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Turbulent drag in a rotating frame
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What is the turbulent drag force experienced by an object moving in a rotating
fluid? This open and fundamental question can be addressed by measuring the
torque needed to drive an impeller at a constant angular velocity ω in a water tank
mounted on a platform rotating at a rate Ω . We report a dramatic reduction in
drag as Ω increases, down to values as low as 12 % of the non-rotating drag. At
small Rossby number Ro= ω/Ω , the decrease in the drag coefficient K follows the
approximate scaling law K ∼ Ro, which is predicted in the framework of nonlinear
inertial-wave interactions and weak-turbulence theory. However, stereoscopic particle
image velocimetry measurements indicate that this drag reduction instead originates
from a weakening of the turbulence intensity in line with the two-dimensionalization
of the large-scale flow.

Key words: geophysical and geological flows, rotating turbulence, turbulent flows

1. Introduction

The determination of the drag force on a moving object is a central question in
turbulence research and is the main goal of aerodynamics. A characteristic feature of
turbulent flows is the ‘dissipation anomaly’: the drag force becomes independent of the
fluid viscosity when the latter is low enough (Frisch 1995). A simple experiment to
highlight this behaviour consists of spinning an impeller of radius R and height h at a
constant angular velocity ω inside a tank filled with fluid of density ρ and kinematic
viscosity ν: when the Reynolds number Re = R2ω/ν is large enough, the torque Γ
required to drive the impeller follows the ν-independent scaling Γ =KρR4hω2, where
the dimensionless drag coefficient K depends only on the shape of the impeller.

Here, we consider the effect of global rotation at constant rate Ω on this
fundamental experiment: how does the drag coefficient depend on the Rossby number
Ro = ω/Ω? Global rotation is encountered in many industrial, geophysical and
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astrophysical flows. Rotating turbulence has therefore been studied intensively using
experimental, theoretical and numerical tools (Davidson 2013; Godeferd & Moisy
2015). For strong global rotation, the behaviour of rotating turbulent flows may
be summarized as follows: the large-scale flow structures tend to become invariant
along the global rotation axis, in qualitative agreement with the Taylor–Proudman
theorem (Greenspan 1968), while the remaining vertically dependent fluctuations can
be described in terms of inertial waves that interact nonlinearly, together and with the
2D flow (Campagne et al. 2014, 2015; Clark di Leoni et al. 2014; Yarom & Sharon
2014; Alexakis 2015). Rotating turbulence is therefore intermediate between 2D
and 3D turbulence; one naturally wonders how its energy dissipation rate compares
with the laminar dissipation of 2D turbulence, or with the dissipation anomaly of
3D turbulence (Baqui & Davidson 2015).

The experiment considered here probes the influence of global rotation on turbulent
dissipation directly. Indeed, torque measurements give access to the drag coefficient:

K = Γ/(ρR4hω2), (1.1)

i.e. to the normalized energy dissipation rate. We report on the behaviour of K
as a function of the Rossby number Ro, in the fully turbulent regime where K is
independent of Re, for a rotation axis of the impeller either parallel or perpendicular
to the global rotation axis.

2. Experimental set-up

The experimental set-up is sketched in figure 1(a). It consists of a parallelepipedic
water-filled tank of height H= 55 cm and square base of side L= 45 cm. A brushless
servo motor drives a four-rectangular-blade impeller of radius R= 12 cm and height
h= 3.2 cm at a constant angular velocity ω of between 20 and 400 r.p.m. The tank
and the motor are mounted on a 2 m-diameter platform rotating at a constant rate
Ω > 0 of up to 30 r.p.m. around the vertical axis. For each set of parameters (ω,Ω)
we measure the time-averaged torque Γ developed by the motor driving the impeller.
The maximum applied torque is Γm = 5 N m. We subtract the non-hydrodynamic
torque determined for each value of ω by repeating the measurement using air
instead of water. This non-hydrodynamic torque includes losses in the motor and
in the o-ring seal through which the shaft enters the tank. It is determined with a
precision of 1Γ = 50 mN m, allowing us to span a range of two orders of magnitude
in hydrodynamic torque.

Two configurations are considered. In the first configuration, the impeller rotates
around the vertical axis, either cyclonically (ω > 0, figure 1b) or anticyclonically
(ω< 0, figure 1c); in the second configuration, the impeller rotates around a horizontal
axis in the rotating frame (figure 1d). These configurations allow us to examine the
two physically relevant situations of a driving velocity either normal or parallel
to the global rotation axis. The vertical-axis configuration (figure 1b,c) bears some
similarities with the Taylor–Couette flow between rotating cylinders, the key difference
being that the flow is driven inertially: the Taylor–Couette geometry is well suited to
studying the effect of global rotation on viscous friction near a smooth wall, while
our experiment considers the turbulent drag due to the inertially driven flow.

