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We describe a new phenomenon of zonal wind generation by tidal forcing. Following a recent

theoretical and numerical analysis [A. Tilgner, Phys. Rev. Lett. 99, 194501 (2007)], we present the first

experimental evidence that the nonlinear self-interaction of a tidally forced inertial mode can drive an

intense axisymmetric flow in a rotating deformed sphere. Systematic measurements of zonal flows are

carried out by an embarked system of particle image velocimetry, allowing the determination of general

scaling laws. These results are fully relevant for zonal winds generation in planets and stars, and illustrate

a generic mechanism of geostrophic flow generation by periodic forcing.
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The fundamental role of gravitational tides in geo- and
astrophysics has been the subject of multiple studies for
several centuries. Beyond the well-known quasiperiodic
flow of ocean water on our shores, tides are responsible
for phenomena as varied as the synchronization of binary
systems [1], the intense volcanism on Io, or the induction
of a magnetic field by an elliptical instability [2,3]. We
show here, for the first time experimentally, that tides could
also participate in the generation of axisymmetric zonal
winds in planetary cores and atmospheres, in addition to
the already known mechanisms driven by convection [4]
and stratified turbulence [5].

Rotating flows in planetary systems support oscillatory
motions, called ‘‘inertial waves’’ [6]. These waves are the
eigenmodes of rotating flows, but are usually damped by
viscosity. Let us now consider the liquid core of a spinning
planet and its orbiting moon (the same approach is valid for
binary stars and for any planet-moon or star-planet sys-
tem): deformations due to gravitational tides of azimuthal
period m ¼ 2, can potentially force an infinite number of
m ¼ 2 eigenmodes in the liquid core. Once a mode is
forced, it is well known from precession studies [7] that
the Ekman boundary layer which forms at the outer edge of
the rotating fluid breaks down at critical latitudes where the
group velocity of the excited inertial waves is tangent to the
boundary. This Ekman layer breakdown is the source of
conical oscillatory shear layers which penetrate the interior
flow [8,9]. Besides, a geostrophic circulation is also excited
[10], coming from the nonlinear self-interaction of the
excited inertial mode. Greenspan [11] showed however
that nonlinear interactions of inviscid inertial modes can-
not produce any geostrophic flow. Viscosity modifies this
classical picture and gives rise to intense axisymmetric
cylindrical shear layers, parallel to the rotation axis [12–
14]. Note that in the context of precessional flows, the

amplitudes of the geostrophic flow measured by Malkus
[10] or by Cardin and Olson [15] are 3 times larger than
expected, attesting the real need of quantitative measure-
ments of such geostrophic flows.
The same mechanism of zonal wind generation must

exist for tidal forcing. Indeed, once a mode m ¼ 2 is
forced, its nonlinear self-interaction excites modes of azi-
muthal period m ¼ 4 and m ¼ 0, which can drive an
intense axisymmetric flow. First considering that the tidal
companion is fixed, which means that critical latitudes are
exactly at the poles, Suess [16] revealed the existence of a
polar counterrotating vortex, as well as a second axisym-
metric shear layer at half the radius of the sphere, whose
origin is still unknown. If now the tidal companion rotates
at an independent orbital velocity, other inertial waves may
be excited. A systematic scan of the orbital velocity allows
the excitment of several inertial modes of frequency !mode

when the orbital frequency �orbit ¼ !mode=2. The factor 2
comes from the fact that an m ¼ 2 tidal deformation of
period �orbit excites a mode twice per complete rotation.
This mechanism would then lead to the breakdown of the
Ekman layer and the formation of geostrophic cylinders
whose location depends on the ratio between the orbital
and spin velocities. This was verified in a recent numerical
analysis of Tilgner [17], by artificially injecting energy in
the m ¼ 2 inertial modes. The purpose of this letter is to
validate this mechanism experimentally, taking into ac-
count a realistic tidal-like boundary deformation.
Our experimental setup that mimics a tidally deformed

rotating fluid body is sketched in Fig. 1. It consists in a
hollow deformable sphere, of radius R ¼ 10 cm, which
was molded in a transparent silicone gel. The sphere is
filled with water and set in rotation about its vertical axis
(Oz) with a constant angular velocity �spin up to 150 rpm

�0:3%. The spinning sphere is elliptically deformed by
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two vertical cylindrical rollers. The tidal deformation is
perpendicular to the rotation axis and is orbiting at an
independent constant angular velocity �orbit up to
100 rpm �0:3%. We use ��1

spin as a timescale and R as a

length scale. Such a system is then fully defined by three
dimensionless numbers: the Ekman number E ¼
�=�spinR

2, where � is the kinematic fluid viscosity, the

ratio of the orbital and spin angular velocities �R ¼
�orbit=�spin, and the eccentricity of the ellipsoid �. For

the present experiment, the Ekman number has been varied
in the range [9� 10�4; 3� 10�5] while � lies in the range
[0.01; 0.08] with an accuracy of 3� 10�3.

