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Vortex rings generated by a translating disk from start to stop
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In this article, we investigate experimentally and numerically the time evolution of
vortex rings generated by the translation of a rigid disk in a fluid initially at rest and
submitted to an acceleration followed by a deceleration. The diameter of the disk and
its motion in terms of stroke length and travel time are varied as control parameters. The
startup vortex ring created in the near wake of the disk is characterized experimentally
by PIV, and the measurements agree quantitatively with axisymmetric numerical simu-
lations performed with the Basilisk flow solver. The maximum radius and circulation of
the annular vortex and its dynamics are shown to follow different power laws with the
control parameters. The modeling adapted from Wedemeyer’s two-dimensional theoretical
calculations [E. Wedemeyer, Ausbildung eines Wirbelpaares an den Kanten einer Platte,
Ingenieur-Archiv 30, 187 (1961)] captures the observed scaling laws. Besides, after the
disk stops, a secondary “stopping” vortex ring is generated, which is shown to affect the
motion of the main vortex ring.

DOI: 10.1103/PhysRevFluids.8.064702

I. INTRODUCTION

The motion of a solid object in a fluid leads to the formation of vortices [1,2], a phenomenon
linked to the exchange of momentum between the solid and the fluid. This phenomenon can be
observed in steady configurations such as aircraft in cruise flight or rotating wind turbines where,
as a reaction to loading, vortices emanating from the wing or blade tips and trailing edges are
continuously created in their wakes. Yet, biological systems such as animals use unsteady motions
of solid parts to propel and lift themselves, to maneuver, and to hide [3]. This includes wing
flapping, fish swimming, fin waving, etc. The unsteadiness gives rise to a more complex vortex
wake system with an array of interconnected rings, loops, and straight parts [4]. In the present
paper, we investigate the vortex ring generated in the wake of a thin disk during a single stroke,
from start to stop. The focus of this study is not set on the forces acting on the solid disk but rather
on the physical properties of the vortex ring generated: size of the core radius, circulation, and
trajectory. The objective is to relate the parameters of the system (disk radius, stroke length, travel
time) to the characteristics of the vortices, to be able to assess their impact on the environment.
Applications cover biological systems such as the locomotion of animal groups, and the camouflage
of flatfish [5], but also industrial systems using bioinspired propulsion, naval architecture, and
offshore engineering [6–10]. More generally, the understanding of vortex formation is important
for the design of new technologies such as wind turbines and energy harvesting systems [11,12].
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The startup vortex generated when a flat plate is accelerated from rest is a classical problem in
fluid dynamics, first initiated by Prandtl in 1924 [13]. It has been established that the sharp edge sets
the boundary layer separation point [13]. As the object translates, vorticity is continuously generated
under the form of a thin layer advected to the near wake region, where it rolls up to form a vortex.
Pullin showed that the spiral sheet leads to a quasicircular vortex in the flat-plate case, elliptical
distortions appearing for sheets past a wedge [14]. Over the years, much attention has been given to
the roll-up of a two-dimensional vortex sheet in an ideal (inviscid) fluid [14–18]. Wagner proposed
a linear theory to account for the two-dimensional starting flow of an ideal fluid in the near wake
of a flat plate [15]. However, the linear theory is not able to accurately describe the starting vortex
over a short period of time. Kaden argued that the transfer of vorticity from the shear layer is
responsible for the vortex expansion and demonstrated that the size of the vortex sheet grows in time
as t2/3 [16]. Anton [17] and Wedemeyer [18] proposed to use self-similar solutions as a basis for
computing the vorticity shedding in the wake of a moving semi-infinite plate starting impulsively
and translating at a uniform velocity. Wedemeyer’s results provided more details, including the
growth rate, the shape, and the total circulation of the vortex sheets, which were calculated
graphically through step-by-step integration. Although the viscosity of the fluid is responsible for
the formation of shear layers and diffusion of vorticity leading to the smoothing of the vortex core,
the previous studies mentioned here have disregarded its significance, which appears to be justified
for high Reynolds number flows where inertial effects predominate.

Following the theoretical approach of the two-dimensional startup vortex generation, some
studies started to focus on the generation of a vortex ring in an axisymmetric configuration. There
are mainly two methods to generate vortex rings: by pushing a fluid column out of a circular orifice
with a piston or by translating a circular disk in a fluid. The first mechanism has been widely
analyzed [6,19–21]. The scaling laws obtained in the previous studies and subsequent refinements
[22], that predict the size, shape, and dynamics of the vortices that form in the wake of a moving
plate, have been used in previous research [23–25]. The second mechanism, on the contrary, has
received less attention up to now. Taylor was the first to address theoretically the characteristics of
a starting vortex ring produced by a disk in translation [26]. By considering that the disk moves
in an inviscid fluid without flow separation and suddenly disappears [27], Taylor showed that the
characteristics of the vortex ring, using Lamb’s model, are completely determined by the radius R
and the velocity U of the disk. He demonstrated that the circulation of the vortex ring is 4UR/π , that
the self-induced velocity of the vortex ring is 0.436U , and that the vortex ring radius Rring and the
vortex core radius a are given by Rring = 0.816R and a = 0.152R, respectively. However, comparing
this prediction with experimental data is, a delicate issue since Taylor’s derivation can only be used
at the very beginning of the vortex formation [28].

Numerical simulations conducted by Shenoy and Kleinstreuer [29] showed that the Reynolds
number can cause the flow of a vortex ring produced by a translating disk to switch from an
axisymmetric to a three-dimensional periodic state. More recently, Yang et al. [30] investigated
the dynamics of vortex ring formation behind a circular disk. They identified three stages for this
process. Initially, there is a rapid growth of the vortex circulation up to tU/2R < 0.2, where Taylor’s
inviscid estimation is accurate. This is followed by a phase of stable growth where the rate of growth
of the circulation decreases gradually. After tU/2R > 4, the vortex ring loses its axisymmetry due to
instabilities. However, the effects of the radius, velocity, and stroke length of an impulsively started
circular disk on the characteristics of the resulting vortex ring are still elusive.

The present paper focuses on the generation of a vortex ring in the near wake of a disk in
translation, with a monotonic sinusoidal motion from start to stop. The experimental setup and the
numerical methods for investigating this configuration are presented in Sec. II. The experimental
and numerical results concerning the main features of the vortex rings (circulation, radius, position)
as a function of the control parameters (diameter, stroke length, and travel time of the disk) are
then detailed in Sec. III. These results are then discussed and rationalized in Sec. IV where we
provide scaling laws based on the theoretical frame of Wedemeyer [18] adapted to the present
axisymmetric disk configuration and where we discuss the behavior of the vortex ring after the disk
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FIG. 1. (a) Sketch of the experimental setup. (b) Time evolution of the velocity of the disk for L = 5.2 cm
and τ = 0.71 s (D = 10 cm). (◦) Experimental velocity and (—) expected velocity given by Eq. (1). (c) Defi-
nition of the main properties of the vortex ring in the near wake of the translating disk.

stops. A conclusion for these experimental, numerical, and modeling approaches is finally provided
in Sec. V.

