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We report the quantitative experimental observation of the weak inertial-wave turbulence regime of
rotating turbulence. We produce a statistically steady homogeneous turbulent flow that consists of
nonlinearly interacting inertial waves, using rough top and bottom boundaries to prevent the emergence of a
geostrophic flow. As the forcing amplitude increases, the temporal spectrum evolves from a discrete set of
peaks to a continuous spectrum. Maps of the bicoherence of the velocity field confirm such a gradual
transition between discrete wave interactions at weak forcing amplitude and the regime described by weak
turbulence theory (WTT) for stronger forcing. In the former regime, the bicoherence maps display a near-
zero background level, together with sharp localized peaks associated with discrete resonances. By
contrast, in the latter regime, the bicoherence is a smooth function that takes values of the order of the
Rossby number in line with the infinite-domain and random-phase assumptions of WTT. The spatial
spectra then display a power-law behavior, both the spectral exponent and the spectral level being
accurately predicted by WTT at high Reynolds number and low Rossby number.
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Introduction.—Weak turbulence theory (WTT)
addresses the statistical properties of weakly nonlinear
ensembles of waves in large domains [1–3]. The theory
provides a rigorous analytical framework for deriving
quantitative predictions for the kinetic energy spectrum,
a task that remains extremely challenging for standard
hydrodynamic turbulence. WTT appears of utmost interest
for 3D fluid systems in which bulk waves can propagate,
such as rotating or stratified fluids [4,5] where such
quantitative predictions could pave the way for better
turbulence parametrizations in coarse atmospheric and
oceanic models [6]. WTT has already proven a valuable
conceptual tool for understanding energy transfers in 2D
wave systems, such as surface waves [7–10] and bending
waves in elastic plates [11–13]. Comparatively, 3D fluid
systems present additional complications that have hin-
dered progress at the experimental and numerical level. For
instance, rapidly rotating fluids support inertial waves
associated with the restoring action of the Coriolis force
[14], but these waves represent only a subset of the possible
fluid motions. The emerging slow geostrophic flows
(wandering vortices invariant along the rotation axis,
denoted as the vertical axis in the following) are not
included in WTT [15–17], and yet they represent a
significant fraction of the kinetic energy in most rotating
turbulence experiments [18–20] and numerical simulations
[21–23]. Geostrophic turbulence then interacts with wave
turbulence, advecting and distorting the wave field [20,22].
Part of the reason for the emergence of strong geostrophic
flows is that most experiments were driven using standard
forcing mechanisms of hydrodynamic turbulence—grids

[24–26], propellers [27], jets [19,28]—which project
poorly onto the spatiotemporal structure of inertial waves.
However, even when the flow is driven in such a way as to
induce inertial waves only, it was recently shown that
geostrophic flows arise spontaneously through instability
processes [29,30].
Because of these difficulties, recent advances on inertial

wave turbulence have consisted in detecting waves coex-
isting with 2D geostrophic flows [20,22,31,32], isolating
regimes of wave dynamics in the absence of 2D flows
[30,33], and providing evidence of the triadic resonance
instability (TRI) [29,30,33]. Building on these previous
works, we report on an experimental study of a spatially
homogeneous weakly nonlinear inertial-wave-driven flow
in which we can test the quantitative predictions of WTT.
We focus on the prediction for the spatial spectrum in
statistically steady state, the central object of WTT.
According to Refs. [15,16], weak inertial-wave turbulence
consists of energy transfers toward low frequencies and
small horizontal scales, while the vertical scale remains
comparable to the vertical injection scale Lk. The flow is
described as a set of inertial waves that interact nonlinearly
through triadic interaction coefficients [see, e.g., Eq. (4)
from the Supplemental Material (SM) [34] ]. In the asymp-
totic limit k⊥Lk ≫ 1, the triadic interaction coefficients
admit an Lk-independent limit, so that Ω and Lk enter the
equations only through oscillatory factors involving the
wave frequencies. Because the wave frequencies are
proportional to Ω=Lk, we conclude that only Ω=Lk should
enter dimensional analysis in that limit, instead ofΩ and Lk
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independently. Furthermore, inertial-wave turbulence pro-
ceeds through three-wave interactions, for which WTT
predicts that the energy spectrum Eðk⊥Þ is proportional to
the square root of the energy flux ϵ [3,35]. Dimensional
analysis using Eðk⊥Þϵ−1=2, Ω=Lk, and k⊥ then yields