Visualizations with anisotropic particles (Kalliroscope
flakes) are made in a meridional plane. Particles are illu-
minated by a laser sheet, of thickness 3 mm, produced by a
continuous laser (4 W) in a plane coinciding with the
rotation axis. In the present work, we select the orbital
velocity in the prograde direction in order to avoid the
elliptical instability [18] and to isolate the mechanism of
zonal wind driven by tides. But if an elliptical instability is
present, we expect the same mechanism to superimpose on
it. Visualizations with Kalliroscope flakes corresponding to
two different modes are shown in Fig. 2. The illuminated
parts of the fluid correspond to coherent orientation of
flakes associated with a shear zone. There is no evidence
of the conical structures of the internal flow. We expect this
to be due to the lack of time for flakes to align in the
oscillatory conical shear. Flakes only feel the stationary
component of the flow, hence highlighting the geostrophic
circulations. The shape, location and intensity of these
shear cylinders depend on the excitation frequency. Note
that as in the experiment of Suess [16], in addition to the

expected shear layers, our flakes visualizations revealed
additional, albeit much weaker, geostrophic cylinders, for
instance at three-quarter of the radius of the deformed
sphere in Fig. 2(a) and at the poles in Fig. 2(b). These
additional shear layers may be due to harmonic waves of
azimuthal period m ¼ 4 and to a m ¼ 1 forcing due to a
slight dissymmetry of the experiment.
In addition to the purely qualitative flakes visualizations,

measurements of velocity fields are obtained in the equa-
torial plane using a corotating particle image velocimetry
(PIV) system. Water is seeded by Optimage particles of
100 �m in diameter and of density 1� 2%. A miniature
wireless CMOS camera (2 cm� 2 cm), of resolution
576� 768 pixels, is installed on the rotating frame and
measurements are made from above through the transpar-
ent top surface. The PIV data are acquired using a video
transmitter-receptor system. Velocity fields are defined on
a 45� 60 grid in a semi equatorial section, with a spatial
resolution of 3 mm close to the laser sheet thickness. Since
the expected geostrophic circulations are time indepen-
dent, velocity fields are time-averaged over 500 complete
rotations of the deformed sphere, which eliminates the time
dependent component of the flow and significantly enhan-
ces the signal-to-noise ratio. Figure 3 shows two velocity

(a)

(b)

FIG. 2 (color online). Visualizations of intense axisymmetric
flows using Kalliroscope flakes illuminated by a vertical meri-
dional laser sheet. The observed bands correspond to the inter-
section of the excited geostrophic cylinders sketched in Fig. 1
with the visualization plane. The two photographs have been
obtained for E ¼ 6� 10�5, � ¼ 0:04 and for (a)�R ¼ 0:18 and
(b) �R ¼ 0:38, corresponding to half the frequency of two m ¼
2 eigenmodes of the sphere. The white dots indicate the location
of the theoretical critical latitudes.
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FIG. 1. Schematic of the experimental setup. The PIV camera
is in the spin frame rotating with the deformed sphere; the two
cylindrical rollers are in the orbital frame and the laser and the
two motors are in the laboratory frame.
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fields obtained for the same parameters as in Fig. 2.
Velocity fields exhibit axisymmetric flows which are
mainly azimuthal. The system rotation is anticlockwise,
so that zonal flows correspond here to anticyclonic circu-
lations. An averaged azimuthal velocity profile, computed

from Fig. 3(b) and its corresponding radial shear �r;� ¼
@u�
@r � u�

r calculated in cylindrical coordinates, are plotted

in Fig. 4 as a function of the radial distance, together with
the location of the Kalliroscope band deduced from picture
2(b). We observe a very good agreement between PIV
measurements and flakes visualizations. The vertical shear
layers are centered on the local maxima of the radial shear
and the illuminated parts of picture 2(b) correspond to
flakes oriented in regions of positive gradient of the geo-
strophic velocity.

The maximal azimuthal velocity contained in geostro-
phic cylinders is plotted on Fig. 5 as a function of the
normalized orbital frequency. The flow amplitude is neg-
ligible except when the orbital frequency resonates with an
eigenmode of the sphere. The peak around �R ¼ 0 corre-
sponds to the spinover mode of the elliptical instability
[18]. Its amplitude is huge in comparison to zonal winds
and represents up to 20% of the angular velocity of the
boundary in the present case. The five others energy peaks

correspond to the axisymmetric flows of interest here. The
resonance peaks are very thin and are observed as expected
for orbital frequencies in excellent agreement with half the
frequencies of a full sphere m ¼ 2 eigenmodes, indicated
by vertical dashed lines. Velocity fields similar to those of
Fig. 3 have been obtained for all the other resonances
investigated in the course of this study. Note that we do
not observe geostrophic circulations for modes with small
length scale (i.e., with a degree of Legendre polynomial
l � 8 in the notation of Greenspan [6]), as these modes are
probably damped by viscous effects for the Ekman num-
bers reached in our setup.
Figure 6 shows the dependence of the maximal azimu-

thal velocity in zonal flows as a function of the eccentricity
and the Ekman number. As predicted by Busse [7] for
precession, the geostrophic velocity scales as the square
of the amplitude of the boundary-layer flow, yielding in our
case to a dependence with �2 as shown in Fig. 6(a). The
Ekman number dependence of the geostrophic velocity can

y 
(m

m
)

