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Plane inertial waves are generated using a wavemaker, made of oscillating stacked

plates, in a rotating water tank. Using particle image velocimetry, we observe that,

after a transient, the primary plane wave is subject to a subharmonic instability and

excites two secondary plane waves. The measured frequencies and wavevectors of

these secondary waves are in quantitative agreement with the predictions of the

triadic resonance mechanism. The secondary wavevectors are found systematically

more normal to the rotation axis than the primary wavevector: this feature

illustrates the basic mechanism at the origin of the energy transfers towards slow,

quasi two-dimensional, motions in rotating turbulence. VC 2012 American Institute
of Physics. [doi:10.1063/1.3675627]

I. INTRODUCTION

Rotating and stratified fluids support the existence of two classes of anisotropic dispersive

waves, called, respectively, inertial and internal waves, which play a major role in the dynamics

of astrophysical and geophysical flows.1–3 These waves share a number of similar properties, such

as a group velocity normal to the phase velocity. Remarkably, in both cases, the frequency of the

wave selects only its direction of propagation, whereas the wavelength is selected by other physi-

cal properties of the system, such as the boundary conditions or the viscosity.2,4,5

Most of the previous laboratory experiments on inertial waves in rotating fluids have focused

on inertial modes or wave attractors in closed containers,6–12 whereas less attention has been paid

to propagative inertial wave beams. Inertial modes and attractors are generated either from a dis-

turbance of significant size compared to the container6 or more classically from global forcing.7–12

Inertial modes are also detected in the ensemble average of rotating turbulence experiments in

closed containers.13,14 On the other hand, localized propagative inertial wave beams have been

investigated recently in experiments using particle image velocimetry (PIV).15,16

A monochromatic internal or inertial wave of finite amplitude may become unstable with

respect to a parametric subharmonic instability.17–20 This instability originates from a nonlinear

resonant interaction of three waves and induces an energy transfer from the primary wave towards

two secondary waves of lower frequencies. This instability has received considerable interest in

the case of internal gravity waves,20 because it is believed to provide an efficient mechanism of

dissipation in the oceans, by allowing a transfer of energy from the large to the small scales.21–23

Parametric instability is a generic mechanism expected for any forced oscillator. A pendulum

forced at twice its natural frequency provides a classical illustration of this mechanism. Here, the

“parameter” is the natural frequency of the pendulum, which is modulated in time through varia-

tions of the gravity or pendulum length. Weakly nonlinear theory shows that the energy of the
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excitation, at frequency r0, is transferred to the pendulum at its natural frequency r0=2, resulting

in an exponential growth of the oscillation amplitude.

In the case of inertial (resp. internal) waves, the “parameter” is now the so-called Coriolis fre-

quency f ¼ 2X, with X the rotation rate (resp. the Brunt-Väisälä frequency N). In the presence of

a primary wave of frequency r0, this “parameter” becomes locally modulated in time at frequency

r0, and is hence able to excite secondary waves of lower natural frequency. However, here a con-

tinuum of frequencies can be excited, so that the frequencies r1 and r2 of the secondary waves are

not necessarily half the excitation frequency, but they nevertheless have to satisfy the resonant

condition r1 þ r2 ¼ r0. Interestingly, in the absence of dissipation, the standard pendulum-like

resonance r1 ¼ r2 ¼ r0=2 is recovered both for inertial and internal waves, and the corresponding

secondary waves have vanishing wavelengths.20 Viscosity is responsible here for the lift of degen-

eracy, by selecting a maximum growth rate corresponding to finite wavelengths, with frequencies

r1 and r2 splitted on both sides of r0=2.24

The parametric subharmonic instability has been investigated in detail for internal gravity

waves.20,24 On the other hand, this instability mechanism has received less attention in the case of

pure inertial waves (i.e., in absence of stratification), probably because of the lower importance of

rotation effects compared to stratification effects in most geophysical flows. It has been observed

in numerical simulations of inertial modes in a periodically compressed rotating cylinder.10,11 To

our knowledge, parametric instability in the simpler geometry of plane inertial waves has not been

investigated so far and is the subject of this paper. A fundamental motivation for this work is the

key role played by triadic interactions of inertial waves in the problem of the generation of slow

quasi-2D flows in rotating turbulence.25–27 The parametric subharmonic instability indeed pro-

vides a simple but nontrivial mechanism for anisotropic energy transfers from modes of arbitrary

wavevectors towards lower frequency modes of wavevector closer to the plane normal to the rota-

tion axis (i.e., more “horizontal” by convention). Note that this nonlinear mechanism may how-

ever be in competition with a linear mechanism—the radiation of inertial waves along the rotation

axis—which has also been shown to support the formation of vertical columnar structures.28 The

relative importance of these two mechanisms is governed by the Rossby number, defined as

Ro ¼ ðsnlXÞ�1
, with X�1 the linear timescale and snl ¼ L=U the nonlinear timescale based on the

characteristic velocity U and length scale L. In rotating turbulence with Ro� 1, the anisotropy

growth should hence be dominated by the nonlinear triadic interactions, whereas for Ro ¼ Oð1Þ,
both mechanisms should be at play.

In this paper, we report the first experimental observation of the destabilization of a primary

plane inertial wave and the subsequent excitation of subharmonic secondary waves. To produce a

plane inertial wave of sufficient spatial extent, and hence of well-defined wavevector k0, we have

made use of a wave generator already developed for internal waves in stratified fluids.29–31 Wave

beams of tunable shape and orientation can be generated with this wavemaker. We show that, after

a transient, the excited plane wave undergoes a parametric subharmonic instability. This instabil-

ity leads to the excitation of two secondary plane waves, with wavevectors which are systemati-

cally more “horizontal” than the primary wavevector. We show that the predictions from the

resonant triadic interaction theory for inertial waves, as described by Smith and Waleffe,25 are in

excellent agreement with our experimental results. In particular, the frequencies and wavenumbers

of the secondary waves accurately match the expected theoretical values.