3. Drag measurements

We first focus on the vertical-axis configuration. Figure 2 shows the drag coefficient
(1.1) as a function of the Rossby number |Ro| = |ω|/Ω . Denoting as u the velocity
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FIGURE 1. Experimental set-up. We measure the mean torque Γ developed by the motor
driving an impeller at a constant rotation rate ω in a water-filled tank mounted on a
platform rotating at a rate Ω (L = 45 cm, H = 55 cm, R = 12 cm, h = 3.2 cm). In
(a–c), the platform and the impeller rotate around the same axis (in the laboratory frame,
the impeller spins at a rate ω +Ω). Particle image velocimetry (PIV) measurements are
performed in a vertical plane (green shaded region). In (d), the axis of the impeller is
perpendicular to the global rotation axis of the platform. (b) Cyclonic, (c) anticyclonic,
(d) horizontal axis.

field, the drag coefficient K is related to the spatial distribution of the energy
dissipation rate per unit mass ε(x) = ν〈|∇u|2〉t through the balance between input
and dissipated power: Γ ω = ρV〈ε〉x, where 〈 〉t denotes a time average and 〈 〉x the
space average over the volume V =L2H of the tank. In the absence of global rotation,
because of the large Reynolds number of the flow (Re = 6.4 × 104–6.7 × 105), the
drag coefficient is independent of Re, K∞ = 0.67 ± 0.02, in agreement with the
fully turbulent scaling law ε ∼ R3ω3/h. For non-zero global rotation Ω > 0, the drag
coefficient remains independent of Re, but it is now a function of the Rossby number:
the high-Re data for Γ (ω, Ω) collapse onto two master branches when plotted as K
versus |Ro|, a cyclonic branch for ω> 0 and an anticyclonic branch for ω< 0.

We first consider the high-Ro part of figure 2. For weak global rotation (large |Ro|),
the two branches split symmetrically about K∞, with drag reduction for cyclonic
motion (Ro> 0) and drag enhancement for anticyclonic motion (Ro< 0). Such small
departures from K∞ can be described through a regular expansion in Ro−1 = Ω/ω,
assuming that the weak Coriolis force can be accounted for perturbatively: writing
the velocity field as u= u0 + Ro−1u1 +O(Ro−2), where u0 is the flow without global
rotation, leads to u1|−Ω = u1|Ω . The mean energy dissipation rate per unit mass is
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FIGURE 2. The drag coefficient K = Γ/ρR4hω2 as a function of the Rossby number
|Ro| = |ω|/Ω . The coloured symbols are for the vertical-axis configuration, cyclonic and
anticyclonic (figure 1b,c), and the open symbols are for the horizontal-axis configuration
(figure 1d). The horizontal dotted line is the drag coefficient for fully developed turbulence
without rotation, K∞ = 0.67± 0.02. The tilted dashed line shows K ∝ Ro.

〈ε〉x = ν〈|∇u0|2〉x,t + 2νRo−1〈∇u0 · ∇u1〉x,t + O(Ro−2), where 〈 〉x,t denotes a space
and time average, and ν〈|∇u0|2〉x,t is the energy dissipation rate of the non-rotating
flow. The drag coefficient becomes

K
K∞
= 1+ αRo−1 +O(Ro−2), where α = 2

〈∇u0 · ∇u1〉x,t
〈|∇u0|2〉x,t . (3.1)

The sign of α can be inferred from the fact that global rotation tends to reduce the
velocity gradients along the rotation axis. In the laboratory frame, and for fixed Ω> 0,
the fluid spins faster for cyclonic rotation of the impeller (ω> 0) than for anticyclonic
rotation (ω < 0). As a consequence, we expect lower vertical velocity gradients in
the cyclonic case, i.e. α < 0, implying consistently a negative correlation between the
perturbed vertical derivative ∂zu1 and ∂zu0 in (3.1). The data in figure 3 are in good
agreement with this prediction: the departure of K from K∞ is approximately linear in
Ro−1 for Ro−1 ∈ [−0.07; 0.07], which corresponds to the range |Ro|> 15 in figure 2.