Eðk⊥Þ ¼ C

ffiffiffiffiffiffi
ϵΩ
Lk

s

k−5=2⊥ ; ð1Þ

where C is a dimensionless constant. This dimensional
argument can be made rigorous within WTT [15], which, in
principle, provides the value of the constant C. Thus, WTT
predicts the exponent of the velocity spectrum in the self-
similar regime associated with a forward energy cascade,
together with the dependence of the spectral level on the
global rotation rate Ω and the cascading energy flux ϵ.
Experimental setup.—The experimental setup, sketched

in Fig. 1, is an evolution of the setup described in [30].
Thirty-two horizontal cylinders of diameter d ¼ 4 cm and
length between 12 and 18 cm oscillate vertically inside a
parallelepipedic tank of 105 × 105 cm2 base filled with
63 cm of water. The cylinders are arranged regularly around
an 80-cm-diameter virtual sphere horizontally centered in
the water tank. The virtual sphere is truncated by the bottom
of the tank, allowing us (i) to consider a sphere diameter
that is greater than the water depth, and (ii) to take
advantage of turbulent friction on the bottom boundary
(as described below). Each cylinder follows a vertical
sinusoidal oscillatory motion of amplitude A and angular
frequency ω0, with independent random initial phases for
the 32 cylinders.
The entire apparatus is mounted on a 2-m-diameter

platform rotating at a rate Ω ranging from 4.5 to 18 rpm
around the vertical axis z. The cylinders oscillate at angular
frequency ω0 ¼ 0.84 × 2Ω, generating self-similar inertial-
wave beams [36,37] that spread as they propagate toward

the central region of the tank [38]. The amplitude A of
oscillation of the cylinders ranges from a few millimeters to
25 mm, leading to a forcing Reynolds number 270 ≤ Re ¼
Aω0d=ν ≤ 3080 for Ω ¼ 18 rpm. The forcing Rossby
number Aω0=2Ωd varies in the range 0.05 ≤ Aω0=2Ωd ≤
0.52 for Ω ¼ 18 rpm (for Ω ¼ 4.5 rpm, 250 ≤ Re ≤ 710
and 0.17 ≤ Aω0=2Ωd ≤ 0.48). As the forcing amplitude
increases, the overlapping wave beams generated by the 32
wave makers produce a nearly statistically homogeneous
flow in the central region (see movies in the Supplemental
Material [34]).
A crucial modification to the previous version of the

apparatus is the addition of two horizontal honeycomb
grids (2.5 cm in height, 2.7 cm in mesh), one at the bottom
of the tank and one at 59 cm from the bottom (see Fig. 1).
As shown in Ref. [30], a single honeycomb grid efficiently
damps geostrophic motion through enhanced turbulent
drag on the rough grid topography, with little impact on
wave dynamics. In the present Letter, we have included a
second such grid to fully suppress spontaneous energy
transfers to geostrophic modes, in a similar fashion to the
numerical study of Le Reun et al. [33]. We have also
upgraded the wave-driving mechanism to increase the
maximum Re by a factor of 3.
Two components ðux; uzÞ of the velocity field are

measured in a vertical plane containing the center of the
virtual sphere using a double-frame particle image veloc-
imetry (PIV) system mounted on the rotating platform. The
velocity fields have a spatial resolution of 1.93 mm over an
area of Δx × Δz ¼ 285 × 214 mm2 at the center of the
virtual sphere (Fig. 1). For each experimental run, PIV
acquisition covers 1250 periods of the forcing in the
statistically steady flow regime.
Temporal dynamics.—In the inset of Fig. 2, we show the

temporal power spectral density Eðω� ¼ ω=2ΩÞ of the
measured velocity field forΩ ¼ 18 rpm and three values of
Re. For the lowest forcing amplitude Re ¼ 270, the
spectrum is dominated by a peak at normalized frequency
ω�
0 ¼ ω0=2Ω ¼ 0.84 corresponding to the forced waves.

