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The growth dynamics of a single crack in a heterogeneous material under subcritical loading is an

intermittent process, and many features of this dynamics have been shown to agree with simple models of

thermally activated rupture. In order to better understand the role of material heterogeneities in this

process, we study the subcritical propagation of a crack in a sheet of paper in the presence of a distribution

of small defects such as holes. The experimental data obtained for two different distributions of holes are

discussed in the light of models that predict the slowing down of crack growth when the disorder in the

material is increased; however, in contradiction with these theoretical predictions, the experiments result

in longer lasting cracks in a more ordered scenario. We argue that this effect is specific to subcritical crack

dynamics and that the weakest zones between holes at close distance to each other are responsible for both

the acceleration of the crack dynamics and the slightly different roughness of the crack path.
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Introduction.—When a brittle material is loaded beyond
a critical stress, it breaks almost instantaneously; however,
even a subcritical loading is generally able to fracture the
system, but in a time-dependent manner. A subcritical
fracture in disordered materials usually follows a rather
complex dynamics, with the occurrence of large—power-
law-like—distributions of rupture event sizes, observed
both in experiments and numerical models [1–7].
Experimental evidences of such distributions are based
either on indirect observations, such as the detection of
acoustic emissions associated with rupture events [1–3], or
on direct observations of the propagation of a crack front
[4,5]. Power-law statistics is obtained in models describing
the rupture of a disordered material through a threshold
dynamics where the time scale of rupture is either set
by the loading rate or by an imposed creep or damage
law [6–11]. Experimentally, the rupture process has been
proposed to be triggered by thermal noise (for a review, see
Ref. [12]). This is actually a very important practical case
for structures that are submitted to an essentially constant
load such as buildings, which are constantly evolving
towards thinner and lighter designs. Following this idea,
a number of theoretical works have been developed
recently so as to describe the rupture dynamics driven by
thermal noise in materials with a distribution of local
rupture thresholds [13–17]. It has been found that, for a
given mean rupture threshold, the amplitude of disorder
(defined as the standard deviation of the rupture thresholds)
can diversely affect the rupture dynamics. It can accelerate
the dynamics when it involves many spatially diffuse
rupture events [13–15] or on the contrary slow it down
when it involves the growth of a main dominant crack
[16,17]. Controlling experimentally the disorder in a ma-
terial is a rather difficult task which limits tremendously

the possibility to test these theoretical predictions. For
example, Dalmas et al. [18] have analyzed the effects of
the scale of the disorder in the fracture process of three-
dimensional samples, but their studies are limited to the
roughness of the crack surfaces. In this Letter, we propose
a method to control material disorder by weakening a paper
sample along the path of a main crack through the addition
of small holes. The dynamics and structure of the crack are
analyzed under two different spatial distributions of holes
while keeping constant the damage introduced to the ma-
terial, i.e., the averaged density of holes.
Experimental procedure.—We use fax paper samples

from Alrey having a thickness of 50 �m. An initial crack
of 3 cm length is formed at the center of each sample of
dimensions 21 cm� 24 cm. Holes are pierced through the
sample using an acupuncture needle of diameter 120 �m
actuated by a three-axial computer-controlled platform.
The first samples we studied had a series of holes regularly
spaced by a distance d ¼ 1 mm and aligned along the
direction of the initial crack [Fig. 1(a)]. However, the crack
deviations due to the intrinsic disorder of the sample were
often driving the crack away from the holes. In order to
guarantee that the crack will interact with holes along its
whole path, we reduced the hole spacing to d ¼ 0:5 mm
and added four clones of this line parallel to the original
alignment on each side of it, keeping a spacing of 0:5 mm
between them [Figs. 1(b) and 1(c)]. The samples with an
ordered pattern of holes will be further labeled as the
unimodal configuration.
In order to build a disordered configuration, a simple

way could have been to randomly change the position of
the holes along each line of the unimodal configuration.
In this process, in order to avoid the collapse of two holes
into a single defect, the amplitude of these random
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displacements should be limited, for instance, between
�0:125 and 0.125 mm. As a result, the interhole distances
would be randomly distributed between 0.25 and 0.75 mm.
However, in this disordered configuration, many interhole
distances would still be close to 0.5 mm, such as in the
unimodal case. To make a clear difference with the uni-
modal configuration, we have chosen to use only the two
extreme values of interhole distances and build a line of
holes with nonrandom alternating distances of 0.25 and
0.75 mm, creating a 1 mm periodicity. Eight cloned lines
are added to the samples, similarly to the ordered configu-
ration [Figs. 1(d) and 1(e)]. This less ordered configuration
will be labeled as the bimodal configuration. We empha-
size that theoretically a bimodal distribution is a disorder
that is enough to create a global slowing down of the crack
dynamics, as can be inferred from Ref. [16]. The disorder
created in the samples will actually be a disorder on the
stress field rather than on the rupture thresholds. However,
the effect on the dynamics will be very similar since
thermally activated rupture is controlled by the difference
between the local rupture threshold and the local stress
[12]. Because of stress concentration around the holes, we
expect that, in the bimodal case, the dynamics will be faster
between holes that are closer to each other and slower
between holes that are farther apart.