−30

−20

−10

0

10

20

30

| u
x2  +

 u
y2  |1/

2  (
m

m
/s

)

0

0.5

1

1.5

2
(a)

x (mm)

y 
(m

m
)

0 20 40 60 80 100

−30

−20

−10

0

10

20

30

| u
x2  +

 u
y2  |1/

2  (
m

m
/s

)

0

1

2

3

(b)

FIG. 3 (color online). Velocity fields obtained by PIV in equa-
torial plane for the same parameters as in Fig. 2. The background
is colored as the norm of the horizontal velocity. Note that
because of an undetectable area near the boundaries due to
optical deformations related to the spherical silicone-water inter-
face, the apparent boundary of the spheroid is located here at
r ¼ 85 mm.

0 20 40 60 80
−0.5

0

0.5

r (mm)

τ r, φ
   

(s
−

1
)

−4

−2

0

u φ
  (

m
m

.s
 -

1 )

Kalliroscope
highlighted zone

FIG. 4. Azimuthal velocity (o) and its corresponding radial
shear �r;� (*) calculated from the velocity fields of Fig. 3(b). The

area between the two vertical full lines corresponds to the
thickness of the lateral vertical bands deduced from Fig. 2(b),
taking into account the optical deformations.
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FIG. 5. Maximal azimuthal velocities of zonal flows normal-
ized by the angular velocity of the ellipsoid as a function of the
normalized orbital velocity for E ¼ 6� 10�5 and � ¼ 0:04.
Vertical dashed lines correspond to half the frequency of the
m ¼ 2 eigenmodes of the sphere.
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also be determined following precession studies [13], by
balancing the viscous damping of the geostrophic cylinder

in the boundary layer of thickness OðE1=2Þ, with the domi-
nant nonlinear term ur@u�=@r integrated in the Ekman

layer of thickness OðE2=5Þ around critical latitudes. It

follows that the geostrophic velocity scales as E�3=10. As
can be seen on Fig. 6(b), the variation of the azimuthal

velocity is compatible with this E�3=10 power law. Note
that a stronger dependence on E is expected in the presence
of a core [17] because in a spherical shell, the eigenmodes
become singular [19] in the limit of vanishing E, which
consequently increases their nonlinear self-interaction.
This will be the subject of a future experimental study.

In summary, this work presents the first experimental
evidence that the nonlinear self-interaction of a tidally
forced inertial mode can drive intense axisymmetric flows.
Our measurements of zonal winds generated by tides have
been carried out using an embarked PIV system. The geo-

strophic velocity is found to vary as �2E�3=10. The mecha-
nism revealed here for a tidal deformation of the rigid
external boundary of our rotating fluid sphere is fully
generic. In fact, each resonant periodic forcing (e.g., addi-
tional tides, precession, nutation, etc.) on any external or
internal interface possessing an Ekman layer, will generate
its own geostrophic shear cylinder. The resulting flow will
then correspond to the superimposition of all the contribu-
tions, as illustrated for instance in Fig. 7, where an ecliptic
inclination has been added. Such a mechanism could there-
fore take place almost generically in the liquid cores of

planets, but also in the atmospheres of gas giants such as
Jupiter, where it would constitute an additional source of
zonal winds generation in complement to the already sug-
gested competing models [4,5]. More generally, our results
obtained here in the case of tidal forcing involve subtle and
fundamental fluid flow mechanisms linked to nonlineari-
ties that are fully relevant to any harmonic forcing of any
flow.
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FIG. 6. Maximum azimuthal velocity contained in the geo-
strophic flow normalized by (�spinR) (a) as a function of the

eccentricity for E ¼ 6� 10�5 and �R ¼ 0:38, and (b) as a
function of the Ekman number for � ¼ 0:04 and �R ¼ 0:38.
Dashed-dotted lines correspond to theoretical scalings, and error
bars are equal to the rms value of the measures which ranges
between 5%–15%.

FIG. 7 (color online). Kalliroscope visualization of a resonant
tidal forcing at E ¼ 10�5 for a spin axis inclined by an angle
�5

�
compared to the axis of the deformation. This corresponds

in astrophysical terms to an inclination of the ecliptic plane.
Forcing with azimuthal period m ¼ 2 and m ¼ 1, as well as
possible harmonicsm ¼ 3,m ¼ 4, etc., leads to the apparition of
numerous shear cylinders.
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