The spectrum at Re ¼ 310 displays two additional sub-
harmonic peaks, for two frequencies ω�

1 ≃ 0.29 and ω�
2 ≃

0.55 in triadic resonance with the forcing frequency:
ω�
1 þ ω�

2 ¼ ω�
0. These secondary peaks result from the

TRI of the wave beams generated by the forcing [39],
i.e., the very first stage of nonlinear energy transfers
between the base flow and other frequencies and spatial
scales (TRI criteria for wave beams are discussed in
Refs. [40,41]). Finally, the spectrum at Re ¼ 3080 illus-
trates the regime of developed turbulence, where the flow
has populated a continuous range of frequencies.
In the context of rotating turbulence, a natural question to

ask is whether this energy is carried by inertial waves or
geostrophic eddies. Indeed, in [30], we showed that
the waves could spontaneously transfer energy to low-
frequency geostrophic vortex modes. The absence of an

FIG. 1. Experimental setup. 32 horizontal cylinders are tangent
to an 80-cm-diameter virtual sphere horizontally centered in a
water tank mounted on a rotating platform. The flow is bounded
by two honeycomb grids at top and bottom (grey plates). The
cylinders oscillate vertically at angular frequency ω0.
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energetic peak at ω ¼ 0 in the spectra already indicates that
such energy condensation into a geostrophic mode is
suppressed by the honeycomb grids. An efficient way to
test whether the spectral content corresponds to inertial
waves consists in computing the ratio Ez=Ex of the power
spectral densities Ezðω�Þ and Exðω�Þ of the horizontal and
vertical velocity components, respectively. Indeed, for a
single inertial wave, the ratio of the amplitudes of oscil-
lation of the vertical and horizontal velocity components is
directly set by the wave frequency ω� [14]. For an
axisymmetric distribution of waves, this squared ratio
becomes Ez=Ex ¼ 2ð1 − ω�2Þ=ð1þ ω�2Þ [20]. In Fig. 2,
we report the componential anisotropy factor Ez=Ex for
seven experiments at Ω ¼ 18 rpm and Re ≥ 560. The ratio
Ez=Ex closely follows the prediction for an axisymmetric
distribution of inertial waves over a large range of frequen-
cies 0.10 < ω� < ω�

0 ¼ 0.84, which corresponds to typi-
cally 95% of the total kinetic energy. This confirms that
most of the energy is carried by inertial waves for rapid
global rotation and high Reynolds numbers.
Generating such an ensemble of inertial waves is the

number one prerequisite for achieving weak turbulence
in the laboratory. However, it is also desirable to investigate
the validity of the more subtle assumptions of WTT:
the large domain limit—to avoid purely discrete wave
interactions—and the weak nonlinearity limit. To wit, we
build on previous studies by Hasselmann et al. [42] and
Aubourg and Mordant [9] and turn to the bicoherence
spectrum Bðω1;ω2Þ of the horizontal velocity component

B ¼ jhũxðx; z;ω1Þũxðx; z;ω2Þũ�xðx; z;ω1 þ ω2Þixjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðω1Þeðω2Þeðω1 þ ω2Þ

p ; ð2Þ

where � denotes the complex conjugate, ũxðx; z;ωÞ is the
temporal Fourier transform of the horizontal velocity, hix is
a spatial average over the measurement field and
eðωÞ ¼ hjũxðx; z;ωÞj2ix. The bicoherence spectrum ranges
from Bðω1;ω2Þ ¼ 0, when waves at frequencies ω1, ω2,
and ω1 þ ω2 are uncorrelated, to Bðω1;ω2Þ ¼ Oð1Þ when
they are perfectly phase correlated [9]. For instance, in the
canonical setup of the TRI, a base wave at frequency ω0 ¼
ω1 þ ω2 transfers energy to waves at frequencies ω1 and
ω2, with a fixed relation between the phases of the three
waves [39]. Thus, we expect the bicoherence to beOð1Þ for
these values ofω1 andω2. Such discrete resonances are also
the signature of the so-called “discrete wave turbulence”
regime [3,29,33,43–46], where the temporal and/or spatial
spectrum remains discrete. The framework of WTT departs
from such discrete wave turbulence in two aspects: first, the
large-domain limit, together with the nonlinear broadening
of the resonances, leads to continuous spectra. Second,
wave dispersion spontaneously induces a regime where the
random-phase approximation holds [1–3]. More precisely,
the derivation of the WTT stationary spectrum (1) proceeds
through an expansion in the limit of low Rossby number Ro
(based on the injection scale and the rms velocity), recalled
in the Supplemental Material [34]. The dominant flow
consists of inertial waves, described in terms of helical
basis vectors [47,48] multiplied by slowly varying complex