II. INERTIAL PLANE WAVE GENERATION

A. Structure of a plane inertial wave

We first briefly recall the main properties of inertial waves in a homogeneous fluid rotating at

a constant rate X. In the rotating frame, the restoring nature of the Coriolis force is responsible for

the propagation of the inertial waves, for frequencies r � f , where f ¼ 2X is the Coriolis parame-

ter. Fluid particles excited at frequency r describe anticyclonic circles in a plane tilted at an angle

h ¼ cos�1ðr=f Þ with respect to the horizontal, and the phase of this circular motion propagates

perpendicularly to this tilted plane.

The equations of motion for a viscous fluid in a frame rotating at a rate X ¼ f=2 around the

axis z are
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@tuþ ðu � rÞu ¼ �
1

q
rp� f ez � uþ �r2u; (1)

r � u ¼ 0; (2)

where u ¼ ðux; uy; uzÞ is the velocity field in cartesian coordinates x ¼ ðx; y; zÞ. In the following,

we restrict to the case of a flow invariant along the horizontal direction y. The fluid being incom-

pressible, the motion in the vertical plane ðx; zÞ may be described by a streamfunction wðx; zÞ,
such that u ¼ ð@zw; uy;�@xwÞ. Neglecting viscosity, the linearized equations for small velocity

disturbances are

@t@zw ¼ �
1

q
@xpþ fuy; (3)

@tuy ¼ �f@zw; (4)

� @t@xw ¼ �
1

q
@zp: (5)

These equations may be combined to obtain the equation of propagation for inertial waves

@ttð@xx þ @zzÞwþ f 2@zzw ¼ 0: (6)

Considering a plane wave solution of frequency r and wavevector k ¼ ðk; 0;mÞ

wðx; z; tÞ ¼ w0eiðk�x�rtÞ þ c:c: (7)

where c.c. means complex conjugate. We obtain the anisotropic dispersion relation for inertial

waves

r ¼ sf
m

j
¼ sf cos h; (8)

with j ¼ ðk2 þ m2Þ1=2
, s ¼ 61, and h the angle between k and the rotation axis (see Fig. 1). We

see from Eq. (8) that a given frequency r lower than f selects a propagation angle 6h, without

specifying the norm of the wavevector j. The corresponding velocity field is given by

FIG. 1. (Color online) Schematic representation of the wave generator. The excited plane inertial wave has a frequency r0,

a downward phase velocity, a negative helicity (s0 ¼ �1), and propagates at an angle h ¼ cos�1ðr0=f Þ, with f ¼ 2X the

Coriolis parameter.
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ux ¼ imw0eiðkxþmz�rtÞ þ c:c: (9)

uy ¼ sjw0eiðkxþmz�rtÞ þ c:c: (10)

uz ¼ �ikw0eiðkxþmz�rtÞ þ c:c: (11)

We recover here that the fluid particles describe anticyclonic circular motions in tilted planes per-

pendicular to k, as sketched in Fig. 1. The wave travels with a phase velocity cu ¼ rk=j2 and a

group velocity cg ¼ rkr normal to cu. The vorticity x ¼ r� u, given by

x ¼ �sju; (12)

is associated to the shearing motion between planes of constant phase. Because the velocity and

vorticity are aligned, inertial waves are also called helical waves, and the sign s in Eq. (8) identi-

fies to the sign of the wave helicity u � x, with s ¼ þ1 for a right-handed wave and s ¼ �1 for a

left-handed wave. For instance, in the classical St. Andrew’s wave pattern emitted from a linear

source,16 the two upper beams are right-handed and the two lower beams are left-handed, although

the fluid motion is always anticyclonic.

B. Generation of a plane inertial wave

In order to generate a plane inertial wave, we have made use of a wavemaker, introduced by

Gostiaux et al.,29 which was originally designed to generate internal gravity waves (see Mercier

et al.31 for a detailed characterization of the wavemaker). This wavemaker consists in a series of

oscillating stacked plates, designed to reproduce the fluid motion in the bulk of an internal gravity

wave invariant along y. The use of this internal wave generator for the generation of inertial waves

is motivated by the similarity of the spatial structure of the two types of waves in the vertical plane

ðx; zÞ. However, the fluid motion in the internal wave is a simple oscillating translation in the

direction of the group velocity, whereas fluid particles describe anticyclonic circular translation in

the case of inertial waves. As a consequence, the oscillating plates of the wavemaker only force

the longitudinal component of the circular motion of the inertial waves, whereas the lateral com-

ponent is let to freely adjust according to the spatial structure of the wave solution.

The wavemaker is made of a series of 48 parallelepipedic plates stacked around a helical cam-

shaft, with the appropriate shifts between successive cames in order to form a sinusoidal profile at

the surface of the generator. We introduce the local coordinate system ðn; y; gÞ, tilted at an angle h
about y, where n is along the wave propagation and g is parallel to the camshaft axis (see Fig. 1).

The group velocity and the phase velocity of the wave are oriented along n and g, respectively. As

the camshaft rotates at frequency r0, the plates, which are constrained in the y direction, oscillate

back and forth along n. The sign of the rotation of the helical camshaft selects the helicity of the

excited wave and hence an upward or downward phase velocity. In the present experiment, the

rotation of the camshaft is set to produce a downward phase velocity, resulting in a left-handed in-

ertial wave of negative helicity s0 ¼ �1.