II. METHODS

A. Experimental setup

A schematic of the experimental setup is shown in Fig. 1(a). Experiments are performed in a
tank of square cross-section 40 cm × 40 cm and of height 60 cm. The tank is filled with water at
ambient temperature over a height of 40 cm. A rigid disk of diameter D and parallel to the bottom
of the tank is set into vertical translation along the z direction. The disk is placed at the center of the
tank at a distance from the walls as large as possible to be in a quasiunbounded flow. We ensured
that slightly changing the initial position of the disk does not modify the results presented in the
following. The diameter D of the disk is varied between 5 and 15 cm, and its thickness � = 2 mm is
kept constant so that � � D. The vertical translation of the disk is performed by an AC servo motor
(ECMA-C20807RS) and an eccentric system that are not represented in Fig. 1(a). The eccentric
system converts the rotational motion of the motor into a translation of the disk. The stroke length
L can be adjusted between 2 cm and 6 cm by changing the eccentric settings, meaning that it is at
least ten times larger than the disk thickness �. Indeed, the stroke length L must be large enough
compared to the disk thickness � to generate a vortex ring that can be experimentally resolved.

The motor performs half a rotation, making the disk move in one direction, upward or downward,
with a sinusoidal acceleration and deceleration. The travel time τ corresponds to the time taken by
the disk to travel the stroke length L and is varied between 0.25 s and 2.5 s. A rigid plate placed just
below the free surface avoids the presence of surface waves.

In the following, we define the nondimensional time as t∗ = t/τ . The motion of the disk starts at
t∗ = 0 and ends at t∗ = 1, and the instantaneous velocity of the disk for 0 � t∗ � 1 is given by

V (t∗) = Vm sin(πt∗), (1)

where Vm = πL/(2τ ) is the maximum velocity of the disk reached at mid-stroke. Note that the
velocity is always positive, which means that the disk goes up. All the results shown in the following
were obtained for a disk going up and are transferable for a disk going down. An example of the
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time-evolution of the velocity of the disk, for L = 5.2 cm and τ = 0.71 s (D = 10 cm) is reported
in Fig. 1(b) and shows that the experimental and the prescribed velocity of the disk agree well.
In the present flow configuration, the relevant dimensionless numbers are the Reynolds number
based on the disk diameter Re = VmD/ν, where ν = 10−6 m2/s is the kinematic viscosity of water
at room temperature, and the reduced Keulegan–Carpenter number which here corresponds to the
relative stroke length L/D. These nondimensional numbers vary in the range Re ∈ [103, 2 × 104]
and L/D ∈ [0.2, 0.83]. Note that the Keulegan-Carpenter number L/D is small compared to 4,
meaning that the vortex formation is expected to be mainly axisymmetric [30].

The flow field is characterized experimentally by Particle Image Velocimetry (PIV) measure-
ments. A Powell lens, placed right after a continuous 2W Nd-Yag laser, transforms the beam into a
vertical sheet that illuminates a plane passing through the axis of the disk. The water is seeded with
hollow glass particles Sphericel 110P8 of median diameter 10μm and of density 1.1 g/cm3 close
to the density of water. The experiments are recorded with a high-speed camera (Phantom MIRO
M110) equipped with a 85 mm lens. The frame rate of the camera is adapted for each experiment
and ranges between 40 fps to 400 fps. The computations of the velocity fields are performed with
the software DAVIS (LaVision). The size of the interrogation windows is between 16 × 16 pixels2

and 24 × 24 pixels2 with an overlap of 75%. Since the flow is recorded in a vertical plane centered
in the meridional plane of the disk, each individual realization shows some minor differences due to
slight nonaxisymmetric fluctuations in the flow. Hence, convergence is achieved by computing the
average of 20 independent realizations. The coordinate system (r, θ , z), represented in Fig. 1(a),
is centered on the disk, and z = 0 corresponds to the starting position of the disk. Therefore,
the disk lies between r = 0 and r = D/2 for any θ ∈ [0, 2π ] and its vertical position at t∗ is
zd (t∗) = L[1 − cos(πt∗)]/2 so that zd (0) = 0 and zd (1) = L. Note that the velocity field (vr, vz )
is recorded only for θ = 0 since the flow is assumed to be mainly axisymmetric.

A vortex ring forms in the wake of the translating disk, and the resulting PIV measurements are
analyzed with MATLAB custom-made routines. As sketched in Fig. 1(c), we extract the horizontal
and vertical position of the vortex relative to the disk, �r and �z, respectively, from the velocity
field using the second-moment method detailed in Sec. II C. The radius of the vortex ring Rring can
be deduced from �r using the following relation: Rring = D/2 − �r. The circulation � and the core
radius a of the vortex are also extracted at each time step.

B. Numerical method

The flow field generated by the translation of the disk is also determined using direct numerical
simulations of the Navier–Stokes equations for a Newtonian incompressible fluid using the Basilisk
flow solver. A sketch of the computational domain is given in Fig. 2(a). The configuration is 3D
axisymmetric: in the meridional plane, the computational domain is a square of side λ defined
by (r, z) ∈ [0, λ] × [(L − λ)/2, (L + λ)/2], where λ = 4D. Modifying slightly the domain size λ

does not alter the results. The solid disk is taken into account through an immersed boundary. At
t = 0, the disk located within the region [0, D/2] × [−�/2, �/2], is represented by a solid volume
fraction. This region is then moved in time at the velocity prescribed by Eq. (1), this latter velocity
being enforced to the region containing the disk using a solid volume fraction. The left boundary
has an axisymmetric boundary condition. At the outer boundaries (top, bottom, and right), no-slip
conditions are used.

The numerical scheme uses cell-centered velocity/pressure (vr, vz, p) variables and involves an
explicit upwind Bell–Collela–Glaz advection scheme, while viscous terms are treated implicitly.
The spatial discretization is based on a regular Cartesian mesh, with an adaptive refinement through
a quadtree approach [31]. More specifically, the domain is initially a uniform grid. The adaptive
algorithm computes the numerical errors on the values of vr or vz for each square cell. Depending
on its numerical error, each cell is coarsened, refined or kept the same. A typical example of the
mesh grid is shown in Fig. 2(b). The adaptive algorithm enhances precision in regions that need so,
namely at solid boundaries and near high velocity gradient zones. It also drastically reduces the cost
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FIG. 2. (a) Sketch of the numerical setup. The disk is going up and is initially placed at the vertical position
z = 0. (b) Example of the adaptative mesh refinement around the disk for L = 5.2 cm, D = 10 cm, and τ = 1 s
at t∗ = 0.66.

of computations compared to the case where the maximum refinement level would be enforced in
the whole domain. Here, we have ensured that the size of the finest cells is at least ten times smaller
than the thickness � of the disk so that the mesh is fine enough at the edge of the disk. A vorticity
sheet, responsible for the growth of the vortex, is generated in the vicinity of the moving disk. The
number of cells in this vorticity sheet is around 10. The time-step is chosen by imposing a Courant
number CFL = 0.8 and a maximum time-step δtmax = 0.1τ . Hence, the time-step δt is computed as
δt = min(CFL|�/v|min, δtmax), where � is the size of a cell and v the radial or vertical velocity in
this cell.

