triads in the literature
[27]. We further show that these triads have the remarkable
property of keeping constant the ratio between the wave
frequency ωk and the vertical wave number jkzj defining a
conserved characteristic length ξ ¼ ωk=Njkzj (N is the
buoyancy frequency). It is worth to note that this feature
departs from an assumption of the Garrett and Munk model
[16–18] for a finite depth ocean, which is the decorrelation
between the frequency and vertical wave number.
Building on these results, we derive analytically a

simplified version of the kinetic equation assuming that
only the induced diffusion triads contribute to the internal
wave turbulent cascade. This kinetic equation has the
structure of a diffusion equation for the wave action
spectrum which results from the scale separation within
the induced diffusion triads. We show that this kinetic
equation has only one power-law steady solution, which
corresponds to a 2D axisymmetric spatial energy spectrum
following Eðk⊥; kzÞ ∼ k−1⊥ k−2z . This scaling further leads to
1D energy spectra with an exponent −2, as a function both
of the frequency and of the vertical wave number, which
feature is in line with classical scaling exponents observed
in the oceans [10]. In parallel, a scaling Eðk⊥Þ ∼ k−3=2⊥ is
predicted for the 1D horizontal spatial energy spectrum.
A complementary dimensional analysis of the simplified

kinetic equation allows us to identify the prefactors of the
energy spectra. Our analysis remarkably shows that,
following from the nonlocality of the energy transfers,
the internal wave turbulence cascade is associated to an
apparent constant flux of wave action.
Owing to the importance of the assumption that we made

in our analytical calculations that only induced diffusion
triads contribute to the internal wave turbulence, our
approach and predictions are to be validated by alternative
strategies which might be numerical simulations or experi-
ments of a genuine weakly nonlinear internal wave turbu-
lence. Beyond that, it will be crucial to assess the relevance
of this approach to describe the small-scale oceanic
dynamics, since major advances for the parametrization
of the oceanic “small scales” in global climate models
might be expected.
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