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Abstract The debonding of pressure sensitive adhe-
sives (PSA) is a classical example of the difficult and
unsolved issue of fracture in soft viscoelastic confined
materials. The presence of a complex debonding region
where the adhesive undergoes cavitation and the very
large strain of a spontaneously formed fibrillar net-
work has defied many modeling attempts over the past
70years. We present here a novel technique to pro-
vide an accurate measurement of the local large strain
response of the fibrillar debonding region during the
steady-state peeling of a well known commercial adhe-
sive over a wide range of peeling velocity and angle.
The technique is based on high resolution imaging of
the debonding region during peeling and is coupled to
a cohesive zone modeling of the adhesive interaction
between the flexible tape backing and the rigid sub-
strate. The resulting database provides a strong ground

Electronic supplementary material The online version of
this article (doi:10.1007/s10704-016-0171-1) contains
supplementary material, which is available to authorized users.

R. Villey · C. Creton · M. Ciccotti
Laboratoire SIMM, ESPCI Paris, CNRS, PSL Research
University, 10 rue Vauquelin, Paris, France

R. Villey · C. Creton · M. Ciccotti (B)
Laboratoire SIMM, Université Pierre et Marie Curie,
Sorbonne-Universités, 10 rue Vauquelin, Paris, France
e-mail: matteo.ciccotti@espci.fr

R. Villey · P.-P. Cortet
Laboratoire FAST, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91405 Orsay Cedex, France

for validating and further developing models (Villey et
al. in Soft Matter 11:3480–3491, 2015) aiming to cap-
ture the effects of both geometry and non-linear adhe-
sive rheology on the exceptional adherence energy of
PSAs.
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1 Introduction

Peeling is a widespread testing method to character-
ize the adherence properties of all sorts of thin bonded
films, certainly due to its easiness of implementa-
tion and quantitative evaluation (Kendall 1975; ISO
8510-1 1990; ISO 8510-2 2006; Creton and Ciccotti
2016). However, the weak transposability of peeling
test results to predict the adherence performance of a
given adhesive joint under different loading geometries
such as shear lap, mode I cleavage between rigid beams
or probe tack is an important concern for applications.
The difficulties of providing a clear and robustmechan-
icalmodel and interpretation of the peeling strength of a
given material layer or joint have focused many efforts
since the 50’s and no clear picture is available to cover
all applications in a comprehensive way (Kaelble 1959,
1960, 1965;Yarusso 1999;Barquins andCiccotti 1997;
Amouroux et al. 2001; Villey et al. 2015; Derail et al.
1997, 1998; Gent and Hamed 1977; Gent and Petrich
1969).
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Despite the apparent simplicity of the peeling geom-
etry at the macroscopic scale and the unambiguous
measurement of the injected external work during the
test, the structure, applied deformation and stress fields
of the debonding region are quite complex and dra-
matically change when considering different materials.
Moreover, when considering the peeling of soft films
such as most adhesive tapes—which are the object of
the present investigation—these are invariably backed
by a thin layer made of a stiffer material in order to
limit stretch at a macroscopical scale. The adhesive
material in the debonding region is thus subject to a
progressive loss of confinement and consequently to a
variable degree of stress triaxiality as it is debonded.
These position dependent stress and strain fields are
coupled to the local bending profile of the backing
and are related in a very sensitive way to the macro-
scopic angle of application of the peeling force, lead-
ing to variable damage scenarios. For example, the
adhesive debonding region during the peeling of com-
mon office tapes undergoes a complex process of cav-
itation and fibrillation at the microscopic scale such
as illustrated in Fig. 1, which leads to a still poorly
understood transition between the very stiff oedometric
response preceding cavitation and the almost uniaxial
response in the unconfined fibrillar region (Villey et al.
2015). The formation of the complex fibrillar structure
is very similar to that observed in probe tack exper-

Fig. 1 Model geometry of a peeling experiment. The extremity
of the peeled tape is pulled at a velocity V−→eθ tilted of an angle θ

with respect to the substrate (along−→ex ), which is itself translated
at velocity V−→ex . −→F is the peeling force at the pulling extremity
of the tape. During peeling, the adhesive layer is stretched over
a region called the “debonding region”, of curvilinear length ls
along the tape backing. The adhesivematerial, of initial thickness
a0, is strained and forms fibrils up to a maximum length a f at
the debonding front. We note ly the elevation of the tape backing
at the end of the debonding region and lx the projection of ls on
the substrate

iments, which present stress-elongation curves char-
acterized to the first order by a strain-rate dependent
stress plateau up to a limited elongation before debond-
ing (Creton and Ciccotti 2016). While comparative
studies between the uniaxial elongational behavior and
probe tack experiments have been carried out for sev-
eral types of PSA (Lindner et al. 2006; Deplace 2009;
Chiche et al. 2005) , the development of such a fib-
rillar pattern during the propagation of a peeling front
is more complex since it is strongly coupled with the
local bending of the backing, implying variable degree
of confinement and level of local stress (Villey et al.
2015).

The aim of the present work is to develop new tools
to finely characterize the damage mechanisms at the
scale of the debonding region during steady-state peel-
ing of PSA, combining real-time microscopic imag-
ing of the debonding region and a sound modeling
of the mechanical interaction between the bending of
the elastic backing and the deformation of the fibril-
lar network, which will be treated as an effective non-
linear cohesive zone. A careful compromise between
the image resolution on such a small region and the rel-
evant mechanical information coming from the present
knowledge on the structure and behavior of the fib-
ril network will be the guide to the identification of a
minimal yet rich set of local parameters of the debond-
ing region, namely the local radius of curvature of the
backing, the effective average stress applied by the fib-
rils on the backing, the average strain rate of the fibrils,
their maximum extension and tilt angle before debond-
ing.