We ensured that a higher refinement level changes the circulation of the vortex ring by less than
1.4% and that results are unaffected by changing the thresholds used as refinement criteria, in the
vicinity of the values adopted here.

In the simulations, the range of stroke lengths and diameters of the disk has been extended
compared to the experiments so that L ∈ [2, 20] cm and D ∈ [5, 40] cm and the nondimensional
numbers vary in the range Re ∈ [103, 2.6 × 104] and L/D ∈ [0.07, 2].

C. Properties of the vortex

The properties of the vortex are extracted from the vorticity field using the second-moment
method [32]. This method is particularly useful when vortices are elliptical and not aligned with
the main axes. In addition to the position (rG, zG) of the vortex and its circulation �, this method
allows to evaluate two radii (ar, az) and the orientation angle αG of the major axis of the ellipse
with respect to the r axis, as explained in the following. First, the position of the vortex is found by
computing the coordinates of the barycenter of the vorticity ω:

rG =
∫∫

S

r ω

�
dr dz, zG =

∫∫
S

z ω

�
dr dz, (2)

where ω = ∂vr/∂z − ∂vz/∂r and � is the total circulation given by

� =
∫∫

S
ω dr dz. (3)

064702-5



JOANNE STEINER et al.

The circulation is computed over a domain of surface S large enough to enclose most of the vorticity
associated to the vortex. The angle αG between the r axis and the vortex major axis is solution of∫∫

S

[
r (αG ) − r (αG )

G

][
z(αG ) − z(αG )

G

]
ω dr dz = 0, (4)

where r (αG ) and z(αG ) are coordinates along axes obtained through rotation of the r and z axes by the
angle αG:

r (αG ) = r cos αG + z sin αG, z(αG ) = z cos αG − r sin αG. (5)

The radii (ar, az) of the elliptical vortex along the r (αG ) and z(αG ) axes are such that

ar
2 =

∫∫
S

[
r (αG ) − r (αG )

G

]2

�
ω dr dz, az

2 =
∫∫

S

[
z(αG ) − z(αG )

G

]2

�
ω dr dz. (6)

Finally, the dispersion radius a of the vortex core [32] and its ellipticity ε are defined as

a =
√

ar
2 + az

2, ε = max

(
ar

az
,

az

ar

)
, (7)

respectively. An iterative routine based on these equations is implemented in Matlab. The total
circulation of the vortex is computed on a centered surface of radius five times bigger than the
radius of the vortex to capture the major part of its vorticity. However, vorticity of opposite sign is
excluded from the calculation to prevent the inclusion of the vorticity concentrated into the boundary
layer near the disk.

III. RESULTS

A. Phenomenology

We describe in this section the structure of the flow generated by the translating disk. In
Figs. 3(a)–3(b), snapshots of the velocity field (arrows) and vorticity fields (color scale) are reported
for an experiment and for the corresponding numerical simulation respectively at different times for
L = 5.2 cm, D = 10 cm, and τ = 1 s. The translation of the disk generates a vortex in its near wake,
and the experimental and numerical behaviors of the vortex ring are similar. During the motion of
the disk, for t∗ � 1, circulation is enrolled in a startup vortex, making its radius grows over time
and the maximum vorticity increases. At t∗ = 0.66, the vortex in the numerical simulation exhibits
a well-defined tail of vorticity that connects the vortex to the edge of the disk. When computing
the size of the vortex, as described in Sec. II C, the tail of vorticity that goes from the edge of the
disk to the vortex is not included so that the radius obtained corresponds only to the core of the
vortex. However, the tail of vorticity is kept for the computation of the position of the vortex and
its circulation since it does not significantly influence these quantities. Moreover, we perform a
comparison of the circulation of the vortex with a theoretical approach of a startup vortex flow [18]
that includes all the vorticity sheet that has rolled up and consequently the tail of the vortex.

In the experiments, small satellite vortices are observed around the main vortex (see, for instance,
Fig. 3 at t∗ = 0.66). The formation of these irregularities in a vorticity sheet has been previously
observed in numerical simulations [33–35] and experiments [1,35] of the startup vortex flow of a flat
plate and is due to a Kelvin-Helmholtz instability. At this Reynolds number, the instability cannot
be observed in the numerical simulations. At t∗ = 0.66, both in the experiment and the simulation,
a thin layer of opposite vorticity is created between the disk and the vortex ring.

When the disk stops, at t∗ = 1, the vorticity tail detaches from the edge of the disk, and no more
circulation is enrolled in the vortex ring. At the same time, the roll-up velocity of the vortex induces
the generation of a secondary or “stopping” vortex of opposed circulation at the edge of the disk.
After the disk has stopped (t∗ > 1), the primary vortex ring is completely detached from the disk and
evolves while interacting with the secondary vortex of opposite circulation. From t∗ = 1 to t∗ = 2,
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FIG. 3. Snapshots of the velocity fields (arrows) and the vorticity fields (color scale) generated by the up-
ward translation of the disk in (a) the experiments and (b) the numerical simulations at different nondimensional
time t∗ for L = 5.2 cm, D = 10 cm, and τ = 1 s.

the vortices move and rotate under their mutual interaction. At t∗ = 1.34 and t∗ = 1.68, it can be
seen here that the main vortex is also deformed by the strain field induced by the stopping vortex
and becomes elliptical. At t∗ = 2, the main vortex and the secondary vortex are almost circular, and
their maximum absolute vorticity has reduced. They interact less and gradually diffuse in the fluid
due to viscous effects.

To describe more quantitatively the behavior of the startup vortex, the time-evolution of its
circulation � and of its core radius a are reported in Figs. 4(a) and 4(b), respectively, for L = 2.8 cm,
D = 12.5 cm, and τ = 1.67 s. The position of the core of the vortex is reported in the reference
frame of the laboratory in Fig. 4(c) and in the reference frame of the disk in Fig. 4(d). The origin
of the axis z∗ in Fig. 4(d) corresponds to the position at time t∗ of the disk zd (t∗) : z∗ = z − zd (t∗).
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FIG. 4. Time evolution of the characteristics of the startup vortex in the same configuration than in
Fig. 3 (for L = 2.8 cm, D = 12.5 cm, and τ = 1.67 s) for the experiment (◦) and for the simulation (−).
(a) Circulation �, (b) radius of the core a, and position in the frame of reference (c) of the laboratory and
(d) of the disk. For ease of visualization, only one point every five time-steps is displayed for the experimental
results.