We now discuss the regime Ro ' 1, which is probably the most interesting one:
the cyclonic branch of figure 2 displays a dramatic drop in the drag coefficient,
with K reaching values as low as 12 % of K∞ for the lowest Rossby numbers. This
decrease in drag with increasing Ω follows the approximate scaling law K ∼ Ro. A
similar, although less pronounced, decrease in the drag coefficient is observed for the
anticyclonic branch. However, it is preceded by a dissipation peak at intermediate Ro:
a maximum dimensionless drag Kpeak ' 1.5K∞ is achieved for Ropeak ' −12. Once
again, this difference between the two branches can be related to the effective global
rotation of the fluid: the dissipation peak corresponds to anticyclonic impeller motion
ω < 0 partly compensating the rotation Ω > 0 of the platform, so that the fluid has
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FIGURE 3. The drag coefficient K departs from K∞ approximately linearly in the inverse
Rossby number Ro−1 =Ω/ω when the latter is small (same data as figure 2).

minimum global rotation in the laboratory frame. A similar peak of dissipation has
been reported for counter-rotating Taylor–Couette flow, and corresponds to optimal
transport of angular momentum between the two cylinders (Dubrulle et al. 2005;
Paoletti & Lathrop 2011; Van Gils et al. 2011; Ostilla-Mónico et al. 2014). Such
intermediate negative Rossby numbers also represent the most unstable configuration
for vortices in rotating flows (Kloosterziel & Van Heijst 1991; Mutabazi, Normand
& Wesfreid 1992), which rapidly break down into highly dissipative 3D structures.
The Taylor–Couette dissipation peak can then be traced back to strong instabilities
driving dissipative 3D flow structures. In a similar fashion, the PIV measurements
described in § 4 indicate that highly dissipative 3D flow structures are responsible for
the dissipation peak of the present experiment (see figure 4c).

How can we explain such a strong drag reduction for rapid global rotation?
Two scenarios can be put forward. The first scenario relies on the modification of the
energy transfers by the background rotation. In this approach, the velocity fluctuations
are described in terms of propagating inertial waves, which disrupt the phase relation
needed for efficient energy transfers (Cambon & Jacquin 1989). This scenario was
first put forward in the context of magnetohydrodynamic turbulence (Iroshnikov 1964;
Kraichnan 1965), and later applied to rapidly rotating turbulence (Zhou 1995; Smith,
Chasnov & Waleffe 1996). It predicts reduced energy transfers ε' ε∞Ro′ in the limit
Ro′� 1, where ε∞ ' u′3/` is the usual (non-rotating) dissipation rate constructed on
the turbulent velocity u′ and the energy-containing size `, and Ro′ = u′/2Ω` is the
turbulent Rossby number. This result, which relies on dimensional analysis, can be
made more quantitative in the framework of wave-turbulence theory (Galtier 2003;
Cambon, Rubinstein & Godeferd 2004; Nazarenko 2011). Even though the latter
theory is valid for Ro′� 1 only (to be compared with the lowest value Ro′ ' 0.2 of
the present study, see table 1), the scaling law K ∼ Ro reported in figure 2 turns out
to be in agreement with this prediction, if one assumes that u′ ∼ Rω holds regardless
of Ro.
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FIGURE 4. The time-averaged flow (left) and the r.m.s. fluctuations of the poloidal
flow (right), measured by stereoscopic PIV in the frame of the rotating platform. In
the left panels, the colour codes the toroidal (out-of-plane) velocity. (a) No background
rotation (ω = 150 r.p.m., Ω = 0, Ro = ∞). (b,d) Cyclonic background rotation
(Ro = 12 and 3). The two-dimensionalization results in a gradual weakening of the
poloidal flow up and a strengthening of the toroidal flow. At the largest global rotation
(d), the fluid column below the impeller rotates rigidly at ω in the rotating frame, with
weak turbulent fluctuations. (c,e) Anticyclonic background rotation (Ro = −12 and −3).
The peak dissipation at Ro ' −12 in figure 2 corresponds to the maximum poloidal
recirculation and maximum turbulent fluctuations in the vicinity of the impeller (c).