The cames are 14 cm wide in the y direction, and their eccentricities are chosen to produce a

sinusoidal displacement profile, n0ðgÞ ¼ no sinðj0gÞ, of wavelength k ¼ 2p=j0 ¼ 7:6 cm and am-

plitude no ¼ 0:5 cm at the center of the beam. The wave beam has a width 30.5 cm with a smooth

decrease to 0 at the borders and contains approximately 4 wavelengths. The generator is only forc-

ing the n component of the inertial wave, and the y component is found to adjust according to the

inertial wave structure after a distance of order of 2 cm.

The wavemaker is placed in a tank of 120 cm length, 80 cm width, and 70 cm depth which is filled

with 58 cm of water. The tank is mounted on the precision rotating platform “Gyroflow” of 2 m in

diameter. The angular velocity X of the platform is set in the range 1.05–3.15 rad s�1, with relative

fluctuations DX=X less than 10�3. A cover is placed at the free surface, preventing from disturbances

due to residual surface waves. The rotation of the fluid is set long before each experiment (at least 1 h)

in order to avoid transient spin-up recirculations and to achieve a clean solid body rotation.

The propagation angle h of the inertial wave is varied by changing the rotation rate of the plat-

form, while keeping the wavemaker frequency constant, r0 ¼ 1:05 rad s�1. This allows to have a
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fixed wave amplitude r0no ¼ 0:52 cm s�1 for all angles. The Coriolis parameter has been varied

in the range f ¼ 1:004r0 to 3r0, corresponding to angles h from 5� to 70�. For each value of the

rotation rate, the axis of the wavemaker camshaft is tilted to the corresponding angle

h ¼ cos�1ðr0=f Þ, in order to keep the plate oscillation aligned with the fluid motion in the excited

wave. As a consequence, the efficiency of the forcing should not depend significantly on the angle

h. For each experiment, the fluid is first reset to a solid body rotation before the wavemaker is

started.

C. PIV measurements

Velocity fields are measured using a 2D PIV system32,33 mounted on the rotating platform.

The flow is seeded by 10 lm tracer particles, and illuminated by a vertical laser sheet, generated

by a 140 mJ Nd:YAG pulsed laser. A vertical 59 � 59 cm2 field of view is acquired by a 14 bits

2048 � 2048 pixels camera synchronized with the laser pulses. For each rotation rate, a set of

3200 images is recorded, at a frequency of 4 Hz, representing 24 images per wavemaker period.

This frame rate is set to achieve a typical particle displacement of 5–10 pixels between each

frame, ensuring an optimal signal-to-noise ratio for the velocity measurement. PIV computations

are performed over successive images on 32 � 32 pixels interrogation windows with 50% overlap.

The spatial resolution is 4.6 mm, which represents 17 points per wavelength of the inertial wave.

Figure 2 shows typical instantaneous horizontal velocity fields after 2 and 7 periods

T ¼ 2p=r0 from the start of generator, for an experiment performed with r0=f ¼ 0:84. A well

defined truncated plane wave propagates downward, making an angle h ¼ cos�1ðr0=f Þ ’ 34o to

the horizontal. The front of the plane wave is propagating at a velocity 8:3 6 0:6 mm s�1, which

agrees well with the expected group velocity cg ¼ f sin h=j ¼ 8:5 mm s�1. The phase velocity is

downward, normal to the group velocity, and also agrees with the expected value

cu ¼ r0=j ¼ 12:7 mm s�1.

Two sources of noise have been identified, which can be seen in the temporal energy spec-

trum of the velocity fields (Fig. 3, described in Sec. III A): an oscillatory motion at frequency

r ¼ X ¼ 0:5f , due to a residual modulation of the rotation rate of the platform, and slowly drifting

thermal convection structures at frequency r! 0, due to slight temperature inhomogeneities in

the tank. Both effects contribute to a velocity noise of order of 0.2 mm s�1, i.e., 25 times lower

than the wave amplitude close to the wavemaker. This noise could be safely removed using a tem-

poral Fourier filtering of the velocity fields at the forcing frequency r0. This filtering, however,

fails in the particular case where r0 ¼ X, for which the mechanical noise of the platform cannot

be filtered out of the inertial wave signal.

The wavemaker is found to successfully generate well defined plane waves for frequencies

r0 � 0:65f . For lower frequency, i.e., for steeper angle of propagation [h ¼ cos�1ðr0=f Þ > 50o],

the wave pattern shows significant departure from the expected plane wave profile, which may be

FIG. 2. (Color online) Horizontal velocity field after 2 and 7 periods from the start of the wavemaker for r0=f ¼ 0:84. The

wavemaker is on the top-right, forcing a wave propagating along cg with a phase propagating along cu.
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attributed to the interference of the incident wave with the reflected wave on the bottom of the

tank.

III. SUBHARMONIC INSTABILITY

A. Experimental observations

After a few excitation periods, the front of the inertial wave has travelled outside the region

of interest, and the inertial wave can be considered locally in a stationary regime. However, after

typically 15 wavemaker periods (the exact value depends on the ratio r0=f ), the inertial wave

becomes unstable and shows slow disturbances of scale slightly smaller than the excited

wavelength.

We have characterized this instability using Fourier analysis of the PIV time series. We com-

pute, at each location ðx; zÞ of the PIV field, the temporal Fourier transform of the two velocity

components over a temporal window Dt,

burðx; zÞ ¼
1ffiffiffiffiffiffi
2p
p

ðt0þDt

t0

uðx; z; tÞeirtdt: (13)

The temporal energy spectrum is then defined as

EðrÞ ¼ hjburj2ix;z; (14)

where h�ix;z is the spatial average over the PIV field.