For each figure, the experimental results (empty symbols) are compared with the corresponding
numerical results (solid lines). The results are shown starting at t∗ = 0.3 since before this time
the vortex is too small to be properly characterized by the routine described in Sec. II C. Before
describing the time evolution of the physical properties of the startup vortex ring, we can note that
the different properties computed from the experiment and from the numerical simulation agree
quantitatively well. Nevertheless, we observe a discrepancy for the vortex radius a at short times in
Fig. 4(b). Indeed, the calculation of the vortex radius requires a sensitive process of extracting the
vorticity tail from the numerical vorticity fields, which in turn generates the observed measurement
noise.

We observe in Figs. 4(a) and 4(b) that the time evolution of the vortex can be decomposed into
three stages. The first phase corresponds to the generation of the primary vortex. The vortex grows
in size and circulation and reaches a maximum radius am and circulation �m at time t∗

a � 0.75 and
t∗
� � 0.7, respectively, as indicated in Figs. 4(a) and 4(b). The centroid of the vortex ring also moves

away from the disk vertically while its radial position is almost constant when t∗ < 1 as can be
seen in Figs. 4(c) and 4(d). In the following, the maximum vertical distance between the disk and
the centroid of the vortex ring before the disk stops is noted �zm and is reached at time t∗

�z. In
the example of Fig. 4(d), we find t∗

�z � 0.87. The time of maximum circulation, radius, and vertical
position vary slightly for different sets of parameters. The first stage ends when the circulation starts
to decrease. For the present set of parameters, the first phase ends at t∗ � 0.7, but this value can vary
slightly for different sets.

In the second phase, from t∗ � 0.7 to the end of the translation of the disk at t∗ = 1, the vortex
approaches the disk, which is decelerating, and starts to move radially outwards. The circulation
and the core radius of the vortex ring decrease.

Finally, during the third stage, after the disk has stopped (t∗ > 1), the startup vortex has detached
from the disk and its motion is no longer forced by the translation of the disk. The vortex moves
away radially from the disk at the beginning of this phase and its circulation and radius gradually
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TABLE I. Sets of the experimental and numerical parameters and nondimensional numbers used in this
study with the corresponding data symbols used in the figures.

L (cm) D (cm) τ (s) L/D Re Experiments Simulations

2–6 10 1.67 0.2–0.6 2 × 103–5.6 × 103

2–20 10 1.67 0.2–2 2 × 103–2 × 104

2.8 3.75–15 1.67 0.19–0.75 103–4 × 103

2.8 5–40 1.67 0.07–0.56 103–104

2.8 10 0.25–2.5 0.28 2 × 103–2 × 104

2.8 10 0.25–2.5 0.28 2 × 103–2 × 104

decrease. The snapshots in Fig. 3 have shown the formation of a stopping vortex which makes the
starting vortex ring rotate in the vicinity of the disk as shown in Figs. 4(c) and 4(d).

B. Features of the starting vortex ring

The temporal evolution of the primary vortex has been decomposed into three phases: generation
(from t∗ = 0 to t∗ � 0.7 for the set of parameters presented previously), decrease (from t∗ � 0.7 to
t∗ � 1) and detachment from the disk (for t∗ � 1). During the translation of the disk, the circulation,
the radius, and the distance of the vortex ring from the disk reach maximum values noted �m, am,
and �zm, respectively. To better characterize the generation of the startup vortex, the stroke length
L, the diameter D, and the travel time τ of the disk have been varied independently. The physical
parameters and the nondimensional numbers, as well as the symbols used for the experimental and
numerical data in the following figures are summarized in Table I.

The maximum radial distance between the disk and the vortex ring will not be given because, as
seen in Fig. 4, the radial distance does not vary much during the motion of the disk and its maximum
would mainly be the consequence of small computing noises. This point will be further discussed
in the following section.
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FIG. 5. Maximum circulation of the primary vortex �m as a function of (a) the stroke length L, (b) the diam-
eter D, and (c) the inverse of the travel time of the disk 1/τ . The parameters kept constant are (a) D = 10 cm,
τ = 1.67 s, (b) L = 2.8 cm, τ = 1.67 s, and (c) L = 2.8 cm, D = 10 cm. The lines correspond to fitting by
power laws of the experimental (empty symbols) and numerical results (full symbols) and are: (a) �m = αL4/3,
where α � 0.27 m2/3/s; (b) �m = βD2/3, where β � 0.01 m4/3/s; and (c) �m = χ/τ , where χ � 0.0034 m2.
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FIG. 6. Maximum vertical distance of the vortex �zm as a function of the same parameters as in Figs. 5(a)–
5(c). The lines are power laws fit of equations: (a) �zm = αL2/3, where α � 0.09 m1/3; (b) �zm = βD1/3,
where β � 0.02 m2/3; and (c) �zm � 8.5 mm.

First, the maximum circulation, �m, is given in Figs. 5(a)–5(c) as a function of the control param-
eters L, D, and τ , for the experiments (empty symbols) and the numerical simulations (full symbols).
We observe a quantitative agreement between the numerical simulations and the experiments. The
maximum circulation of the vortex ring increases with the stroke length L, with the diameter of
the disk D and the inverse of the travel time 1/τ , i.e., with the velocity of the disk. In the range of
parameters considered here, power laws capture the evolution of the maximum circulation. More
specifically, for the range of stroke length L considered in Fig. 5(a) and D = 10 cm, τ = 1.67 s,
�m varies as L4/3. For the range of diameter D of the disk considered here and for L = 2.8 cm and
τ = 1.67 s, �m varies as D2/3. Finally, as shown in Fig. 5(c), for the range of travel time τ considered
here and for L = 2.8 cm and D = 10 cm, �m is proportional to 1/τ .

Second, in Figs. 6(a)–6(c) the maximum vertical position of the vortex �zm is shown, for the
experiments and the numerical simulations, which are again in excellent quantitative agreement.
The vertical position �zm increases with the stroke length L and the diameter D of the disk but
seems independent of the travel time τ . Similarly to the circulation, power laws emerge from the
data. For the range of stroke length L, diameter D, and travel time τ considered in Figs. 6(a)–6(c),
�zm varies as L2/3 and D1/3.

Finally, the maximum value of the vortex core radius am is given in Figs. 7(a)–7(c). Similar
conclusions can be drawn. More specifically, the radius am increases with the stroke length L and
the diameter D of the disk and is independent of the travel time τ . Scaling laws capture the evolution
of am and, for the range of parameters considered here, am evolves as L2/3 and D1/3, although there
is a slight departure from the power law for the smallest diameter. Indeed the size of the radius of the
vortex starts to be nonnegligible when the disk diameter becomes too small. The maximum radius
of the vortex is found to be proportional to its maximal vertical position, am � 0.48 �zm. The radius
and the vertical position of the vortex ring are linked because the more the vortex grows, the more
it moves away from the disk. Thus, the maximum radius has the same dependency with the control
parameters as �zm.