amplitudes bð0Þsi , where i denotes the wave vector, the
polarity si ¼ �1 encodes the sign of the wave helicity, and
the superscript (0) denotes the lowest-order solution. The
latter amplitudes have dimensionof avelocity, and the phases
of the various waves are uncorrelated. To lowest order, the
numerator of B consists of ensemble averages of triple

products of the form hbð0Þsi b
ð0Þ
sj b

ð0Þ�
sk i, which vanish in the

random-phase approximation according to Wick’s contrac-
tion rule [3]. One needs to consider the next order in the

expansion, where smaller contributions bð1Þsi are forced by

quadratic terms in bð0Þsi . The expression of b
ð1Þ
si is given in the

SM [34], the simple order of magnitude estimate bð1Þsk ∼
kΩ−1bð0Þ�si bð0Þ�sj being sufficient for the present purpose
(where the right-hand side really is a sum over many such
terms for various wave numbers i and j such that
iþ jþ k ¼ 0). A nonzero contribution to the numerator

of B arises from terms of the form hbð0Þsi b
ð0Þ
sj b

ð1Þ�
sk i∼

hbð0Þsi b
ð0Þ
sj b

ð0Þ
sl b

ð0Þ
sm ik=Ω ∼ hjbð0Þsi j2ihjbð0Þsj j2ik=Ω, where we

have used Wick’s contraction rule to transform the
quartic term in wave amplitudes into a quadratic term in
wave intensities. Denoting the generic wave intensity

as hjbð0Þsi j2i, we obtain an estimate for the bicoherence

B ∼ hjbð0Þsi j2i2k=ðΩhjbð0Þsi j2i3=2Þ ∼ hjbð0Þsi j2i1=2k=Ω ∼ Ro.
Instead of sharp isolated resonance peaks that stand out from
a near-zero background, the bicoherence Bðω1;ω2Þ is now a
smooth function that takes low OðRoÞ values.
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0 0.2 0.4 0.6 0.8 1
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FIG. 2. Ratio of the power spectral densities of the vertical and
horizontal components of the velocity, for the experiments at
Ω ¼ 18 rpm and Re ¼ 560, 700, 1060, 1540, 2020, 2540, and
3080. The solid line Ez=Ex ¼ 2ð1 − ω�2Þ=ð1þ ω�2Þ shows the
behavior expected for an axisymmetric distribution of inertial
waves. Inset: Power spectral density Eðω�Þ of the measured
velocity field, for Ω ¼ 18 rpm and three Re.
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In Fig. 3, we show the experimental bicoherence B for
four values of Re at Ω ¼ 18 rpm. For Re ¼ 310, slightly
above the TRI threshold, the bicoherence map consists in
an array of peaks localized at all coordinate values ðω�

1;ω
�
2Þ

associated with two of the three energetic frequencies:
ω� ≃ 0.29, ω� ≃ 0.55, and ω�

0 ¼ 0.84. This is the signature
of the TRI of the base waves, which induces a regime of
discrete wave interactions, as described above. Further,
from the threshold of the first triadic instability, for
Re ¼ 350, one notices the nonlinear broadening of the
resonance peaks in the bicoherence map. At large distance
from the TRI threshold, for Re ¼ 3080, the bicoherence has
become a smooth function that takes low values ranging
from 5 × 10−2 to 10−1, comparable to the Rossby number
based on the rms velocity (1.7 cm=s) and the injection
wavelength (14 cm inside the PIV plane), Ro≃3 × 10−2.
Thus, the experimental bicoherence confirms the gradual
transition from a discrete-wave-interaction regime to a
proper weak turbulence regime as Re increases. In the
latter regime, the discreteness of the modes is smoothed out
by the nonlinear broadening of the resonances, and both the
temporal spectrum and the bicoherence become smooth
functions. The bicoherence settles at a low value, of order
Ro, compatible with a weakly nonlinear wave field that
satisfies the random phase approximation.
Cascading states.—Having established that the turbulent