If we compute EðrÞ over a temporal window Dt spanning a few excitation periods, we

observe, as t0 is increased, the emergence of two broad peaks at frequencies smaller than the exci-

tation frequency r0, suggesting the growth of a subharmonic instability. These two subharmonic

peaks can be seen in Fig. 3, for an experiment performed at rotation rate X ¼ 0:63 rad s�1 with

the wavemaker operating at r0=f ¼ 0:84. Here, the temporal window Dt is chosen equal to 92

wavemaker periods, yielding a spectral resolution of Dr ¼ 2p=Dt ’ 9� 10�3f . The two second-

ary peaks are centered on r1=f ¼ 0:25 6 0:03 and r2=f ¼ 0:59 6 0:03, and their sum matches

well with the forcing frequency r0=f ¼ 0:84, as expected for a subharmonic resonance. The sig-

nificant width of the secondary peaks, of order 0.07 f, indicates that this resonance is weakly selec-

tive. This broad-band selection will be further discussed in Sec. IV B.

The subharmonic instability of the primary wave is found for all forcing frequencies r0 rang-

ing from 0.65 f to f; the measured frequencies r1;2 are given in Table I. The absence of clear sub-

harmonic instability at lower forcing frequency may be due to an intrinsic stability of the primary

FIG. 3. (Color online) Temporal energy spectra for two experiments performed at rotation rate X ¼ 0:63 rad s�1 with (con-

tinuous line) and without (dashed line) the wavemaker operating at r0=f ¼ 0:84. The spectrum with the generator working

has been computed on the time interval between 24 and 116 periods after the start of the generator. The peak at r=f ¼ 0:5
present in the two spectra is the trace of the mechanical noise of the platform at the rotation frequency r ¼ X, whereas the

low frequencies are due to thermal convection effects (see text).
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wave for r0 < 0:65f , or to the low quality of the plane wave at steep angles because of the inter-

ference with the reflected wave beam on the bottom of the tank.

Using temporal Hilbert filtering,30,34 the spatial structure of the wave amplitude uoðxÞ and

phase uðx; tÞ ¼ k � x� rt can be extracted for each secondary wave. The procedure consists in (i)

computing the Fourier transform burðx; zÞ of the velocity field according to Eq. (13), with a tempo-

ral window Dt of at least 42 excitation periods; (ii) band-pass filtering burðx; zÞ around the fre-

quency of interest r1 or r2 with a bandwidth of dr ¼ 2:0� 10�2f but without including the

associated negative frequency; and (iii) reconstructing the complex velocity field by computing

the inverse Fourier transform (including a factor 2, which accounts for the redundant negative fre-

quency, in order to conserve energy),

uHðx; tÞ ¼ uoðxÞeiuðx;tÞ: (15)

The physical velocity field is given by Re uHð Þ. The wave amplitude uo and phase field u are

finally obtained from the Hilbert-filtered field uH.

In Figs. 4(c) and 4(d), for the experiment at r0=f ¼ 0:84, we show the maps of the phase of

the secondary waves, extracted from Hilbert filtering at frequencies r1 and r2, respectively. It is

worth to note, as can be verified from Fig. 3, that the corresponding typical velocity amplitude is

at least ten times smaller than for the primary wave [see Fig. 4(a)]. The spatial structures of the

phase of these secondary waves are not as clearly defined as for the primary wave [Fig. 4(b)]. In

particular, dislocations can be distinguished in the phase field. The finite extent of the primary

wave and its spatial decay due to viscous attenuation are probably responsible for this departure of

the secondary waves from pure plane waves. It is also important to note that the monochromaticity

of the first subharmonic wave [Fig. 4(c)] is affected by interferences with its reflection on the

wavemaker which is due to the fact that this secondary wave is propagating toward the wave-

maker. However, to a reasonable degree of accuracy, the two secondary waves can be considered

locally as plane waves, characterized by local wavevectors k1 and k2.

B. Helical modes

The approximate plane wave structure of the two secondary waves suggests to analyze the

instability in terms of a triadic resonance between the primary wave, of wavevector k0, and the two

secondary waves, of wavevectors k1 and k2. This resonance may be conveniently analyzed in the

framework of the helical decomposition, introduced by Waleffe,35,36 which we briefly recall here.

Helical modes have been introduced as a general spectral decomposition basis, which is use-

ful to analyze the energy transfers via triadic interactions. Although this decomposition also

applies for non-rotating flows, it is particularly relevant for rotating flows, because inertial plane

waves have exactly the structure of helical modes.36 Any velocity field can actually be decom-

posed as a superposition of helical modes of amplitudes Ask
ðk; tÞ

uðx; tÞ ¼
X

k

X
sk¼61

Ask
ðk; tÞhsk

ðkÞeiðk�x�rk
sk

tÞ; (16)

TABLE I. Frequencies of the secondary waves r1=f and r2=f , determined from the peaks in the temporal energy spectra,

as a function of the frequency of the primary wave r0=f . The uncertainty for r1=f and r2=f is 60:03.

r0=f ðr1 þ r2Þ=f r1=f r2=f

0.64 0.64 0.19 0.45

0.71 0.71 0.21 0.50

0.84 0.84 0.25 0.59

0.91 0.94 0.27 0.67

0.95 0.97 0.29 0.68

0.98 0.98 0.32 0.66

0.99 1.00 0.34 0.66
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where rk
sk

is the frequency associated to a plane wave of wavevector k and helicity sign sk. The

helical mode hsk
ðkÞ is normal to k (by incompressibility) and given by

hsk
ðkÞ ¼ k

jkj �
k� ez

jk� ezj
þ isk

k� ez

jk� ezj
; (17)

where sk ¼ 61 is the sign of the mode helicity.37 Injecting the decomposition (16) into the