IV. DISCUSSION

A. First phase: Scaling behavior of the startup vortex ring

As reported in the previous section, the circulation, the radius, and the vertical distance to the
disk of the startup vortex all reach a maximum during the motion of the disk. Besides, as shown
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FIG. 7. Maximum core radius of the vortex am as a function of the same parameters as in Figs. 5(a)–5(c).
The lines are power laws fit of equations: (a) am = αL2/3, where α � 0.045 m1/3; (b) am = βD1/3, where
β � 0.01 m2/3; and (c) am � 4.1 mm.

in Figs. 5–7, these maxima depend on the stroke length L, the diameter D and the travel time τ of
the disk according to power laws. We demonstrate in the following that these scaling laws can be
rationalized using the two-dimensional theoretical results of Wedemeyer [18]. Wedemeyer derived
with conformal mapping a theoretical approach for the self-similar growth of a vortex in the wake
of a semi-infinite plate perpendicular to the z direction and translating at a constant velocity U in the
z direction from an initial starting time t = 0. The theoretical law for the time evolution of growth
of the circulation of the vortex and its position relative to a plate of length 2H in the direction
perpendicular to the z axis is given by [18]

�(t ) = −c1UH

(
Ut

H

)1/3

, �z(t ) = c2H

(
Ut

H

)2/3

, and �r(t ) = c3H

(
Ut

H

)2/3

, (8)

where c1 � 4, c2 � 0.4 and c3 � 0.11 [18]. To adapt these scalings for our present configuration,
we substitute the constant velocity U by the time-averaged velocity from 0 to t∗ = t/τ , U (t∗) =
L[1 − cos(πt∗)]/2τ t∗, Ut by the stroke length L(t∗) = L[1 − cos(πt∗)]/2 and H by the radius of
the disk D/2. After substitution in Eq. (8) for �(t ), we obtain the law governing the growth of the
circulation

�(t∗) = c� (t∗)L4/3D2/3/τ, (9)

where c� (t∗) = c1[1 − cos(πt∗)]4/3/4t∗.
We make the same substitutions for �z(t ) and �r(t ) in Eqs. (8) to find the theoretical prediction

for the vertical and radial distances �z and �r between the centroid of the vortex and the edge of
the disk:

�z(t∗) = cz(t∗)L2/3D1/3, and �r(t∗) = cr (t∗)L2/3D1/3, (10)

where cz = c2[1 − cos(πt∗)]2/3/2 and cr = c3[1 − cos(πt∗)]2/3/2. In addition to Eqs. (9) and (10)
derived from the theoretical approach of Wedemeyer, our experimental and numerical data suggest
that the maximum radius of the vortex is proportional to �zm, am = 0.48 �zm, so that

a(t∗) = ca(t∗)L2/3D1/3, (11)

where ca(t∗) � 0.48 cz(t∗).
These theoretical results can be used for finite-size body as long as the size of the vortex is small

compared to the size of the body, which is the case in the present study as am/D ∈ [0.015, 0.15].
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TABLE II. Sets of the experimental and numerical parameters and nondimensional numbers used in this
study with the corresponding data symbols used in figures.

L (cm) D (cm) τ (s) L/D Re Experiments Simulations

5.2 6.25–15 0.5–2.5 0.35–0.8 2 × 103–2 × 104

2.8–10 7.5–30 0.5–2.5 0.09–0.7 2.6 × 103–3 × 104

In addition, a comparison with the theoretical study [18] will only be relevant in the generation
process, i.e., as long as the vortex grows.

According to Eq. (9), at a given dimensionless time, the circulation is proportional to L4/3D2/3/τ ,
in agreement with the scaling laws obtained in Fig. 5. From Eqs. (10) and (11), we also find that
the vertical position of the vortex �z and its core radius a are proportional to L2/3D1/3 and are
independent of 1/τ at a given nondimensional time t∗, also in agreement with the observations
reported in Figs. 6 and 7. The scaling laws from Eqs. (9), (10), and (11) are applicable for a given
nondimensional time t∗. Hence, they should hold for the maximum values of the circulation, radius,
and vertical position as long as the time at which the maxima are reached does not vary significantly.
To investigate this beyond the one-dimensional parameter range already reported in Table I, an
additional set of experimental and numerical parameters reported in Table II have been made. The
scaling laws derived above and the dimensionless time t∗ at which each maximum is reached are
compared in Fig. 8 varying all control parameters listed in Tables I and II.

In Fig. 8(a), the maximum circulation �m is reported as a function of L4/3D2/3/τ for all the
sets of experimental and numerical parameters reported in Tables I and II. The data collapse on a

FIG. 8. (a) Maximum circulation of the starting vortex �m as a function of L4/3D2/3τ−1. (b) Maximum
vertical position �zm and (c) the maximum core radius am as a function of L2/3D1/3. (d)–(f) Times at which
(d) the maximum circulation t∗

� is reached, (e) the maximum vertical position t∗
�z is reached, and (f) the

maximum radius t∗
a is reached when varying the stroke length L, the diameter D, and the travel time τ of

the disk. The lines in panels (a)–(c) correspond to the power laws: (a) �m = c�L4/3D2/3/τ , with c� � 2.1;
(b) �zm = czL2/3D1/3, with cz � 0.2; and (c) am = caL2/3D1/3, with ca � 0.1. For the radius and the vertical
position, when τ varies, only one point was represented in panels (b) and (c), which corresponds to the averaged
radius (or averaged vertical position) as it does not vary with τ . The continuous lines in panels (d) and (f)
correspond to the mean value of the time of maximum and the dotted lines to the mean value ±10%. Empty
and full symbols correspond to experimental and numerical data, respectively.
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master curve of coefficient c� � 2.1. The maximum dimensionless time t∗
� at which the maximum

circulation is reached is shown in Fig. 8(d), and does not vary significantly around the mean value
t∗
� = 0.70 ± 0.02 for all the parameters considered here. This result highlights that the dynamics

of the formation of the vortex ring are the same for the different parameters. Moreover, it indicates
that Wedemeyer’s scaling approach is applicable in the present axisymmetric case for the maximum
circulation. The theoretical value derived from Eq. (9) gives c� (t∗ = 0.7) � 2.6. The value obtained
by fitting the experimental and numerical data (c� � 2.1) is slightly smaller than the theoretical one.
The axisymmetry and unsteadiness of the problem can explain this discrepancy.