In this work we investigate the variations of these
local parameters via a series of tests on a well known
commercial tape over a large range of peeling angle
and velocity, in order to discuss the soundness of the
estimated parameters in light of the known rheological
behavior of such an adhesive and of visual compar-
isons with the imaging of the fibrils. The robustness
and reproducibility of the estimated parameters repre-
sent a real experimental breakthrough and become a
key to the sound modeling of the adherence proper-
ties of peeled tapes as a function of the large strain
rheology of the adhesive material and of the sur-
face properties of the adherends (Villey et al. 2015).
These enriched parameters can also be used to under-
stand the relationships between the peeling and the
tack properties of each adhesive (Creton and Ciccotti
2016).
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2 Microscope filmed peeling experiments

Peeling experiments are performed at room tem-
perature (23 ± 2 ◦C) on a commercial PSA (3M
Scotch® 600)1 frequently studied in the literature (Bar-
quins and Ciccotti 1997; Amouroux et al. 2001; Cortet
et al. 2007, 2013; Dalbe et al. 2014a, b, 2015; Villey
et al. 2015). The adhesive tape is peeled from a flat
bar by an Instron testing machine (model 3343), which
records the peeling force F while imposing a constant
pull-out velocity V ∈ [3 : 3000] µm s−1. The bar, tilted
of an angle θ ∈ [30◦ : 150◦] with respect to the pull
axis of the testing machine, is mounted on a translation
stage: it is translated at the same velocity V , resulting
in a steady peeling at constant angle θ (see Fig. 1).

These experiments give access to the peeling force
F(θ, V ) from which we compute the energy release
rate G associated to the peeling of a unit surface

G = F

b
(1 − cos θ) , (1)

where b = 19 mm is the tape width (see Fig. 1). This
expression of G accounts for the work of the operator,
but discards the contribution associated to the elastic
energy stored in the peeled tape backing elongation
(Kendall 1975), which is never larger than 1% of G in
the reported experiments.

Experiments are performed in a range of velocity
V where peeling is steady, i.e. where no stick-slip
dynamical instability is observed [stick-slip appears at
larger velocities for this PSA (Dalbe et al. 2014b)]. In
these conditions the energy release rate G defines an
adherence energy Γ (θ, V ) that can also be considered
as an effective fracture energy for the peeling of the
whole adhesive joint (backing, adhesive and substrate)
at velocity V and angle θ

G = Γ (θ, V ). (2)

The substrate of the adhesive tape to be peeled is
made of a first layer of the same PSA tape, which has
been applied on the peeling bar following the proto-
col described in Villey et al. (2015). The substrate tape
layer is changed after each peeling experiment in order
to preserve the integrity of its release coating. This
procedure enables comparison with previous measure-
ments made by peeling directly from the commercial

1 This PSA is made of an acrylic adhesive layer of thickness
a0 � 20µmcoated on aUPVCbacking of comparable thickness,
Young’s modulus E � 2.9 GPa and width b = 19 mm.

roller (Barquins and Ciccotti 1997; Amouroux et al.
2001; Cortet et al. 2007, 2013; Dalbe et al. 2014a). It
also ensures a moderate level of adhesion (F ∈ [0.3 :
4] N, Γ ∈ [20 : 80] J/m2), which results in interfacial
adhesive failure only,with no residuals on the substrate,
even at peeling velocities V as low as few µm s −1.

The shape of the tape backing profile close to the
debonding region (where the adhesive is deformed
before debonding) is monitored during the peeling
experiments using a 1624 × 1228 pixels2 camera
equipped with a microscope objective (frame rate
between 5 and 30 fps, resolution between 0.55 and 2.2
px/µm). For each frame of the movies (such as those
represented in Figs. 2, 3), the outer profile of the tape
backing ismeasured using a binarization algorithm that
detects the interface between the dark background and
the illuminated tape. The tape backing profile does not
significantly change with time during steady peeling
(see the movie in Online Resource 1). We can thus
average this profile over the entire movie (several hun-
dreds of frames), which removes detection imperfec-
tions (related e.g. to the presence of micrometric dusts)
and eventually results in a significant increase of the
signal-to-noise ratio. This average profile is reported
in yellow in Figs. 2 and 3.

In these two figures, we also report the local angle
α made by the averaged profile with the substrate as
a function of the curvilinear abscissa s along the tape
backing in the reference frame of the laboratory (see
Fig. 4), related by

ds
−→
t = ds cos(α)

−→ex + ds sin(α)
−→ey

= dx −→ex + dy −→ey . (3)

3 Simple elastica model

We first compare the experimental profiles to the the-
oretical expression of an inextensible elastica beam
(Love 1944) with a simple clamping boundary con-
dition at s = s0

α(s)= θ − 4 arctan

[
tan

(
θ

4

)
exp

(
− s−s0

r

)]
, (4)

with

r =
√

E I

F
(5)

the buckling length of the tape backing of bendingmod-
ulus E I submitted to a force F , which is the typical
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Fig. 2 a–e Pictures of the
debonding region during
peeling experiments at
V = 100 µm s−1 and
different peeling angles θ .
The profile of the tape
backing (reported in yellow)
is obtained from an average
over several hundreds of
detected profiles (one for
each frame of the movie).
This profile is compared to
the classical elastica model
of Eq. 4, represented in
green. We also report the
best fit of the profile using
the model of elastica with a
cohesive zone presented in
Sect. 4 (red dashed lines).
This model has two fit
parameters, namely the
limits of the cohesive zone
(CZ), which are highlighted
by red circles. In f, we
represent the same data as in
a–e in curvilinear
coordinates (see Eq. 3),
showing the slope α of the
tape backing as a function
of curvilinear abscissa s.
s = 0 is set at the beginning
of the fitted cohesive zones

(a)

(b)

(c) (f)

(e)

(d)

value of the curvature radius of the backing close to the
debonding region. We actually fit the α(s) experimen-
tal profiles outside of the debonding region (sufficiently
far from the last visible fibrils) using s0 and r as fitting
parameters. The result is reported in green in Figs. 2
and 3 where the elastica profiles are extrapolated down
to the substrate. The matching between experimental
and elastica profiles outside of the debonding region is
excellent (see Fig. 2f) and, since we measure the peel-
ing force F independently, the fit of the buckling length
r provides a measurement of the bending modulus E I
of the tape backing for the portion of the tape being
peeled.2

2 We find that this modulus changes significantly between dif-
ferent rollers, and even between distant portions of the same
roller, with an average value E I = (3.7 ± 1.7) 10−8 N m2.