Navier-Stokes equation (1) yields

@

@t
þ �j2

� �
Ak ¼

1

2

X
C

skspsq

kpq A	pA	qeiðrkþrpþrqÞt; (18)

with stars denoting complex conjugate, and Ak, rk being short-hands for Ask
ðk; tÞ, rk

sk
. In Eq. (18),

the sum is to be understood over all wavevectors p and q such that kþ pþ q ¼ 0 and all corre-

sponding helicity signs sp and sq. In the following, the equation kþ pþ q ¼ 0 will be referred to

as the spatial resonance condition for a triad of helical modes. The interaction coefficient is given

by

C
skspsq

kpq ¼ 1

2
sqjq � spjp

� �
h	sp
ðpÞ � h	sq

ðqÞ
� �

� h	sk
ðkÞ: (19)

C. Resonant triads

The helical mode decomposition (16) applies for any velocity field, containing an arbitrary

spectrum of wavevectors. We restrict in the following the analysis to a set of three interacting iner-

tial waves of wavevectors (k, p, q). Equation (18) shows that the amplitude of the mode of wave-

vector k is related to the two other modes p and q according to

FIG. 4. (Color online) Hilbert filtered vertical velocity (a) and phase (b) of the primary wave at r0=f ¼ 0:84, and phase of

the Hilbert filtered first [(c), r1=f ¼ 0:25] and second [(d), r2=f ¼ 0:59] subharmonic waves. The phase is displayed only

where the wave amplitude is larger than 1:3� 10�1r0n0 for (b) and 7:7� 10�3r0n0 for (c) and (d). In (a), the square in

dashed lines indicates the region where the primary wave amplitude A0 has been measured.
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@

@t
þ �j2

� �
Ak ¼ CkA	pA	qeiðrkþrpþrqÞt; (20)

where Ck is short-hand for C
skspsq

kpq ¼ C
sksqsp

kqp . Cyclic permutation of k, p, and q in Eq. (20) gives

the two other relevant interaction equations between the three waves. We further restrict the analy-

sis to plane inertial waves invariant along y (i.e., k � ey ¼ 0). The three considered helical modes

(17) therefore reduce to

hsr
ðrÞ ¼ mrex � krez

jr

� isrey; (21)

where r stands for k, p, or q. From Eq. (21), the interaction coefficients (19) can be explicitly computed

Ck ¼
i

2jkjpjq

mpkq � mqkp

� �
½j2

q � j2
p þ sqskjqjk � spskjpjk
 (22)

and similarly for the two cyclic permutations.

Since in Eq. (20) and in its two cyclic permutations, the ArðtÞ coefficients have to be understood

as complex velocity amplitudes evolving slowly compared to wave periods 2p=rr; temporal reso-

nance is needed in addition to spatial resonance for the left-hand coefficients Ar to be nonzero. Using

0, 1, 2 for reindexing the three waves k, p, and q, this leads to the triadic resonance conditions

k0 þ k1 þ k2 ¼ 0; (23)

r0 þ r1 þ r2 ¼ 0: (24)

We consider in the following that only the primary wave A0, of given frequency r0, wavevector

k0¼ðk0;m0Þ and helicity sign s0, is present initially in the system (i.e., A1;2ð0Þ ¼ 0). The two sec-

ondary waves (s1, r1, k1) and (s2, r2, k2) which could form a resonant triad with the primary wave

may be determined using the resonance conditions (23) and (24). From the dispersion relation for

inertial waves (8), the resonance conditions lead to

s0

m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 þ m2
0

p þ s1

m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ m2
1

p � s2

m0 þ m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 þ k1Þ2 þ ðm0 þ m1Þ2

q ¼ 0: (25)

For a given primary wave ðs0; k0;m0Þ, the solution of this equation for each sign combination

ðs0; s1; s2Þ is a curve in the ðk1;m1Þ plane (see Fig. 5). Without loss of generality, once we have

taken s0 ¼ �1 (which corresponds to the experimental configuration), it is necessary to consider

four sign combinations: ð�;�;�Þ, ð�;þ;�Þ, ð�;�;þÞ, and ð�;þ;þÞ. Notice that the three first

combinations always admit solutions, whereas the fourth one, ð�;þ;þÞ, admits a solution only if

jm0j � j0=2, i.e., h > 60o. The exchange of k1 and k2 keeps the ð�;�;�Þ and ð�;þ;þÞ resonan-

ces unchanged, but exchanges the ð�;�;þÞ and ð�;þ;�Þ resonances. Eventually, three inde-

pendent sign combinations remain: ð�;�;�Þ, ð�;�;6Þ, and ð�;þ;þÞ.

D. Experimental verification of the resonance condition

The predictions of the triadic resonance theory are compared here with the measured wave-

vectors of the secondary waves. Figure 5 shows the theoretical resonance curves for two forcing

frequencies, r0=f ¼ 0:84 and 0.99. For both curves, helicity sign and wavenumber of the primary

wave are chosen according to the experimental values, s0 ¼ �1 and j0 ¼ 0:82 rad cm�1.

For both frequencies r0 considered here, only the three first sign combinations admit solu-

tions. The ð�;�;�Þ combination gives a closed loop, whereas the two others, ð�;�;6Þ, give in-

finite branches, tending asymptotically to constant angles. The limit of large secondary

wavevectors is such that jr1j ¼ jr2j ¼ jr0j=2: when a wave k0 excites two waves of wavelength

k� 2p=j0, both secondary waves have frequency r0=2, with opposite wavevectors, leading to a

stationary wave pattern. However, such large wavenumbers are prevented by viscosity, as will be

shown in Sec. IV A.
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Figure 5 also shows the measured secondary wavevectors k1 and k2. These wavevectors are

obtained from the phase fields u1;2 extracted by Hilbert filtering, using

k1;2 ¼ ru1;2: (26)

These measurements are then averaged over regions of about (130 mm)2 where the secondary

waves can be considered as reasonably spatially monochromatic. It must be noted that a same

plane wave can be equivalently described by (s, r > 0, k) and (s, �r < 0, �k). Since we always

consider primary waves with positive frequency r0 > 0, according to Eq. (24), the subharmonic

frequencies r1;2 have to be taken negative. As a consequence, the Hilbert filtering should be per-

formed for the negative peaks in the temporal Fourier transform, in order to produce phase fields

with the appropriate sign. Practically, the Hilbert filtering has been performed around the positive

peaks �r1;2, and the signs of the measured wavevectors have been changed accordingly.