The same analysis is performed for the maximum vertical position of the vortex ring �zm in
Fig. 8(b) where �zm is reported as a function of L2/3D1/3 to compare with Eq. (10). For the set of
parameters for which the travel time τ varies (third row in Table I), only the mean value is displayed
for clarity as �zm is independent of τ . The data collapse on a linear curve of coefficient cz � 0.2.
The maximum dimensionless time t∗

�z at which the maximum is reached is shown in Fig. 8(e) below.
Similarly to the circulation, t∗

�z does not vary much around its average value t∗
�z = 0.85 ± 0.04 for

all parameters considered here, making the comparison with the theoretical results applicable. From
Eq. (10), we obtain that cz(t∗ = 0.85) � 0.3, thus again slightly larger than the value we obtained
cz � 0.2.

Finally, the maximum radius am is plotted in Fig. 8(c) as a function of L2/3D1/3. The results gather
on a linear curve of coefficient ca � 0.1. The dimensionless time t∗

a does not depend significantly on
the control parameters, and its average value is t∗

a = 0.79 ± 0.07. We cannot perform a comparison
with a theoretical coefficient because the scaling law derived in Eq. (11) comes from the hypothesis
that the radius is proportional to the vertical position of the vortex. There are no quantitative
coefficients that come with this hypothesis. However, the assumption made works well, as the
experimental and numerical results agree with the power law.

In summary, by adapting the theoretical results of Wedemeyer [18], we find scaling laws that
capture convincingly the results. The numerical coefficients c� and cz are a little different from the
ones that arise from Wedemeyer analysis which can be explained by the differences between the
situation considered here and the one coming from the theoretical approach [18]. One difference
is the imposed velocity which is not constant over time but corresponds to sinusoidal acceleration
and deceleration phases in the present configuration contrary to Wedemeyer’s approach which con-
sidered a step function of the velocity. But the main difference is that the flow in our configuration
is axisymmetric, and the curvature of the vortex ring generates effects that are not accounted for
in the theoretical approach. The vortex ring has a self-induced velocity that affects its position
relative to the disk. Moreover, the strength of the vortex sheet generated by a disk is not the same
as the one generated by a 2D plate [36]. The axisymmetric configuration of a disk clearly results in
significantly smaller c� and cz coefficients when compared to the plate configuration as detailed in
Appendix A.

The main discrepancy lies in the precise values of the coefficients c� and cz, which are found
to be smaller in the experiments and simulations. These discrepancies can be explained by the
differences between the situation considered here and the one coming from the theoretical approach
[18]. Specifically, the translating velocity of the disk in the present configuration corresponds to
sinusoidal acceleration and deceleration phases, and therefore, is not constant over time, whereas
Wedemeyer’s approach involved a step function of the velocity. Consequently, the values of the
coefficients are expected to change for a different time evolution of the disk velocity. In addition, a
significant difference is that the flow in our configuration is axisymmetric, and the curvature of the
vortex ring generates effects that are not accounted for in the theoretical approach. The vortex ring
has a self-induced velocity that affects its position relative to the disk. Moreover, the strength of the
vortex sheet generated by a disk is not the same as the one generated by a 2D plate [36]. All these
geometrical differences can also explain changes in the prefactors (see more details Appendix A).

No proper scaling laws appear from the experimental and the numerical results for the radial
distance �r between the edge of the disk and the vortex centroid. However, Eq. (10) indicates that
�r should vary as L2/3D1/3. The experimental and numerical results suggest [see Fig. 4(c), for
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FIG. 9. (a) Circulation �1, (b) vertical position �z1, and (c) core radius a1 of the startup vortex at t∗ = 1
when varying the stroke length L, the diameter D, and the travel time τ of the disk. For the radius and the
vertical position, when τ varies only one point is represented, which corresponds to the averaged radius
(or averaged vertical position) as it does not vary with τ . The solid lines correspond to the power laws:
(a) �1 = c�,1L4/3D2/3/τ , with c�,1 � 1.9; (b) �z1 = cz,1L2/3D1/3, with cz,1 � 0.17; and (c) a1 = ca,1L2/3D1/3,
with ca,1 � 0.085.

instance] that �r does not vary much with t∗, unlike the other features. This is believed to be a
consequence of the axisymmetry of the problem. Indeed, the vortex that has formed is a ring of
radius Rring (see notation in Fig. 1) that cannot vary much. If �r changes, it implies that the radius
of the vortex ring Rring changes. However, by mass conservation of the fluid in the vortex ring,
a2Rring must be constant, and so the core radius of the vortex ring should change accordingly. This
relationship between the core radius and the ring radius of the vortex is believed to have a strong
effect on the radial position of the vortex ring. To check this hypothesis, we perform a comparison
of the scaling laws between 2D and 3D axisymmetric simulations (see Appendix A). The maximum
radial distance �r of the vortex with the edge of the plate (2D simulations) reported in Fig. 12(d)
follows the prediction of Eq. (10) whether it is not the case for the 3D axisymmetric simulation
showing that the axisymmetry of the problem indeed plays a key role on the radial position of the
vortex ring.

Using the scaling laws validated from a large set of experiments and numerical simulations, it is
possible to predict the maximum circulation, vertical distance and core radius of the vortex from the
system parameters L, D, and τ . In the following, we discuss the behavior of the vortex ring after its
generation phase.

B. Second phase: Reduction of circulation and radius

In Fig. 4, we observe that the circulation � and the core radius a of the vortex ring start to
decrease while the disk is decelerating. This decrease in circulation is due to the creation of opposite
vorticity in the boundary layer between the vortex and the disk. This opposite vorticity, produced
by the roll-up velocity of the vortex, penetrates the vortex, reducing its global circulation. This
phenomenon has already been observed in experiments devoted to the formation of vortex rings
at the outlet of a tube by a piston [19,24] where the phase of formation is followed by a decrease
of the circulation before the detachment of the vortex from the walls. We report the scaling laws
obtained for the circulation �1, vertical position �z1, and core radius a1 of the starting vortex ring
at t∗ = 1 when the disk stops, in Figs. 9(a)–9(c). We observe that scaling laws similar to the ones
in Fig. 8 capture well the feature of the vortex ring, with a change of prefactors. Indeed, we find
c�,1 � 1.9, meaning that the circulation has reduced by approximately 11% from its maximal value.
The coefficient for the vertical position is cz,1 � 0.17 which means that the vortex approaches the
disk. Finally, ca,1 � 0.085, so that the core radius of the vortex has decreased by 11%. Note that,
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FIG. 10. Maximum ellipticity εm of the startup vortex as a function of its maximum circulation L4/3D2/3/τ .
The solid line corresponds to the critical value εc = 2.9 [37].

during the second phase, the radial position of the vortex ring changes as the vortex starts to move
around the disk, hence the major radius of the ring also expands.