As it can be observed in Figs. 2 and 3, the theo-
retical profiles of the simple elastica model of Eq. 4
clearly do not match the experimental ones in the
debonding region. In particular, the profile of the sim-
ple elastica model presents a curvature discontinu-

Footnote 2 continued
This value agrees with the estimate that can be made from the
expression E I = Ebh3/12, where E is the Young’s modulus
and h the thickness of the tape backing, using an independent
tensile test giving Ebh = 1100± 200 N and microscopic obser-
vations of the thickness providing h = 20 ± 5µm. An attentive
study reveals that the variations in bendingmodulus E I can actu-
ally be attributed to small variations of the tape backing thick-
ness of amplitude ±3 µm, since E I ∝ h3. In any case, in the
present study the bending modulus E I will enter the problem
only through the parameter r = √

E I/F , which will be directly
measured for each experiment through elastica fits of the peeled
tape outside of the debonding region.
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(a)

(b)

(c) (h)

(e)

(d) (f)

(g)

Fig. 3 a–g Pictures of the debonding region during peeling
experiments at θ = 90◦ and different peeling velocities. The
color and symbol code is the same as in Fig. 2. In h, we show

the profiles from a–g in curvilinear coordinates (see Eq. 3), with
s = 0 taken at the beginning of the fitted cohesive zones

ity at the junction with the substrate where s = s0,
with a maximum curvature at s = s+

0 . On the con-
trary, the experimental profiles present no curvature
discontinuity and the maximum curvature is remote
from the beginning of the debonding region (yet still
inside it). It is important to note that, in Figs. 2f and

3h, the origin of the curvilinear abscissa s of the
experimental profiles has been set by fitting the pro-
file of the backing by an elastica model with a cohe-
sive zone, as described in Sect. 4, and not by simple
visual observation of the fibrillated region from the
side.
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Fig. 4 Cohesive zone model of the debonding region expressed
in the reference frame of the laboratory, where the peeling profile
is steady. s = x = 0 is set at the beginning of the cohesive zone.

The tape is undeformed at x ≤ 0 and submitted to a force
−→
F far

from this undeformed zone. The adhesive response is modelled
by a uniform stress σ̄ for 0 ≤ s ≤ ls . We assume this stress to
follow the fibrils orientation, given by the angle ϕ

The reason for the observed discrepancy with the
simple elastica model is obviously related to the exis-
tence of forces applied on the tape backing by the
stretched adhesive material in the debonding region,
which have not been taken into account. Note that the
elastic extension of the tape backing (neglected in the
simple elastica model) cannot account for the above-
mentioned discrepancies, since the tape extension is
very small in our experiments. This can be verified by
comparing the tape extension εdx = dL of a portion
dx of the tape to its vertical deflection dy due to bend-
ing: with F ≤ 4N and Ebh � 1100N, the tape relative
extension ε is always smaller than 0.4% (in the worst
case), which can be safely neglected compared to the
tape deflection due to bending tan α = dy/dx as soon
as α is larger than 1◦.

4 A model of elastica with a cohesive zone

In this section we account for the stress distribution
σ(s) applied to the tape backing in the debonding
region in terms of a cohesive zone coupled to the inex-
tensible elastica model. As a first approximation we
consider a uniform effective stress σ̄ in the debond-
ing region, which corresponds to a traction-separation
curve that is constant up to a maximum elongation
at debonding, where it drops to zero. The relevance
of such an approximation relies on the fact the adhe-
sive material experiences a relative stretching of sev-
eral hundred percents in the majority of the debond-
ing region (see Figs. 2, 3), which for confined soft

incompressible materials is always associated with fib-
rillation. This loading condition is very similar to the
probe-tack test, which for typical PSA provides stress-
strain curves dominated by a large plateau for the stress
(Lakrout et al. 1999; Creton et al. 2009; Creton and
Ciccotti 2016). One should note that, because of cavi-
tation and fibrillation, σ̄ does not represent a true local
stress, but the average force per unit area acting on the
boundaries of the adhesive material (both for peeling
and probe-tack experiments).

Since the adhesive presents a fibrillar structure in
the majority of the debonding region, it is reasonable
to represent the stress applied to the tape backing as a
vector that is locally oriented along the fibrils (and with
constant modulus σ̄ ). Moreover, since the fibrils do not
appear to slide on the tape backing nor on the substrate
(before debonding), a fibril attachedon the tape backing
at curvilinear abscissa s should also be attached to the
substrate at position x = s.3 This enables to compute
the fibrils length a(s) = √

(s − x(s))2 + (a0 + y(s))2

and the angle ϕ(s) = arctan
(
a0+y(s)
s−x(s)

)
that the fib-

rils form with the substrate (see Fig. 4). Note that
x(s) = ∫ s

0 cos (α(t)) dt and y(s) = ∫ s
0 sin (α(t)) dt

are the horizontal and vertical coordinates of the point
along the tape at curvilinear abscissa s. In the initial
part of the debonding region (before fibrillation) the
forces applied by the adhesive are essentially vertical
and ϕ remains a valid estimate of the stress orientation,
even if fibrils are not present, since the tape backing is
only slightly bent so that s � x and ϕ � 90◦.

Our model can then be described by the following
system

E Iα′′−→ez + −→
t ∧ −→

R = −→
0 ,

−→
R ′(0 < s < ls) = σ̄b

[− cos(ϕ)
−→ex + sin(ϕ)

−→ey
]
,

−→
R (s ≥ ls) = −→

F ,

α(s < 0) = 0, (6)

where ′ is the derivative with respect to s and
−→
R (s)

is the internal force, applied by the half-part s̃ > s of
the tape on the other half-part s̃ < s. The first line of
this system is the classical beam flexure equation (Love
1944). The second line accounts for the presence of the

3 The validity of this assumption is limited to the inextensible
tape approximation of our model, that follows the arguments
provided in Sect. 3.
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uniform external stress σ̄ in the cohesive zone between
s = 0 and s = ls (in curvilinear abscissa). The two
remaining lines represent the boundary conditions. A
combination of the first three equations of (6) gives the
master equation of our model

E Iα′′ + F sin(θ − α)

− σ̄b
∫ ls

s
sin [α(s) + ϕ(t)] dt = 0. (7)

Equation 7 is valid in the cohesive zone s ∈ [0; ls] and
should be associated with the description of the rest of
the tape backing by

α = 0, for s ≤ 0,

E Iα′′ + F sin(θ − α) = 0, for s ≥ ls, (8)

where the first line represents the absence of flexure
in the bonded part of the backing out of the debonding
region, while the last line is the simple elastica equation
in the freestanding part of the backing.