The secondary wavevectors k1 ¼ ðk1;m1Þ and k2 ¼ ðk2;m2Þ measured experimentally, shown

in Fig. 5, are in good agreement with the triadic condition (23), forming a triangle such that

k0 þ k1 þ k2 ¼ 0. Moreover, the apex of the triangle, at k0 þ k1, falls onto one of the three reso-

nant curves. The selected resonant curve corresponds to the sign combination ð�;þ;�Þ, in agree-

ment with the observed experimental helicities. We actually verify that s1 ¼ r1j1=fm1 is positive

(r1 < 0 and m1 < 0) and that s2 ¼ r2j2=fm2 is negative (r2 < 0 and m2 > 0), confirming the

ð�;þ;�Þ nature of the experimental resonance.

Interestingly, the shape of the triangle k0 þ k1 þ k2 ¼ 0 in Fig. 5 indicates that the group ve-

locity of the secondary wave k1 is oriented towards the wavemaker. Indeed, we recall that, for a

given wavevector k, the group velocity cg is normal to k, and the vertical projections of cg and k

are oriented in the same direction if r > 0 and in opposite directions if r < 0. Accordingly, Fig. 5

shows that cg0 and cg2 are oriented downward, pointing from the wavemaker towards the bottom

of the tank, whereas cg1 is oriented upward, pointing towards the wavemaker. As a consequence,

the secondary wave k1 is fed by the primary wave but releases its energy back to the wavemaker.

For all the primary wave angles for which the instability is observed, the secondary waves are

systematically such that jr1j and jr2j are lower than jr0j. The dispersion relation hence yields sec-

ondary wavevectors k1;2 more horizontal than k0, as illustrated in Fig. 5. This property, which

actually follows from the conservation of energy and helicity,25 illustrates the natural tendency of

rotating flows to transfer energy towards slow quasi-two-dimensional modes. If the process is

repeated, as in rotating turbulence, the energy becomes eventually concentrated on nearly

FIG. 5. (Color online) Resonance curves for the primary waves (a) [s0 ¼ �1;r0 ¼ 0:84f , j0 ¼ 0:82 rad cm�1] and (b)

[s0 ¼ �1; r0 ¼ 0:99f , j0 ¼ 0:82 rad cm�1]. The curves represent the location of k0 þ k1 ¼ ðk0 þ k1;m0 þ m1Þ satisfying

Eq. (25) for the 3 possible combinations of signs. The wavevectors measured experimentally are shown using arrows. The

circle is the theoretical prediction for the location of k0 þ k1 obtained from the maximum growth rate criterion, determined

using the experimental primary wave amplitude [A0 ¼ 0:29 6 0:07 cm s�1 for (a) and A0 ¼ 0:34 6 0:11 cm s�1 for (b)].

The diameter of the circle measures the uncertainty of the prediction due to the uncertainty on the wave amplitude A0.
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horizontal wavevectors, corresponding to a quasi-2D flow, with weak dependence along the rota-

tion axis.26,27

IV. SELECTION OF THE MOST UNSTABLE RESONANT TRIAD

A. Maximum growth rate criterion

In order to univocally predict the resonant secondary waves, a supplementary condition must

be added to Eq. (25): we assume that the selected resonant triad is the one with the largest growth

rate. Going back to the wave interaction equations (20) associated to the temporal resonance con-

dition (24), the amplitudes of the secondary waves are governed by

dA1

dt
¼ C1A	0A	2 � �j2

1A1; (27)

dA2

dt
¼ C2A	0A	1 � �j2

2A2; (28)

with C1;2 given by Eq. (22) taking k ¼ k1;2 (see also Appendix A in Ref. 25). Solving this system

with initial conditions A1;2ð0Þ ¼ 0, and assuming that A0 remains almost constant at short time,

lead to the solutions

A1;2ðtÞ ¼ B1;2ðecþt � ec�tÞ; (29)

where the growth rates c6 write

c6 ¼ �
�

2
ðj2

1 þ j2
2Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

4
ðj2

1 � j2
2Þ

2 þ C1C2jA0j2
r

: (30)

In the following, we consider the primary wave amplitude as real without loss of generality, so

jA0j ¼ A0.

The coefficient c� is always negative, so the stability of the system is governed by the sign of

cþ, which we simply note c in the following. Interestingly, this growth rate c depends on the ampli-

tude A0 of the primary wave. As a consequence, the primary wave is unstable with respect to a given

set of secondary waves, selected by the resonance condition and unequivocally denoted by j1, only

if A0 exceeds the threshold Acðj1Þ ¼ �j1j2=
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p
in which case cðj1Þ > 0. In other words, for a

given couple of secondary waves (denoted by j1) to be possibly growing, the Reynolds number

based on the primary wave, Re0 ¼ A0=ðj0�Þ, must exceed a critical value Recðj1Þ ¼ Acðj1Þ=ðj0�Þ
for the onset of the parametric instability. This critical Reynolds number is actually an increasing

function of j1 and tends to zero as j1 ! 0, showing that whatever the value of Re0, there is always

a continuum of resonant triads with Re0 > Recðj1Þ, i.e., with a positive growth rate. The main con-

sequence is that, whatever the value of Re0, the most unstable triad always has a positive (maxi-

mum) growth rate, and the parametric instability does not have any Re0 threshold to proceed.