flow is compatible with the assumptions of WTT at large
Re, we turn to the spatial energy spectrum with the goal of
testing the predictions of WTT. First, we compute the 2D
spatial spectrum of the PIV velocity fields. In the left panels
of Fig. 4, we integrate this 2D spectrum over the vertical
wave number kz and show the resulting 1D power spectral
density (PSD) as a function of kx. In the right panels, we
integrate the 2D spectrum over the angular direction,

instead, before plotting the resulting 1D PSD as a function
of the wave number k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
. All the spectra in Fig. 4

are normalized in such a way that the integral of the PSD
over its variable [

R
PSDðkxÞdkx or

R
PSDðkÞdk] yields the

space- and time-averaged kinetic energy inside the PIV
domain. In the top panels, for weak driving amplitude, the
spectra display a bump at a wave number corresponding
to the injection wavelength. As the driving amplitude
increases, the nonlinearities populate higher and higher
wave numbers in the spectrum, up to the point where a self-
similar cascade develops: the high-Re spectra then display
a power-law behavior, with an exponent in close agreement
with the prediction −5=2 of Eq. (1). This is clearly visible
when the spectrum is shown as a function of kx, for which
the prediction is made, but also when the spectral content is
shown as a function of k.
Beyond the prediction of the spectral exponent, WTT

provides a prediction for the spectral level as a function of
the rotation rate Ω, the mean energy dissipation rate ϵ, and
the vertical wavelength Lk of the forced waves. In the
highest-Re experiments for the four values of Ω in Fig. 4,
Lk is nearly constant and equal to 16 cm. A direct
measurement of ϵ is a notoriously difficult task that requires
well-resolved fully 3D velocity fields. The present PIV data
are well resolved but 2D. Assuming statistical axisymme-
try, a proxy for ϵ can be obtained from the velocity
gradients accessible in the measurement plane

FIG. 3. Logarithm of the bicoherence B for Ω ¼ 18 rpm and
increasing values of Re.
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FIG. 4. Spatial energy spectrum as a function of the horizontal
wave number kx (left) and wave number k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
(right).

Top panels: black thin lines correspond to Ω ¼ 18 rpm and Re
increasing from 270 to 3080. Thick lines correspond to the
highest Reynolds number for various rotation rates (see legend).
Bottom panels: when rescaled by the spectral level predicted by
WTT, the highest-Re spectra at large Ω collapse onto a master
curve. Dashed lines show the WTT power-law prediction.
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ϵ ≃ νh2ð∂xuxÞ2 þ 2ð∂xuzÞ2 þ 2ð∂zuxÞ2 þ ð∂zuzÞ2ix;t;

where hix;t is a spatial and temporal average. Using this
proxy, we plot in Fig. 4 the rescaled spectra PSD=

ffiffiffiffiffiffi
Ωϵ

p
, for

the highest Reynolds number achieved at each rotation rate.
This representation leads to a collapse of the high-Ω spectra
onto a master curve that follows the k−5=2 power-law
dependence. Thus, the experimental data validate the
predictions of WTT, both for the spectral level and the
spectral exponent, provided molecular dissipation is neg-
ligible (high Re) and the wave turbulence is weakly
nonlinear (high Ω, low Ro).
Discussion.—The present experimental apparatus allows

us to generate a turbulent flow that consists of weakly
interacting inertial waves in a large fluid domain. As the
forcing increases, the system transitions from a regime of
discrete wave interactions to a regime that displays con-
tinuous temporal spectra and bicoherence maps, in line
with WTT. At high Reynolds numbers and low Rossby
numbers, the resulting spatial spectrum exhibits the scaling
properties predicted by WTT, both in terms of spectral
slope and spectral level. Such a laboratory realization of
weak turbulence in a 3D fluid system could open an
experimental avenue for studies that gradually incorporate
the additional complexities of natural flows. Among the
many exciting directions for future research, one could add
density stratification to characterize the turbulent mixing
induced by inertia-gravity waves in the weak-turbulence
regime [49], and one could progressively relax the damping
of the geostrophic flow to characterize its impact on the
wave-turbulent dynamics. Following Scott [50], it may be
that the large-scale geostrophic flow sweeps the wave
phases and challenges a precise characterization of the
wave dynamics, but that the small-scale cascading dynam-
ics remains largely unaffected. The consequence would be
that WTT remains a valuable tool for characterizing small-
scale dissipation and for developing subgrid-scale para-
metrizations in that context.
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