Integration of the second line of (8) gives

α(s ≥ ls) = θ − 4 arctan

[
X exp

(
− s − ls

r

)]
, (9)

where the constant X has to be determined from the
continuity relations at the end of the cohesive zone s =
ls

α(l−s ) = α(l+s ) = θ − 4 arctan(X),

α′(l−s ) = α′(l+s ) = 4X

r
(
1 + X2

) . (10)

The continuity of the curvature α′ is equivalent to
the absence of point torque at s = ls . Its derivative α′′
is actually also continuous at the end of the cohesive
zone, because no point force is applied there. The latest
continuity relation is however already imposed by the
continuity of α associated to Eq. 7 in which the term
multiplying σ̄ disappears at s = ls .

Similarly, continuity relations at s = 0 are

α(0−) = α(0+) = 0,

α′(0−) = α′(0+) = 0. (11)

Using Eq. 7 and the boundary conditions (10) and
(11) one can compute4 the value taken by the energy
release rate G = (1 − cos θ) F/b during steady-state
propagation according to this model

G = σ̄
(
a f − a0

)
. (12)

G is actually equal to the work (per unit peeled sur-
face) of the cohesive forces during the stretching of the
adhesive from its initial thickness a0 up to the maxi-
mum fibril length a f = a(s = ls) at debonding. This
relation, which tells that the work of the peeling force−→
F is fully used to stretch the adhesive material, actu-
ally simply accounts for the energy conservation in the
bending deformation of the tape backing during steady-
state peeling. Note that, in contrast, in the simple elas-
tica model of Eq. 4 with no cohesive zone, bending
energy conservation can only be enforced thanks to the
introduction of a curvature discontinuity at s = 0 that
acts as an energy sink

G = E I

2b

[
α′(0+)2 − α′(0−)2

]
.

4 Multiplying Eq. 7 by α′ and integrating from 0 to ls yields

8FX2

(
1+X2

)2 +F [cos(4 arctan X) − cos θ ]

− σ̄b
∫ ls

0

[
cos (α(s))

∫ ls

s
sin (ϕ(t)) dt

]
α′(s)ds

− σ̄b
∫ ls

0

[
sin (α(s))

∫ ls

s
cos (ϕ(t)) dt

]
α′(s)ds = 0.

After trigonometric simplifications of cos(4 arctan(X)) and inte-
gration by parts of the two integrals, we get

F

b
(1 − cos θ) = σ̄

∫ ls

0
{sin (α(s)) sin (ϕ(s))

+ [1 − cos (α(s))] cos (ϕ(s))} ds.

The integrand can be rewritten as

sin ϕ sin α + (1 − cosα) cosϕ = (y + a0)
dy
ds + (s − x) ds−dx

ds√
(y + a0)2 + (s − x)2

= da(s)

ds

where a(s) = √
(y + a0)2 + (s − x)2 is the length of the fibril

attached to the tape backing at curvilinear position s. This finally
leads to Eq. 12. One can also demonstrate Eq. 12 by computing
the work associated to a small advance of the peeling front (see
Online Resource 2).
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We can finally rewrite the whole system describing
the tape profile in the cohesive zone (0 ≤ s ≤ ls), with
the boundary conditions

α(0) = 0,

α(ls) = θ − 4 arctan(X),

α′(ls) = 4X

r
(
1 + X2

) , (13)

associated to the master equation

r2α′′ + sin(θ − α) − 1 − cos θ

a f − a0

∫ ls

s
sin [α(s)

+ϕ(t)] dt = 0, (14)

where the maximum fibril length a f is given by

a f =
√(∫ ls

0
(1 − cosα(s))ds

)2

+
(
a0 +

∫ ls

0
sin α(s)ds

)2

.

(15)

Note that, since Eq. 12 was used in Eq. 14 to replace
σ̄ , one of the initial boundary conditions has become
redundant: we have therefore removed the α′(0) = 0
boundary condition from the system.

This system contains an integro-differential equa-
tion with derivatives up to the second order, plus one
unknown, X , requiring therefore three boundary con-
ditions, which are provided by Eq. 13. We can solve
this problem for different sets of values for θ , r , a0
and ls , the only parameters it depends on. Note that
this problem does not depend explicitly on σ̄ anymore.
However, σ̄ can be retrieved via Eq. 12, using a f (ls)
determined from the tape profile and the factG is deter-
mined by F and θ (see Eq. 1), which can be easily and
precisely measured.

To solve the set of Eqs. 13 and 14, we normalize all
lengths by r andwe sample the interval s/r ∈ [0 : ls/r ]
over N points (typically several hundreds to thou-
sands). We replace α′′ by its midpoint method esti-
mate, andα(1), α(N−1) andα(N )by their expressions
according to (13).We then use theMatlab fsolve routine
to find the values of X and α(2) . . . α(N −2) that min-
imize the set of N − 2 equations obtained from Eq. 14.
All lines in this system contain the term sin(θ − α),
which is of order of magnitude 0.1–1, enabling an
objective criterion for the minimization procedure: the
system is considered to be solvedwhen all lines are very
small compared to 0.1 (in practice when the maximum

(a)

(b)

(c)

Fig. 5 Theoretical profiles of elasticas with cohesive zones of
different sizes ls (the ends of which are shown by red disks)
and for different peeling angles θ . We normalize the curvilinear
abscissa s by the typical radius of curvature r = √

E I/F . The
considered values for the ratio ls/r are typical of our experiments
(Figs. 1, 2)

term is smaller than 10−6).We use as initial guesses for
X and α(i) the analytical solutions of the approxima-
tion of Eq. 14 for small angles α (see Online Resource
2).

Figure 5 reports numerical solutions of the system
of Eqs. 13 and 14 for peeling angles θ and cohesive
zone size ratios ls/r typical of our experiments. As
expected, the solution converges towards the simple
elastica profile Eq. 4 at small ls/r values. We can also
observe that the curvature (slope of α(s)) goes from 0
at s = 0 up to a maximum included in the cohesive
zone, before decreasing back towards 0 at s = ∞.

Computing the dimensional profile α(s) (and thus
the y(x) profile by integration) eventually requires to
know r and ls , as well as the curvilinear abscissa s0
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In-situ measurement of the large strain response 183

along the tape at which the debonding region begins
(i.e. the starting point of the local reference frame to
compute the curvilinear abscissa, taken as 0 for the
sake of simplicity in Eqs. 6–14). For each experimen-
tal profile of the tape backing, r = √

E I/F is first
obtained from the fit of α(s) outside of the debonding
region by the simple elastica prediction (9) (leaving
the constant X as an unused parameter at this step).
The whole experimental profile α(s) (including the
debonding region) can finally be fitted by the system
of Eqs. (13, 14) using ls and s0 as the only fitting para-
meters.5

5 Results and discussion

5.1 Comparison between model and experimental
profiles

The fitting procedure described in Sect. 4 has been first
systematically applied to all the individual frames of the
experimentalmovies, for all couples of control parame-
ters (θ, V ).