If viscosity can be neglected, Eq. (30) reduces to c ¼
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p
A0. In the limit of large secondary

wavenumbers j1;2 � j0, one has k1 ’ �k2, and the growth rate c is found to tend asymptotically

toward a maximum value,24 i.e., the selected secondary waves have frequency exactly half the forc-

ing frequency. Taking viscosity into account reduces the growth rate of the large wavenumbers, and

hence selects finite wavenumbers. Equation (30) indicates that larger wavenumbers are selected for

larger primary wave amplitudes A0 and/or lower viscosity, i.e., for larger Reynolds number Re0.

B. Selection of the most unstable wavenumbers

In Fig. 6, the predicted growth rates c are plotted for the three possible sign combinations, for

the primary wave defined by s0 ¼ �1; r0 ¼ 0:84f , j0 ¼ 0:82 rad cm�1. These growth rates have

been computed using the primary wave amplitude averaged over the area where the secondary

wavevectors have been measured (see the square in Fig. 4(a)), A0 ¼ 0:29 cm s�1. For the 3 types

of resonance, the growth rates tend to zero when k1 ! �k0=2 and k1 !1 (because of viscosity).

If the secondary waves k1 and k2 are exchanged, which amounts to exchange the ð�;�;þÞ and
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ð�;þ;�Þ resonances, the same growth rates are obtained: the curves for ð�;�;þÞ and ð�;þ;�Þ
are symmetrical with respect to k0=2.

Interestingly, the growth rate is positive for a broad range of wavenumbers. Together with the

broad subharmonic peaks observed in the temporal spectrum of Fig. 3, this confirms that the para-

metric resonance is weakly selective in this system. Values of k1 corresponding to significant

growth rates are of the same order of magnitude as the primary wavenumber j0 ¼ 0:82 rad cm�1,

indicating that the viscosity has a significant effect on the selection of the excited resonant triad.

For the value of r0=f considered in Fig. 6, the maximum growth rate is obtained for the ð�;þ;�Þ
resonance, for kmax

1 ¼ 0:75 rad cm�1. The corresponding predicted wavevector k1 is represented

as a circle in the resonance curve of Fig. 5(a), and is found in excellent agreement with the experi-

mental measurement of k1 (shown with an arrow).

Because of the viscous attenuation, the primary wave amplitude A0 actually depends on the

distance from the wavemaker. In the measurement area shown in Fig. 4(a), spatial variations of

625% are found around the average A0 ¼ 0:29 cm s�1. Since the growth rate (30) depends on A0,

this introduces an uncertainty on the predicted value of c and consequently on the selected second-

ary wavenumbers. In order to appreciate the influence of the measured value of A0 on the pre-

dicted triadic resonance, we also plot in Fig. 6 the growth rate of the selected ð�;þ;�Þ
resonance, but for a value of A0 increased by an amount of 25% (continuous line), which corre-

sponds to the wave amplitude in the close vicinity of the wavemaker. The maximum growth rate

is actually found to strongly depend on A0, with an increase of 30%, indicating that the onset of

the parametric instability will take place first close to the wavemaker. This strong sensitivity

would make any direct comparison with an experimental growth rate too difficult. On the other

hand, the selected wavenumber kmax
1 is quite robust, showing a slight increase of 6% only when A0

is increased by 25%. As a consequence, the uncertainty in the measurement of A0, which is

unavoidable because of the viscous attenuation of the primary wave, does not affect significantly

the prediction for the most unstable secondary wavevectors.

The size of the circles in Figs. 5(a) and 5(b) illustrates the uncertainty in the determination of

the most unstable wavevectors due to the spatial variation of A0. The relative uncertainty lies in

the range 5%–15% for the range of wave frequencies considered here. In spite of this uncertainty,

we can conclude that the secondary wavevectors predictions from the maximum growth rate crite-

rion are in good agreement with the observed resonant triads.

C. Dependence of the secondary waves properties on the primary wave frequency

We finally characterize here the evolution of the secondary wave properties (frequencies and

wavenumbers) as the frequency of the primary wave is changed. For a given primary wave

FIG. 6. (Color online) Growth rates c as a function of k1, computed from Eq. (30), for the three possible resonances for a

primary wave ðs0 ¼ �1; r0 ¼ 0:84f , j0 ¼ 0:82 rad cm�1). The growth rates have been computed using the average value

A0 ¼ 0:29 cm s�1 for the primary wave amplitude. For resonance ð�;þ;�Þ, an additional curve (continuous line) has been

computed using a wave amplitude 25% larger.
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amplitude A0, the secondary frequencies r1;2 and wavenumbers j1;2 have been systematically

computed according to the maximum growth rate criterion and are reported in Fig. 7 as a function

of r0=f 2 ½0; 1
. The dotted lines correspond to the ð�;�;�Þ and ð�;þ;�Þ resonances, whereas

the dashed thick lines are computed from the absolute maximum growth rate among all the possi-

ble resonances. For r0=f > 0:79, the growth rate is maximum on the ð�;6;�Þ branch, whereas

for r0=f < 0:79, it is maximum on the ð�;�;�Þ branch.

In Fig. 7, we also show the experimental measurements of r1;2 and j1;2 for the range of pri-

mary wave frequencies for which a subharmonic instability is observed, 0:65 < r0=f < 0:99. The

errorbars show the uncertainties computed from the measured frequencies and wavenumbers. The

agreement with the predictions from the triadic resonance theory is excellent for the ð�;þ;�Þ
branch. However, it is not clear why all the measurements actually follow the ð�;þ;�Þ branch,

although the ð�;�;�Þ branch is expected to be more unstable for the two data points at

r0=f < 0:79.

The limited spatial extent of the primary wave along its transverse direction (which represents

4 wavelengths only) and its amplitude decay along its propagation direction (because of viscous

attenuation) may be responsible for this unexpected stability of the ð�;�;�Þ branch at low r0=f .