Experiments are performed by applying a constant force
perpendicularly to the initial crack direction. The tempera-
ture is controlled and kept constant at 35� 0:1 �C, and the
relative humidity is kept below 5% during all experiments.
Crack growth is followed using a high resolution camera
(ImperX 11 megapixels) at 5 frames=s. Crack contours are
extracted using a digital image analysis routine that is
precise enough to separate the crack from the background
of holes. Figures 1(c) and 1(e) show (in blue) examples of
extracted crack contours superimposed with the raw image
for both configurations of holes.

Results.—In Fig. 2, we plot the extracted crack growth
curves for 18 independent experiments performed in the

same conditions with either (a) the unimodal or (b) the
bimodal configuration. Each curve shows that the crack
advances by a series of sudden jumps occurring after the
crack has been pinned for a certain time, until it reaches a
critical length that separates the subcritical behavior from
an abrupt rupture. The critical lengths, estimated as in
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FIG. 2 (color online). Time vs crack length (considering only
the contribution parallel to the main crack direction).
(a) Unimodal samples. (b) Bimodal samples. The solid lines
correspond to the ensemble averaged curves.

FIG. 1 (color online). (a) Passage of a crack across a line of 1 mm equispaced holes. (b)–(e) Views of the initial and final crack (a few
moments before the sample breaks apart). (b),(c) In the case of a unimodal spacing of 0.5 mm between holes. (d),(e) In the case of a
bimodal hole spacing, alternating between 0.25 and 0.75 mm in each line.
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Ref. [4], are comparable for both configurations: hLci ¼
76:4� 9:0 mm for the unimodal case and hLci ¼ 72:4�
8:5 mm for the bimodal one. However, the rupture times, at
which the critical lengths have been attained, are more
dispersed and present (in ensemble average) higher values
in the unimodal configuration (htmaxi ¼ 3209 s) than in the
bimodal one (htmaxi ¼ 2238 s), as is shown in Fig. 3(a).
The fact that subcritical cracks propagate (on average)
more slowly in the more ordered scenario is the main result
of this work, and the rest of this Letter will discuss the
corresponding spatiotemporal features.

First, in order to verify that this result is specific to the
subcritical behavior, 18 samples, similar to those used in
Fig. 2, were broken by imposing a deformation ramp with a
velocity of 45 �m=s. We measure no noticeable departure
between the two configurations [Fig. 3(b)], with critical
rupture thresholds equal to hFmaxi ¼ 312� 14 N and
hFmaxi ¼ 310� 13 N for the single and bimodal spacings,
respectively. We do not observe here a dependence of the
critical force on disorder, as predicted in Ref. [19].

If one analyzes the statistics of crack jumps, taking into
account all the data in Fig. 2, one finds a rather broad
distribution similar to the one reported earlier for samples

with no holes [4]. However, one noticeable feature distin-
guishes the unimodal and bimodal configurations (Fig. 4),
namely, the appearance of a peak at a jump size close to
1 mm for the bimodal hole pattern. This peak is a robust
feature when varying the box width used to build the
distribution and thus reveals a preferentially selected
jump distance. Interestingly, this size corresponds to the
periodicity of the bimodal pattern that is double the one of
the unimodal pattern. As seen in the inset of Fig. 4, the next
clear peak in jump sizes for the bimodal pattern occurs for
2 mm, i.e., twice the basic pattern periodicity. In the case of
a unimodal pattern, it seems that there is also a selection of
jumps with size multiples of the periodicity, here 0.5 mm.
The inset of Fig. 4 shows indeed small peaks close to jump
values twice, three times, and four times the basic pattern
period. However, it does not clearly show a peak for jump
sizes of 0.5 mm but only an inflection point in the
distribution.
An explanation of the 1 mm jumps in the bimodal case