Both the radius of curvature r and the size of the
cohesive zone ls , which are the two valuable raw prod-
ucts of the fitting procedure, are found to be very stable
during each movie (see the Online Resource 1), corre-
sponding to the peeling of typically several hundreds
of µm to several cm, depending on V . More precisely,
we observe typical slow variations of 5–15% for these
two lengths during apeeling experiment.Besides,when
large portions of fibrils debond at once, the tape backing
profile and thus the fitted value of ls do not change sig-
nificantly (2% for the strongest event at time t = 4.6s
in the movie in the Online Resource 1, with a cumu-
lated variation in ls of 13% along the entire movie).
On the other hand, the extent of the region where the
fibrils are observed on the visible side presents a scat-
ter of ±20%. This last observation is related to the fact
the only visible fibrils in the movie are the ones on
the side of the tape observed by the camera, while the
tape backing profile is the result of the influence of the
debonding region over the whole tape width b. This
eventually makes our fitting procedure a more accurate
and representative tracer of the geometry of the debond-
ing region over the whole tape width than the optical

5 Oncewe knowα(s), ls and s0 , a f can be determined by Eq. 15.
Curvilinear abscissa is eventually redefined as s → s − s0 after
the fit, in order to set the beginning of the cohesive zone to s = 0.

observations of the fibrils on the side view, which rep-
resent a limited set of fibrils that are close to the side
of the tape. A detailed analysis reveals that the average
size of the debonding region observed on the tape side
presents a bias going from −20 to +20% with respect
to the cohesive zone length extracted from the fitting
of the backing profile for θ ranging from 30◦ to 120◦.6
The extent of the debonding region on the tape side
tends to be shorter than at the center of the tape when
the peeling angle is less than 90◦ and longer for peeling
angles larger than 90◦. This bias reveals an interesting
edge effect that is not at the core of the present inves-
tigation. In the rest of the manuscript we will focus on
the estimations derived from the bending profile, which
are not affected by this edge effect.

Because of the small fluctuations of the detected tape
backing profiles (due in particular to dusts on the tape or
tape imperfections) and of the lengths r and ls extracted
from them, we have applied as a second step the fit-
ting procedure to profiles averaged over all images in
a movie, which enables to considerably increase the
signal-to-noise ratio. The results of this fitting proce-
dure is in excellent agreement with the experimental
profiles, as can be seen in Figs. 2 and 3, including in the
debonding region. This agreement confirms the rele-
vance of themodel of elastica combinedwith a constant
stress cohesive zone, which catches the main features
of the tape profile using only few mechanical ingredi-
ents : a mean stress σ̄ oriented along the fibrils over a
region of length ls .

5.2 Cohesive stress and maximum fibril extension

In the model developed in Sect. 4, energy dissipa-
tion during peeling occurs because of the loss of the
work expended to stretch the adhesive material up to
debonding, which brings the following expression for
the effective fracture energy of peeling

Γ = σ̄
(
a f − a0

)
. (16)

This work done against the cohesive stress σ̄ is par-
tially dissipated by viscosity during the stretching of
the adhesive, the rest being stored in the adhesive elas-
tic energy and eventually lost at debonding by “elas-
tic hysteresis” (Villey et al. 2015). We remark that the

6 The bias gets larger for the largest angle θ = 150◦, which will
be discussed later.
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transient kinetic energy developed by the fibrils after
debonding is also dissipated by viscosity during the
fibrils collapse, but in any case this evolution is not
coupled to the peeling mechanics since the broken fib-
rils are not bridging the backing to the substrate any-
more.

In this section we use the results of the fitting of the
experimental tape profiles to access the two parameters
controlling energy dissipation during peeling (accord-
ing to the cohesive zone model): (i) the average stress
σ̄ in the cohesive zone and (ii) the fibrils extension
a f −a0 at the onset of debonding, which are reported in
Fig. 6.

Figure 6a reports the evolution of the adherence
energyΓ (θ, V ) = σ̄ (a f −a0) as a function of the peel-
ing angle θ for peeling velocity V = 0.1 mm s−1. As
reported in previous experiments on the same adhesive-
substrate joint (Villey et al. 2015), the adherence energy
is found to be a regularly increasing function of the
peeling angle θ . Assuming the cohesive zone model
developed in Sect. 4 and considering Fig. 6b, c, this
angular dependency seems to be mainly due to the
fibril elongation a f − a0 that is found to be clearly
increasing with θ , while the average stress in the cohe-
sive zone σ̄ is displaying weaker trends. If all angles
are considered, the average stress decreases by a fac-
tor 1.7 while the fibril elongation increases by a factor
3.7.

We should remark that when limiting to the angles
up to 120◦, σ̄ is almost constant and all the increase
in Γ is due to the increase in a f − a0. In fact, the
case of θ = 150◦ presents some peculiarities com-
pared to all other experimental conditions studied in
this paper: at this large angle (see Fig. 2e), the detected
sizes ls of the cohesive zone seem systematically larger
(by typically 30–60%) than the visible fibrils region
(keeping in mind that those may not be representative
of all fibrils along the tape width). Moreover, a care-
ful examination of the α(s) profiles at this large angle
reveals a systematic overshoot of 1◦ to 2◦ in the local
angle (α > θ locally, a feature too small to be visi-
ble in Fig. 2). Such an overshoot can be attributed to
the occurrence of some plastic deformation in the tape
backing, which should add a residual curvature to the
tape profile. If plasticity happens, it should indeed be
at large peeling angles (Gent and Hamed 1977; Derail
et al. 1997, 1998), where the tape curvature is large.
This is consistent with a simple everyday life test: an
office tape remains twisted after being peeled when

peeling proceeds at a large angle. However, the values
for a f − a0 and σ̄ obtained at θ = 150◦ remain of the
same order as the ones obtained at smaller angles, and
the fitted profiles remain in good agreement with the
experimental ones even at this large angle: this indicates
that the results our model produces at very large peel-
ing angles may be conserved, while considered with
precaution.