Another explanation for the decrease in the drag coefficient is partial two-
dimensionalization. Indeed, the forcing geometry in the vertical-axis configuration
(figure 1b,c) is compatible with the Taylor–Proudman theorem, which predicts for
low Ro a purely 2D vertically invariant solution corresponding to solid-body rotation
in the cylinder tangent to the impeller, at angular velocity ω in the rotating frame
of the platform. This solution is valid for a perfect fluid only, which slips on the
top and bottom boundaries. For a realistic viscous fluid, additional boundary layers
and poloidal recirculations develop and coexist with the solid-body motion (Hide &
Titman 1967; Greenspan 1968). As a matter of fact, for periodic boundary conditions
and idealized vertically invariant forcing, it was recently proven that the high-Re flow
settles in a purely 2D state for low enough Rossby number (Gallet 2015). For the
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Panel Ro= ω

Ω
Re= ωR2

ν
Ro′ = u′p

2Ωh
Re′ = u′ph

ν

(a) ∞ 2.3× 105 ∞ 7.2× 103

(b) 12 1.8× 105 2.4 5.1× 103

(c) −12 1.8× 105 3.3 7.2× 103

(d) 3 1.4× 105 0.2 1.6× 103

(e) −3 1.4× 105 0.7 4.4× 103

TABLE 1. The dimensionless numbers for the five panels of figure 4, based either on the
control parameters or on the fluctuating poloidal velocity (inside the red-dashed domain of
figure 4a).

experiment at stake here, the rapidly rotating flow can be thought of as a coexistence
of this 2D asymptotic flow, together with weak 3D turbulent fluctuations, the intensity
of which decreases as the global rotation increases. The 2D flow dissipates very little
energy, at a laminar rate, typically proportional to the viscosity. Accordingly, the
energy dissipation is due to the 3D flow structures, the intensity of which decreases
for decreasing Ro. We therefore expect a decrease in the energy dissipation, and
therefore in the drag coefficient, for increasing global rotation rate.

4. Turbulent flow structure

To discriminate between the inertial-wave scenario and the partial two-dimensionali-
zation one, we measure the velocity field using a stereoscopic PIV system mounted
on the rotating platform. The field of view is vertical, illuminated by a laser sheet
containing the axis of the impeller, and represents one quarter of the tank section,
below the impeller (see figure 1a). Stereoscopic PIV measurements are achieved by
two high-resolution cameras aimed at the measurement plane at an incidence angle of
45◦, at a frame rate of 5 Hz.

In figure 4, we show the mean velocity field and the standard deviation u′p(x, z)
of the poloidal velocity with and without global rotation. The non-rotating mean flow
corresponds to a toroidal (out-of-plane) flow driven by the impeller, together with a
strong poloidal (in-plane) recirculation. The flow displays 3D turbulence, the intensity
of which is maximum at the edge of the impeller blades. In table 1, we provide values
of the turbulent Reynolds and Rossby numbers based on the r.m.s. poloidal velocity
in this flow region (red-dashed domain in figure 4a).

The non-rotating flow contrasts strongly with the rapidly rotating one measured
for cyclonic impeller motion: in line with the Taylor–Proudman theorem, the
mean toroidal flow gradually tends to solid-body rotation at frequency ω inside
the tangential cylinder, while the mean poloidal recirculation weakens as Ω

increases. This two-dimensionalization is clearly visible in figure 5, which shows
the mean azimuthal velocity profile well below the impeller (z/H =−0.36). Another
consequence of the Taylor–Proudman theorem is a strong decrease of the 3D turbulent
fluctuations for decreasing Rossby number, as can be seen in the right-hand panels of
figure 4(b,d): in the vicinity of the blades, i.e. inside the red-dashed domain sketched
in figure 4(a), both the poloidal and the toroidal r.m.s. velocities strongly decrease
for decreasing Rossby number (we show only the former), the ratio of the two being
approximately 1.2 regardless of Ro.
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FIGURE 5. The mean azimuthal (out-of-plane) velocity profile 〈uy〉t, measured 200 mm
below the impeller (z/H=−0.36), showing the strong two-dimensionalization of the flow
for cyclonic background rotation (Ro > 0). The dashed line shows the Taylor–Proudman
prediction 〈uy〉t =ωx (solid-body rotation at angular velocity ω in the rotating frame).

The anticyclonic case is different: for intermediate global rotation (Ro = −12,
figure 4c), the mean flow displays minimum toroidal component and maximum
poloidal recirculation, and the 3D turbulent structures in the vicinity of the impeller
have maximum intensity. This situation corresponds to the dissipation peak in figure 2.
However, as the global rotation is further increased (Ro=−3, figure 4e), the measured
flows once again follow the Taylor–Proudman phenomenology, with stronger toroidal
mean flow and reduced mean and fluctuating poloidal velocities (although the flow
remains further from the 2D state than for cyclonic impeller motion).