Indeed, the ð�;�;�Þ branch is associated to wavelengths significantly larger than the primary

wavelength, so that a large spatial region of nearly homogeneous primary wave amplitude is

required to sustain such large wavelength secondary waves. On the other hand, the ð�;þ;�Þ reso-

nance generates lower wavelengths, which can more easily fit into the limited extent of the pri-

mary wave. Finite size effects may, therefore, explain both the preferred ð�;þ;�Þ resonance at

r0=f < 0:79 and the unexpected global stability of the primary wave for r0=f < 0:65. Confine-

ment effects are not described by the present triadic resonance theory, which assumes plane waves

of infinite spatial extent. Apart from this open issue, we can conclude that, at least for sufficiently

large forcing frequency, the observed secondary frequencies and wavenumbers are in good quanti-

tative agreement with the predictions from the triadic resonance theory.

V. DISCUSSION AND CONCLUSION

Using a wavemaker initially designed to generate beams of internal gravity waves in stratified

fluids, we have successfully generated well-defined plane inertial waves in a rotating water tank.

Spectral analysis, performed on particle image velocimetry measurements of this plane inertial

wave, has revealed the onset of a parametric instability, leading to the emergence of two second-

ary subharmonic waves. The wavevectors and frequencies of the primary and secondary waves

are found in good agreement with the spatial and temporal resonance conditions for a resonant

FIG. 7. (Color online) Normalized frequencies r1;2=r0 (a), and wavenumbers j1;2=j0 (b) of the secondary waves, as a

function of the primary wave frequency r0=f . Filled circles and squares with errorbars correspond to experimental meas-

urements. Predictions from the triadic resonance instability are represented with dashed thick lines (using absolute maxi-

mum growth rate criterion) and dotted lines (using maximum growth rate criterion for the (�;�;�) and (�;þ;�)

resonances). Predictions for the most unstable resonance are (�;�;�) for r0=f < 0:79 and (�;þ;�) for r0=f > 0:79.

These predictions have been computed with a typical amplitude A0 ¼ 0:30 cm s�1 for the primary wave. Continuous solid

lines show the allowed range around the (�;þ;�) curves, determined by considering an uncertainty of 650% on A0.
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triad of inertial waves. Moreover, using the triadic resonance theory for inertial waves derived by

Smith and Waleffe,25 the growth rate of the instability has been computed, yielding predictions

for the secondary wavevectors and frequencies in agreement with the measurements. At low forc-

ing frequency, we observe a departure from these predictions which may be associated to the finite

size of the primary wave. These finite size effects cannot actually be described within the triadic

resonant theory, which relies on plane waves of infinite extent.

Triadic resonant instability for inertial and internal waves shares a number of common proper-

ties. In particular, equations governing the wave amplitudes equivalent to Eqs. (27) and (28) may

also be derived for a triad of internal waves, but in this case, they concern the amplitude of stream-

functions and not of velocities.24 The interaction coefficients for internal waves ~Cr (with r ¼ 0; 1; 2)

can be readily obtained from the interaction coefficients for inertial waves Cr through a simple

exchange of the vertical and horizontal components of the wavevectors, and introducing a prefactor

~Crðk;mÞ ¼
jpjq

jr
Crðm; kÞ: (31)

The jpjq=jr prefactor between the two types of coefficients comes from the fact the wave ampli-

tude is directly given by the velocity u in the case of inertial waves, whereas it is given by the

streamfunction ~w 
 u=j in the case of internal waves. The exchange of the vertical and horizontal

components of the wavevectors comes from the comparison between the dispersion relations for

inertial and internal waves, r=f ¼ sm=j and r=N ¼ sk=j, respectively, with f ¼ 2X the Coriolis

parameter and N the Brunt–Väisälä frequency. The inviscid growth rate of the parametric instabil-

ity ~c for the internal waves is actually equal to the one of inertial waves c through

~c ¼
ffiffiffiffiffiffiffiffiffiffiffi
~C1

~C2

q
~A0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p
j0

~A0 ¼ c; (32)

where ~A0 is the primary internal wave amplitude (homogeneous to a streamfunction). Here, the in-

ertial wave amplitude A0 (homogeneous to a velocity) identifies with j0
~A0. This equality between

inertial and internal growth rates finally shows that the predicted secondary waves should be iden-

tical for the two types of waves.

Interacting inertial waves are of primary importance for the dynamics of rotating turbulence.

In the limit of low Rossby numbers Ro ¼ U=XL, where U and L are the characteristic velocity

and length scales, rotating turbulence can be described as a superposition of weakly interacting in-

ertial waves, whose interactions are directly governed by triadic resonances. This is precisely the

framework of wave turbulence as analyzed in Refs. 38 and 39 in the context of rotating turbulence.

The parametric instability between three inertial waves can be seen as an elementary process by

which energy is transferred between wavevectors in rotating turbulence. This anisotropic energy

transfer takes place both in scales (or wavenumbers) and directions (or angles). The angular
energy transfer is always directed towards more horizontal wavevectors, providing a clear mecha-

nism by which slow quasi-2D motions become excited.25 However, the nature of energy transfers

through triadic resonance in terms of wavenumbers (or scales) —i.e., whether the energy proceeds

from large to small scales or inversely—is found to depend on wave amplitude and viscosity.

Indeed, it can be shown theoretically, within the present triadic resonance framework, that waves

of amplitude large compared to �j0 are unstable with respect to secondary waves of large wave-

numbers, producing a direct energy cascade towards small scales. On the other hand, waves of am-

plitude much lower than �j0 are found to excite secondary waves of smaller wavenumber, hence

producing an inverse energy cascade towards larger scales. The net result of this competition is

delicate to decide and may contain an answer to the debated issue concerning the direction of the

energy cascade in rapidly rotating turbulence.
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