Figure 6d–f report the same three quantities, Γ , σ̄

and a f − a0, as a function of the peeling velocity V
for θ = 90◦. Γ and σ̄ follow power laws of V with
close exponents (0.20 and 0.27 respectively): contrary
to the angular dependency, we observe that most of the
increase of the adherence energy Γ = σ̄

(
a f − a0

)
with the peeling velocity is due to the increase of
the cohesive zone stress σ̄ and that it is only slightly
affected by a weak decrease of the fibril extension
a f − a0 with V . Moreover, the values reported for σ̄

in Fig. 6b, e are consistent with what is expected for
the plateau stress of such acrylic-based PSA (Lindner
et al. 2004, 2006).

In the present work, we have studied only two
line cuts (V = 0.1 mm s −1 and θ = 90◦) in the
experimental parameters plane (θ, V ). Reference Vil-
ley et al. (2015) reports measurements of the peeling
adherence energy Γ for the same PSA over a wider
range of parameters (θ, V ). The data reported in Vil-
ley et al. (2015) actually revealed that the dependen-
cies of Γ with V and θ were almost separable, i.e.
that Γ (θ, V ) � f (θ) g(V ). In light of our present
experiments, this separability can be justified by the
fact that for this adhesive the dependence of σ̄ on
the angle θ is barely detectable, and in any case is
weak compared to the one of a f (θ), and conversely
that the decreasing trend of a f (V ) is weak com-
pared to the increasing trend of σ̄ (V ), so that we can
write

Γ (θ, V ) = σ̄ (θ, V ) × [
a f (θ, V ) − a0

]
,

≈ σ̄ (V ) × [
a f (θ) − a0

]
. (17)

In addition to the average stress and the maximum
elongation, another key rheological parameter can be
extracted from our treatment of peeling tests: the aver-
age strain rate

¯̇ε = 1

ls

∫ ls

0
ε̇(s)ds = V

ls
ln

(
a f

a0

)
. (18)

123



In-situ measurement of the large strain response 185

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6 Adherence energy Γ , average stress σ̄ in the cohesive
zone and fibril elongation at debonding a f −a0 for peeling exper-
iments at V = 0.1 mm s−1 and different peeling angles θ (a–c)
and at θ = 90◦ and different peeling velocities V (d–f). Γ is

measured through the peeling force F , using Eqs. 1 and 2. a f is
obtained from the fit of the tape backing profiles by Eq. 15. σ̄ is
further obtained using Eq. 16

atwhich the adhesivematerial is strained in the debond-
ing region (ε̇(s) is the local logarithmic strain).7 Fig-
ure 7a shows that ¯̇ε is increasing by a factor less than 1.8

7 The evaluationof the average strain rate requires the calculation
of the temporal dependence of the length a(t) of a typical fibril
during the peeling. We should thus operate a change of reference
frame from the one of the laboratory (where the bending profile
is steady and identified by our measurements of α(s)) to the local
reference frame of the substrate. The evolution of the bending
profile in time in the local reference frame should be described by
another slope function β(u, t) expressed in terms of the material
curvilinear abscissa u. Since the substrate is moving at the same
velocity as the peeling velocity V , the two bending functions
are related by α(u + V t) = β(u, t). From the logarithmic strain

ε(s) = ln (a(s)/a0) = ln
(√

(s − x)2 + (y + a0)2
)

− ln(a0) of

the fibril attached at position s in the laboratory reference frame,
we can then compute the local strain rate as ε̇(s) = 1

a(s)
da
ds

∂s
∂t =

V
a(s)

da
ds , which after integration results in Eq. 18.

for θ ranging from 30◦ to 150◦ for V = 0.1 mm s −1,
a factor comparable to the variations of the local strain
rate ε̇(s) over the cohesive zone. In parallel, we see
in Fig. 7b that ¯̇ε increases by more than three orders
of magnitude with V increasing from 3 · 10−6 to
3 · 10−3 m s−1 for θ = 90◦. This last dependency
is well accounted for by a nearly linear power law
¯̇ε ∼ V 1.06. The fact the relationship between ¯̇ε and
V is almost linear means that the factor ln(a f /a0)/ ls
in Eq. 18 is almost independent of the peeling velocity.
This result is related to the fact the lengths ls and a f fol-
low very small exponent power law of V (ls ∝ V−0.08

and a f ≈ a f − a0 ∝ V−0.07). In fact, lx and ly also
follow power laws of V with very close small expo-
nents (−0.08 and −0.075 respectively): the cohesive
zone is self-similar to the first order, with just a weak
downscaling when V increases.
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(a)

(b)

Fig. 7 Average strain rate ¯̇ε in the cohesive zone, obtained from
the fitted tape backing profiles (using the model of Sect. 4) and
from Eq. 18. ¯̇ε is represented a as a function of θ for V =
0.1 mm s −1 and b as a function of V for θ = 90◦. The error bar
is the standard deviation of ε̇(s) in the cohesive zone

Since one can expect a direct influence of the strain
rate of the adhesive material on the level of stress, we
also report in Fig. 8 σ̄ as function of ¯̇ε for all stud-
ied couples of control parameters (θ, V ). These data
reveal that σ̄ nearly follows a power law ¯̇ε1/4 when
V is varied, except for the data acquired at θ = 150◦
and V = 0.1 mm s −1, which depart from all other
data presented in this paper, probably due to incipient
plastification of the backing as discussed before. For
the other angles studied at this same velocity, the influ-
ence of changing θ does not dramatically move away
the data from the main power law, in agreement with
the limited influence of θ on σ̄ and on ¯̇ε (compared to
the one of V ). Therefore, one can say that the typical
stress in the debonding region σ̄ is to the first order con-
trolled by the value of the mean strain rate ¯̇ε(θ, V ) to
the power ∼1/4, at least for peeling angles up to 120◦.
At these angles, the role of θ in the relation between
σ̄ and ¯̇ε remains unresolved, but it is undoubtedly of
second order.

A last parameter interesting to look at is the angle

ϕ f = arctan
(
a0+ly
ls−lx

)
between the last fibril of length

a f and the substrate, as reported in Fig. 9. We should
highlight here that the values we report for ϕ f result
from the fit of the tape profile by the cohesive zone

Fig. 8 Average stress σ̄ (from Figs. 6b, e) as a function of the
average strain rate ¯̇ε (from Fig. 7) in the debonding region, for
all the tested couples (θ, V ) of control parameters

model and are not obtained from direct observations
of the fibrils inclination (which would nevertheless be
closely matching for θ ≤ 120◦). We find that ϕ f is
remarkably constant with V (at least at θ = 90◦),
which is consistent with the self-similar downscaling
of the cohesive zone with increasing V . In parallel, ϕ f

decreases from about 80◦ at θ = 30◦ down to approx-
imatively 50◦ for the highest peeling angle θ = 150◦
(where the angle of the visible side fibrils with the
substrate is around 65 − 75◦, a value sensibly higher
than the one obtained with our model fit, which dis-
plays some limitations at very large peeling angles,
as abovementioned). These features suggest a corre-
lation between the maximum fibril elongation a f − a0
and their inclination ϕ f , which we call the “angle at
debonding” of the fibrils.