On a qualitative level, these observations therefore support the partial two-
dimensionalization scenario: most of the kinetic energy of the rapidly rotating
flow corresponds to 2D z-invariant motion, which is discarded at the outset of
wave-turbulence theories. A quantitative criterion is, however, needed to distinguish
more clearly between the two scenarios. To wit, we evaluate the energy dissipation
rate of the turbulent poloidal flow directly from the PIV measurements: assuming
that the energy-containing scale is given by the impeller height h, the non-rotating
estimate of this quantity is u′3p /h, whereas the wave-turbulence estimate is u′4p /Ωh2.
We compute the spatial integral of the non-rotating estimate u′3p /h in the vicinity
of the impeller, inside the dashed region shown in the right panel of figure 4(a).
We denote as P the resulting quantity, and report its behaviour with Ro in figure 6.
It matches remarkably the behaviour of K, both curves being normalized by their
asymptotic non-rotating value, with K∞/P∞=0.6±0.1. This good agreement confirms
that the energy dissipation is mostly due to the 3D part of the flow, the laminar
dissipation of the 2D flow being negligible. However, more importantly, for the
moderate Rossby numbers studied here, it demonstrates that the energy dissipation
can be estimated locally from the usual non-rotating scaling law u′3p /h, ruling
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FIGURE 6. The dissipated power P, estimated by the turbulent fluctuations u′p of the
poloidal flow measured through stereoscopic PIV, using the non-rotating estimate u′3p /h,
and normalized by its non-rotating value P∞. The good agreement between P/P∞ and the
input power K/K∞ measured from torque data (data shown as faint symbols reproduced
from figure 2) demonstrates that the non-rotating estimate u′3p /h correctly describes the
energy dissipation rate, even in the rotating case.

out the modified energy dissipation u′4p /Ωh2 predicted by weak-turbulence theory
(such a non-rotating scaling law is also consistent with studies of grid-generated
rotating turbulence (Hopfinger, Browand & Gagne 1982; Staplehurst, Davidson &
Dalziel 2008; Moisy et al. 2011), which have shown that the small-scale turbulent
fluctuations start to develop some rotation-induced anisotropy for Ro′ . 0.2 only).
The quantitative criterion illustrated in figure 6 allows us to clearly discriminate
between the two scenarios, and we conclude that the drag reduction originates
from a partial two-dimensionalization of the flow, with reduced 3D turbulent
fluctuations.

5. Concluding remarks

The two-dimensionalization scenario for drag reduction is supported so far
by the vertical-axis configuration (figure 1b,c), which is compatible with the
Taylor–Proudman theorem. What if the axis of the impeller is horizontal (see
figure 1d)? Such a configuration is incompatible with the Taylor–Proudman theorem:
there is no vertically invariant flow solution compatible with the boundary conditions,
even for a perfect fluid, because of the non-zero vertical velocity imposed by the
impeller. This geometry therefore prohibits the partial two-dimensionalization scenario,
while it still allows for the inertial-wave one. The vertical motion of the blades
induces 3D turbulent velocity fluctuations of order Rω, regardless of Ro. The usual
non-rotating estimate for the energy dissipation rate then gives R3ω3/h, from which
we predict no dependence of K on Ro, whereas the wave-turbulence prediction gives
R4ω4/h2Ω , with a strong decrease in the drag coefficient K ∼ Ro for decreasing Ro.
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Once again, the data in figure 2 clearly depart from the wave-turbulence prediction:
for the moderate Rossby numbers considered here, there is no drop in the drag
coefficient in this horizontal-axis configuration.

To conclude, we observe strong drag reduction whenever two-dimensionalization
is allowed, i.e. when the forcing geometry is compatible with the Taylor–Proudman
theorem: the drag coefficient is dramatically reduced for motion perpendicular to
the global rotation axis, while it is very weakly affected for motion parallel to the
global rotation axis. Importantly, for the moderate Rossby numbers considered here,
the energy dissipation rate obeys the classical non-rotating scaling law, and not the
wave-turbulence one. The decrease in drag is a consequence of a decrease in the 3D
turbulence intensity, in line with the two-dimensionalization of the large-scale flow. It
would be of great interest to achieve even faster global rotation, to determine how the
flow approaches the asymptotic 2D state: is there a threshold Ro under which the flow
becomes exactly 2D (up to boundary layers), as in the stress-free case considered by
Gallet (2015), or is there a clear-cut scaling law governing the decrease in 3D energy
as a function of Ro?

Such experiments would also indicate how much further the drag can be reduced:
for very fast global rotation, the decrease in bulk dissipation may be hidden by
increasing Ekman friction in the boundary layers, which probably becomes the
dominant cause of dissipation for large Ω . As a consequence, there would be an
optimum rotation rate that leads to a minimum in drag.
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