C. Third phase: Evolution after stopping of the disk

Finally, after the disk has stopped (t∗ > 1), a counterrotating stopping vortex ring forms at the
edge of the disk, due to the roll-up velocity of the startup vortex (see Fig. 3 from t∗ = 1). This
secondary vortex ring creates a strain field that can deform the initial vortex, causing it to become
elliptical and affecting its dynamics. The ellipticity ε of the initial startup vortex defined in Eq. (7)
is observed to increase after the disk has stopped, to reach a maximum value εm and thereafter to
decrease. In Fig. 10, we report the maximum ellipticity εm of the startup vortex as a function of
L4/3D2/3/τ , which is proportional to its maximum circulation [see Fig. 8(a)].

The inviscid solution for a steady 2D vortex patch of uniform vorticity subjected to an in-plane
2D strain field derived by Moore and Saffman [37] and extended to quasisteady viscous vortices
[38] indicates that the ellipticity is an increasing function of the ratio between external strain and
internal vorticity. Such results may also hold for vortex rings when the core size is small with respect
to the curvature radius, which is assumed here. In Fig. 10, the largest values of the ellipticity are
obtained for the smallest values of L4/3D2/3/τ : they actually correspond to the cases of weaker
vorticity, hence of large strain-to-vorticity ratio. Above a critical value εc = 2.9, a 2D vortex patch
is inviscidly eroded and may even be destroyed. We observe that, for most cases, this critical value
reported as a dashed line in Fig. 10 is not exceeded, except for the smallest values of L4/3D2/3/τ .
When this occurs, it is only transient: the vortex ring is not destroyed and eventually becomes almost
circular.

In addition to its deformation, the startup vortex is subjected to its self-induced velocity and the
velocity induced by the newly formed stopping vortex. The total velocity of the initial vortex ring
should thus be given by the addition of its self-induced velocity in the vertical direction, which is
given by [36]

vring = �

4πRring

[
ln

(
8Rring

a

)
− 0.558

]
, (12)

and the velocity induced by the stopping vortex on the main vortex (ṙ, ż) [36](
ṙ
ż

)
= �s

2πd2

(−(zs − zG)
rs − rG

)
, (13)

064702-15



JOANNE STEINER et al.

1 1.2 1.4 1.6 1.8 2
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

1 1.2 1.4 1.6 1.8 2
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

FIG. 11. Time evolution of (a) the radial and (b) the vertical velocity of the startup vortex for L = 5.2 cm,
D = 10 cm, and τ = 1 s. Experiment (◦), simulation (•), and the predicted velocity (—) given by Eqs. (12)–
(14).

where �s and (rs, zs) are the circulation and the position of the stopping vortex, (rG, zG) is the
position of the startup vortex, and d the distance between the centroids of the two vortices. An
example of the temporal evolution of the features of the stopping vortex ring is given in Appendix B.
The generation of the stopping vortex is found to be mainly governed by the starting vortex. Indeed,
the circulation and the core radius of the stopping vortex ring follow the same scaling laws as the
starting one, with prefactors decreased by almost a factor 2, as shown in Appendix B.

The final velocity of the starting vortex (vr , vz) should thus be given by

vr = ṙ, vz = vring + ż. (14)

In Figs. 11(a) and 11(b), the experimental (◦) and numerical (•) velocity components (ṙG, żG) of
the barycenter of the main vortex rings are plotted. The expected velocity has also been plotted by
substituting the different parameters in Eq. (14) by their numerical value. The velocities extracted
from the experimental and numerical data are in good quantitative agreement with each other and
agree well with the predicted velocity given by Eqs. (12)–(14). Therefore, the time evolution of
the position of the startup vortex ring after the disk stops is well captured by two contributions: its
self-induced velocity and the velocity induced by the stopping vortex.

V. CONCLUSION

In this study, we have investigated the properties of a vortex ring generated by the unsteady
translation of a disk of diameter D on a finite stroke length L for Reynolds numbers ranging from
103 to 2.6 × 104 and for L/D ranging from 0.07 to 2. The study focused on experimental results
obtained by PIV measurements and axisymmetric numerical simulations that are in good quanti-
tative agreement. This suggests that, in the range of parameters considered here, nonaxisymmetric
fluctuations in the flow are not dominant in the generation of a vortex ring by the translation of a
disk.

The temporal evolution of the startup vortex ring can be described in three phases. The first stage,
during which the disk accelerates, corresponds to the generation of the vortex ring. The core radius
and the circulation of the vortex ring increase in time, and the vortex ring centroid moves away
vertically from the disk but not radially. The maximum circulation �m, core radius am, and distance
�zm from the disk follow scaling laws that can respectively be summarized as

�m ∝ L4/3D2/3/τ, am ∝ L2/3D1/3, and �zm ∝ L2/3D1/3. (15)

These scalings laws can be rationalized based on a two-dimensional theoretical approach for a
semi-infinite plate animated by a constant velocity [18]. The present study shows that the scaling
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TABLE III. Sets of simulated parameters for the 2D numerical simulations.

L (cm) D (cm) τ (s) L/D Re

2–6 10 1.67 0.2–0.6 1.9 × 103–5.7 × 103

2.8 5–15 1.67 0.19–0.56 1.3 × 103–3.9 × 103

2.8 10 0.25–2.5 0.28 1.8 × 103–1.8 × 104

laws can be applied to a vortex ring generated by a disk animated by a nonuniform velocity with a
change in the prefactors.

In the second phase, the disk is still translating but decelerates so that the strength and size of the
vortex ring decrease. This is due to the entrance of opposite vorticity inside the vortex ring. The loss
of circulation of the vortex is estimated by 11% in our configuration. During this phase, the vortex
ring also starts to approach the disk and moves in the outward radial direction to avoid the disk.

Finally, in the last stage, after the disk has stopped, a counterrotating stopping vortex forms at the
edge of the disk due to the roll-up velocity of the primary vortex. Due to the strain field induced by
the secondary vortex,the core of the main vortex deforms. In addition, the two vortices rotate in the
bulk due to their mutual interaction. The displacement of the primary vortex ring is well explained
by the combination of its self-induced velocity and the velocity induced by the stopping vortex.

This study focused on the behavior of the vortex ring generated in the near wake of a circular
disk in unsteady translation in an unbounded fluid. In this configuration, no influence of surrounding
walls has been considered. An interesting follow-up study could focus on the features of a vortex
formed in the wake of a disk moving in the direction or away from a solid boundary. In addition,
one can wonder what will happen if the disk is now set to oscillate continuously.
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APPENDIX A: TWO-DIMENSIONAL NUMERICAL SIMULATIONS

To check the effect of the axisymmetry of the disk configuration, we also performed 2D
numerical simulations in a Cartesian coordinate system using the Basilisk flow solver. The 2D
computational domain is similar to the 3D axisymmetric one given in Fig. 2(a). The domain is
again a square defined by (x, z) ∈ [0, λ] × [−λ/2, λ/2], where λ = 4D. The solid plate is taken
into account similarly to what is done in the axisymmetric simulations, and the velocity of the
plate is imposed according to Eq. (1). At outer boundaries, no-slip conditions are used. The same
parameters are used in terms of the maximum refinement level and Courant number. The adaptative
refinement is again implemented to improve the spatial discretization near boundaries and high
velocity gradient zones. The numerical simulations that are performed are summarized in Table III.