Understanding the debonding criterion for a highly
stretched soft fibril from a substrate is clearly a key
to modeling the adherence energy Γ (V, θ) of PSAs.
While this remains a very subtle unsolved problem
problem (Yarusso 1999; Villey et al. 2015; Creton and
Ciccotti 2016) and is out of the scope of the present
work, the availability of our measurements of a f , ¯̇ε
and ϕ f is very promising for future investigations on
custom PSAwith controlled rheology and surface con-
ditions.

5.3 Beyond the cohesive zone model

The good agreement between the imaged tape pro-
files and the fits suggests that extracting more infor-
mation from these profiles than an average stress in
the debonding region may not be an easy task. Obtain-
ing more refinements in the stress distribution indeed
implies to look at the minute differences between the
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Fig. 9 “Angle at
debonding” ϕ f between the
substrate and the longest
fibril (about to debond), a
for V = 0.1 mm s −1 and
different peeling angles θ

and b for θ = 90◦ and
different peeling velocities

V . ϕ f = arctan
(
a0+ly
ls−lx

)
is

obtained through the fit of
experimental profiles by the
model of Sect. 4

(a)

(b)

fitted profiles and the experimental ones.Notice that the
exact stress distribution can theoretically be accessed
by computing the fourth derivative dy(4)/dx4 of the
tape profile (Love 1944; Niesiolowski and Aubrey
1981). However, since the typical size of the debond-
ing region is in the hundreds of µm range, even get-
ting a spatial stress distribution with a few resolved
values is difficult: getting the changes in dy(4)/dx4

with a resolution as low as several tens of µm would
require a defectless tape (no dusts or scratches) at the
µm scale, which is hardly reachable in practice. The
same issue led Niesiolowski and Aubrey to upscale
the size of their adhesive tape in order to apply this
method [using derivatives of the tape profile up to the
fourth order to compute the forces acting on the tape
backing, see appendix 3 in Niesiolowski and Aubrey
(1981)]. Eventually, it seems that only a few average
stress values can be inferred at best from thewhole tape
profile.

A thorough examination of the minute differences
between the experimental profiles and their fit by our
model does nevertheless reveal one systematic feature
that can be used for further refinements, enabling to
obtain more information about the actual stress distri-
bution. A zoom at the very beginning of the debonding
region (see Fig. 10) indeed reveals a small zone where
the tape displacement normal to the substrate y(s) is
negative, corresponding to a local vertical compression
of the adhesive layer.

Fig. 10 The inset represents the zoom of the basal region (blue
rectangular box) of an experimental profile (θ = 90◦, V =
100 µm s−1) after averaging over 540 frames. The entire profile
was fitted using the cohesive zone (CZ) model of Eqs. 13 and 14
(red profile, with the CZ beginning at s = 0); the zone where the
backing displacement y corresponds to an adhesive deformation
smaller than 25% (i.e. |y| < a0/4 = 5 µm) was fitted using the
linear elastic foundation model of Eq. 19, providing an estimate
of λβ (and thus of Y ) as a fitting parameter

This can be explained by considering that, before
reaching a plateau value σ̄ , the stress in the adhesive
has to build up from zero. The simplest model for this
increase consists in considering the linear elastic behav-

123



188 R. Villey et al.

iour of the adhesive at small strain, as proposed by
Kaelble (1959; 1960), which results in such a compres-
sion zone before the adhesive is significantly stretched.
Kaelble actually modeled the adhesive layer by a linear
rate-dependent elastic foundation which, in our case,
can be relevant to describe the initial part of the debond-
ing region (before cavitation and fibrillation) where the
adhesive is not too much strained. In this zone, Kaelble
predicts the following tape profile:

y = y0e
x

λβ

[
cos

(
x

λβ

)
+ K sin

(
x

λβ

)]
,

with λβ = 4

√
4E Ia0
Yb

,

and K = 1 − λβ sin θ

r
√
2 − 2 cos θ − 0.5h cos θ + λβ sin θ

.

(19)

In this equation, h is the backing thickness and Y is
the adhesive effective tensile modulus [larger than the
adhesive Young’s modulus because of incompressibil-
ity and confinement, see discussion in Villey et al.
(2015)].

We should remark that in Kaelble’s model the posi-
tion x = 0 corresponds to the location where the nor-
mal stress σ(x) = Y y/a0 in the adhesive reaches a
maximum value σ0, which is also the location of adhe-
sive debonding when σ0 reaches a critical value [we do
not discuss the shear stress distribution here because
it is not relevant for the peeling angles discussed in
this paper, see Villey et al. (2015)]. The same equation
19 remains however valid and can be combined with
our cohesive zone model if we assume that the posi-
tion x = 0 corresponds to the transition between the
linear elastic zone (where the normal stress builds up
in the confined adhesive) and the cohesive zone (where
the stress reaches saturation in the fibrillated adhesive),
i.e. that Y y0/a0 = σ̄ .

A first refinement of our model could thus simply
consist in combining an elastic foundation with a cohe-
sive zone, where in the foundation (−∞ < s ≤ 0) the
adhesive response is linear elastic (σ(x) = σ(s) =
Y y/a0) and where in the cohesive zone (0 ≤ s ≤ ls) it
is plastic-like (σ(s) = σ̄ ). In such a model, the adher-
ence energy is given by

Γ = a0
σ̄ 2

2Y
+ σ̄

(
a f − a0 − y0

)
, (20)

which is simply the sum of the work to first stretch
the adhesive in the elastic foundation and then in the
cohesive zone up to debonding.