could be that, once two holes distant by 0.75 mm are
connected, it is much easier to connect the following hole
at a distance of 0.25 mm, so as to effectively create a jump
size of 1 mm. Making a naı̈ve calculation, if we consider as
zero the time spent by the crack in crossing all the 0.25 mm
interhole regions and assume the crack dynamics is the
same in the 0.5 and 0.75 mm interhole regions, the crack
in the bimodal pattern should be 25% faster than the one in
the unimodal pattern [3209 s� ð1� 0:25Þ ¼ 2407 s]. This
simple analysis provides a very reasonable estimate of the
experimental rupture time measured in the bimodal con-
figuration. This reasoning is corroborated by the fact that no
crack tips can be detected in the images in the 0.25 mm
interhole regions, which confirms a fracture velocity that is
much larger in these regions.
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FIG. 3 (color online). (a) Ensemble averages of the time vs
crack length from Fig. 2. The shadowed areas correspond to the
standard deviation of the data. They are limited by a thin solid
line. (b) Force vs elongation for 18 samples (nine unimodals and
nine bimodals) submitted to a loading rate of 45 �m=s.
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FIG. 4 (color online). Probability distribution function (PDF)
of jump sizes for the two configurations. A characteristic jump
size appears in the bimodal case and is better observed in the
inset, which shows the PDF in lin-lin scale. The error bars are
estimated as N�1=2 times the value of the PDF, where N is the
number of samples.
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The previous discussion indicates that, in the bimodal
configuration, the crack dynamics between holes that are at
a close distance to each other (0.25 mm) is significantly
faster than between holes that are further apart (0.75 mm),
which could have an impact on the roughness of the crack
path [20]. We have analyzed the roughness of the path
followed by the crack in both sample configurations. For a
crack path defined by the function yðxÞ, where y is the
crack deviation from a straight growth direction along Ox,

we used the structure function Cð�Þ ¼ h½yðxþ �Þ �
yðxÞ�2i1=2x (Fig. 5). In order to capture the crack roughness
at the interhole scale, the analysis focused on a range
standing from 80 �m (three pixels) to 800 �m. In this
range, the exponent in the unimodal configuration is m ¼
0:48� 0:01, and, in the bimodal one, the exponent is m ¼
0:51� 0:01. These exponents are much smaller than the
one measured in the same paper samples without holes in
the subcritical rupture regime ( � 0:65 [20]). As a crack
deviating from a straight path by random walk steps would
have a roughness exponent of 1=2, the exponent measured
here at the interhole distance scale suggests that the crack
is randomly exploring the pattern of holes, as if attracted by
them. Furthermore, although the roughness exponents are
almost the same in both configurations, the slight increase
observed for the bimodal configuration suggests that the
crack is a little more often attracted by holes in the forward
direction than for the unimodal case, which is again com-
patible with the assumption made above that holes sepa-
rated by a distance of 0.25 mm are very easily connected by
the growing crack.

Conclusion.—In this Letter, we have reported experi-
ments on the subcritical propagation of a crack in paper
sheets in which an artificial disorder was created by adding
patterns of holes along the crack path. Two types of
samples with different spatial distributions of holes, but
the same hole density, were used. Rupture dynamics turns

out to be slower in the case of a unimodal pattern of holes
than in the case of the bimodal one. This effect is specific to
subcritical crack dynamics since the critical rupture thresh-
olds of unimodal and bimodal samples are the same. It is,
however, contrary to recent theoretical models, predicting
a slower rupture dynamics for a single crack as disorder
increases due to the leading role played by strong hetero-
geneities located just ahead of the advancing crack [16,17].
The overall acceleration observed in the bimodal configu-
ration experiments can be quantified by assuming that the
rupture dynamics between holes that are close to each other
becomes suddenly faster than the dynamics between holes
that are farther apart. This dynamics between very close
holes can actually be considered almost instantaneous,
which creates a stronger tendency for the crack to move
straight ahead by connecting two close holes (0.25 mm)
and could explain the slightly higher roughness exponent
observed in the bimodal configuration. Accordingly, the
quantitative analysis suggests that the crack dynamics is
almost the same between holes separated by 0.75 and by
0.5 mm. It means that the disorder induced in the bimodal
sample does not seem to be able to produce strong regions
of higher resistance to rupture, which in turn explains why
the theoretical models fail to properly predict the crack
dynamics in our experiments. The fact that the acceleration
of the crack in the binomial case is specific to the sub-
critical behavior also carries an important practical rele-
vance: Measuring the resistance of a disordered material by
imposing a deformation ramp that leads to the failure of the
sample is arguably not the best way to test a structure built
for supporting a constant load.
We thank J.-P. Bouchaud and S. Santucci for insightful
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