The evolution of the characteristics of the 2D vortex with the control parameters is summarized in
Figs. 12(a)–12(d), along with the characteristics of the vortex ring (axisymmetric case). The scaling
laws developed in Eqs. (9)–(11) agree well with the 2D simulations for the different parameters. In
particular, �rm follows the scaling laws provided in Eq. (10) unlike the axisymmetric simulations
or the experimental case as seen in Fig. 12(d).

In addition, it can be seen in Fig. 12(a) that the circulation of the vortex in the 2D simulations is
larger than the circulation of the vortex ring in the axisymmetric simulations. For the same velocity
and size of the plate/disk, the strength of the vorticity sheet is larger in the 2D case than in the 3D
axisymmetric case [36].

Moreover, the coefficient of the scaling law for the maximum radius is larger in the 2D case than
in the 3D axisymmetric case. Hence, the core size of the vortex in the 2D simulations is larger than
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FIG. 12. Comparison of 2D (�, plate) and 3D axisymmetric (•, disk) simulations showing the evolution
of (a) the circulation �m, (b) the vertical position �zm, (c) the core radius am, and (d) the radial position �rm

of the vortex when varying the stroke length L, the diameter D (or the length of the 2D plate) and the travel
time τ in the same figure. The solid lines correspond to Eqs. (9)–(11) with the following fitted coefficients
for the 2D (plate) simulations: (a) c�,2D � 3.8, (b) cz,2D � 0.37, (c) ca,2D � 0.13, and (d) cr,2D � 0.06 and for
the 3D axisymmetric (disk) simulations: (a) c� � 2.1, (b) cz � 0.2, and (c) ca � 0.1. The red dashed line
in (d) corresponds to the constant �rm = 2.2 mm. The black dash-dotted lines correspond to the theoretical
coefficients of Wedemeyer [18]: (a) c� = 2.6, (b) cz = 0.3, and (d) cr = 0.086.

in the axisymmetric simulations [see Fig. 12(c)]. Finally, the 2D vortex is going further from the
disk than the axisymmetric vortex ring. In the axisymmetric case, the self-induced velocity of the
vortex ring can be responsible for this difference.

In conclusion, the value of the scaling coefficients is larger in the 2D numerical simulations. In
addition to this, the scaling laws derived by Wedemeyer [18] fail to predict the radial position of the
vortex ring in the 3D axisymmetric case whether they agree with the 2D numerical simulations.

APPENDIX B: FEATURES OF THE STOPPING VORTEX RING

The knowledge of the generation and the temporal evolution of the stopping vortex ring is crucial
to better understand the behavior of the starting vortex ring after the disk has stopped. For this
purpose, the temporal evolution of the circulation and the core radius of the stopping vortex have
been extracted from numerical simulations.

An example of the time evolution of the stopping vortex is shown in Figs. 13(a)–13(c) for the
same configuration as in Figs. 3 and 4. Its circulation and core radius are reported for t∗ > 1.16 so
that the stopping vortex is well defined and therefore easy to follow with the Matlab routine.

In Fig. 13(a), the circulation of the stopping vortex ring |�s| increases until it reaches its max-
imum value |�m,s| = 0.0012 m2/s at t∗

�,s � 1.26, followed by a gradual decreases. In Fig. 13(b),
the core radius of the stopping vortex as is found to increase with time and reaches its maximum
value am,s = 3 mm at t∗

a,s � 1.29. Finally, Fig. 13(c) gives the position of the stopping vortex in the
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FIG. 13. Time evolution of (a) the circulation |�s|, (b) the radius as and (c) the position of the barycenter
of the stopping vortex from a numerical simulation for L = 2.8 cm, D = 12.5 cm, and τ = 1.67 s.

laboratory frame of reference. As expected, the vortex rotates in the fluid because it follows the
position of the startup vortex ring.

As for the starting vortex, the maximum circulation and core radius of the stopping vortex
ring have been systematically computed and the Wedemeyer scaling laws have been tested in the

FIG. 14. (a) Maximum circulation of the stopping vortex |�m,s| as a function of L4/3D2/3τ−1. (b) Maximum
core radius of the stopping vortex am,s as a function of L2/3D1/3. (c) Time t∗

�,s at which the maximum circulation
is reached, and (d) the time t∗

a,s at which the maximum radius is reached. The solid lines in panels [(a),(b)]
correspond to the following power laws: (a) |�m,s| = c�,sL4/3D2/3/τ , with c�,s � 1.1; (b) am,s = ca,sL2/3D1/3,
with ca,s � 0.06. The solid lines in panels [(c),(d)] correspond respectively to the mean value of the time of
maximum circulation and of maximum radius (c) t∗

�,s = 1.23, (d) t∗
a,s = 1.27 and the dotted lines to the mean

value ±10%.
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Figs. 14(a) and 14(b). The time at which the maxima are reached t∗
�,s and t∗

a,s are also reported in
Figs. 14(c) and 14(d), respectively. The parameter range was restricted to L < 10 cm because for
longer stroke length, several small secondary vortices are shed from the disk and there is no main
stopping vortex. The values of the maximum circulation of the stopping vortex plotted as a function
of L4/3D2/3/τ in Fig. 14(a) collapse on a master curve of coefficient c�,s � 1.1. The maximum
circulation of the stopping vortex is found to be mainly driven by the circulation of the starting
vortex and it is observed to be about half the maximal circulation exhibited by the primary vortex.
Moreover, the time at which the maximum circulation is reached does not vary much around the
mean value t∗

�,s = 1.23 ± 0.05. The generation of the stopping vortex ring is hence very similar in
the range of parameters studied here.

The maximum core radius as,m of the stopping vortex ring is plotted as a function of L2/3D1/3 in
Fig. 14(b). Although the data are more scattered than for the circulation, a linear curve of coefficient
ca,s � 0.06 gives a good approximation of the maximum core radius. The radius of the stopping
vortex is 1.6 times smaller than the radius of the starting vortex. Moreover, the time at which its
maximum core radius is reached is displayed in Fig. 14(d). This time does not vary much around
its mean value t∗

a,s = 1.27 ± 0.09, which again shows that the generation of the secondary vortex is
very similar across the parameters sets.

In conclusion, the generation of the stopping vortex is mainly governed by the starting vortex.
The circulation and the core radius follow the same scaling laws with only a change in numerical
prefactor. The stopping vortex is found to have about the half size and the half circulation compared
with the starting vortex, meaning that these two vortex rings have almost the same maximum
azimuthal velocities vθ .
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