Such a model combining the elastic foundation and
the cohesive zone certainly offers a better description
of the stress distribution within the adhesive, but its
relevance to explain energy dissipation during peeling
should be further examined. To do so, we estimate the
importance of the elastic foundation contribution to the
adherence energy in Eq. 20 compared to the contribu-
tion of the cohesive zone. We thus need estimates of
σ̄ and Y , the former being given by fitting the whole
profile with the model of Sect. 4 and the latter by fit-
ting the detected profile in the small strain zone by
Eq. 19: in this zone, the characteristic length λβ of the
spatially damped oscillation of the tape profile can be
fitted, giving access to Y = bλ4β/4E Ia0. Practically,
the tape profile was fitted using Eq. 19 with K , y0 and
λβ as independent fitting parameters, as it is done for
example in Fig. 10.

The systematic fitting of the averaged experimental
profiles provides measurements of λβ , which reveal Y
values in the hundreds of kPa to severalMPa range: this
is larger than the several tens of kPa expected for the
unconfined adhesive (Amouroux et al. 2001), but it can
be explained by the confinement effect: an incompress-
ible material uniaxially stretched from an initial con-
fined geometry has a stiffer response than in an uncon-
fined stretching test.

The contribution of the elastic foundation in the
overall energy budget is slightly decreasing with
θ and globally increasing with V . More precisely,
a0σ̄ 2/(2YΓ ) < 5% in all our experiments, except
at V = 0.3 mm s−1 where it is around 8% and at
V = 3 mm s−1 where it is around 30%.

This means that the experiments presented in this
paper correspond to the case where the stress plateau
dominates the dissipation in the stretched adhesive, and
that the elastic foundation zone can safely be neglected
both in the energy budget and when estimating the
level of the stress plateau, except maybe at the highest
tested peeling velocity V = 3 mm s−1. The model of
Sect. 4 is however expected to become less relevant at
higher velocities, where the maximum fibrils extension
may become small enough so that the contribution of
the elastic foundation zone becomes important in the
overall work used to stretch the adhesive. The more
refined model briefly described in this section could
therefore be very useful to extract relevant local rheo-

123



In-situ measurement of the large strain response 189

logical parameters and to explain energy dissipation at
larger peeling velocities than in the present investiga-
tion, in order to give an overall complete picture of the
peeling mechanics of soft confined layers.

6 Conclusion

In this work, we measure experimentally the shape of
the adhesive tape backing during steady peeling of a
typical commercial PSA at controlled peeling angle θ

and velocity V with sufficient resolution to describe
the debonding region. We model the tape backing by
an elastica submitted to a constant force F at the peeling
end and to a uniform cohesive stress σ̄ in the debond-
ing region, where the adhesive material is stretched
and forms fibrils. We make the reasonable assump-
tion that this cohesive stress is oriented in the fibrils
direction. Fitting the experimental profiles with such
a model allows to extract the typical stress σ̄ in the
debonding region as well as the extension a f − a0 of
the adhesivematerial at debonding,which are the effec-
tive rheological ingredients that determine the energy
dissipated per peeled surface area Γ = σ̄

(
a f − a0

)
in

this model. This fitting procedure also allows to com-
pute the strain rate ε̇ imposed to the adhesive fibrils and
its average ¯̇ε in the debonding region. This model thus
enables to use peeling as a sort of local rheological test
giving access to the average stress, the average strain
rate and the maximum extensibility of the adhesive in
its complex fibrillar debonding region for a given set
of control parameters (θ, V ).

The model profiles fit properly the experimental
ones down to the micrometric scale. We explain this
agreement by the fact the model average stress σ̄ is not
too far from the actual stress distribution in the debond-
ing region, since the stress-extension behavior of typ-
ical PSA is known from probe tack tests (which has a
quite similar local loading configuration) to exhibit a
large stress plateau, with similar typical stress values at
corresponding strain rates (Lindner et al. 2004, 2006).
Moreover, except for very large peeling angles, the size
of the cohesive zone and thus the fibrils extension is
close to what can be observed by directly looking at
the visible fibrils on the side of the tape. This is the first
time to our knowledge that a curve displaying the typi-
cal stress and maximum strain in the adhesive debond-
ing region during peeling versus the peeling angle and
velocity (or versus the typical strain rate) is obtained

and interpreted in terms of large strain rheology of the
fibrillated adhesive material.

This use of peeling as a local rheological test of
the complex debonding region should provide a use-
ful tool to link the adhesive formulation to the desired
user properties (i.e. adherence energy curves Γ (V, θ))
through the intermediate parameters that are the mater-
ial large strain rheological behaviour and fibril debond-
ing conditions. While further studies on different for-
mulations with well controlled large strain rheologies
and interface properties should be conducted to com-
pletely examine this chain of influences, the paramet-
ric study in this paper already examines the influence
of material’s large-strain rheology on energy dissipa-
tion and thus resistance to peeling. Our study suggests
that energy dissipation is linked to the peeling veloc-
ity V mainly through the strain-rate dependency of
the average stress within the adhesive, which seems
to be insensitive to the peeling angle θ , except maybe
at the highest peeling angle, where other features such
as plasticity in the tape backing are likely to occur.
Conversely, the fibril elongation at debonding a f − a0
increases with θ , but only slowly decreases with V in
the explored velocity range. Finally and more specu-
latively, the angular dependency of a f (and thus the
main angular dependency of Γ ) could come from a
change in the stress configuration at the fibrils extremi-
ties due to the changing directionϕ f inwhich the fibrils
are pulled, shifting the critical elongation at which the
relevant debonding criterion [stress or energy density,
see discussion in Yarusso (1999)] is reached. In other
words, our results suggest that longer fibril extensions
can be reached before debonding and thus more energy
can be dissipated when these fibrils are pulled with an
angle ϕ f smaller than 90◦ with respect to the substrate
on which they are attached, provided the fibril attach-
ment does not slide on the substrate (sliding being not
observed in the experiments presented in this paper).

Finally and more generally, a consistent model to
explain energy dissipation during peeling needs three
ingredients: the equations of stress and displacement
transmission between the operator and the zone where
energy is dissipated; the effective rheological behavior
of the adhesive in this zone; and a local debonding cri-
terion. The modeling strategy presented in this paper
accounts for the first point. We use a simplified ver-
sion of the local adhesive rheology (a constant effec-
tive stress depending on the strain rate) to account for
the second point, a simplification allowed by the large
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stress plateau exhibited by adhesives during probe tack
tests. As for the third ingredient, ourmodel gives access
to observables that can shed some light on it, namely
the elongation a f − a0 and orientation ϕ f of the fibril
about to debond and the typical strain rate experienced
by the fibrils.
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