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Among the open issues to be addressed by ITER is the control of plasma wall interaction and

the divertor operation at very high power. In this strongly non-linear process, the turbulent trans-

port is observed to be a key element with intermittent-like behaviour and, as such, requires a full

ab-initio investigation. In particular, Scrape-Off Layer turbulent transport exhibits long range

radial transport that significantly depart from the diffusive like transport assumption. In that

respect it is important to analyse the statistical properties of SOL turbulence, both for a proper
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Figure 1: 2D density map derived from
Tokam-2D. The radial r and poloidal θ
directions are normalized by the Larmor
radius ρL. The simulation domain is 256
ρL× 256 ρL. Note the logscale of the nor-
malized density. Blow-up : velocity vec-
tors (black arrows) are superimposed to
the density field.

understanding of the ongoing turbulence, but also

to provide elements for a predictive description of

transport.

In the present paper, a statistical numerical anal-

ysis of the eulerian and lagrangian velocity fluctu-

ations of SOL turbulence is achieved. The present

statistical results are computed with data from

TOKAM-2D simulations of SOL turbulence [1].

This model is based on the interchange insta-

bility in the flute and isothermal approximation.

The equations used in this analysis are very simi-

lar to the one describing the Rayleigh-Bénard ex-

periment. It is a convenient description of SOL tur-

bulence since it is a very efficient simulations tool

that reproduces the "blobby" transport and show an

extremely intermittent behavior as reported exper-

imentally. From the simulations, a temporal series

of the electric potential and of density maps are

obtained (figure 1) from which Eulerian and La-

grangian velocities are respectively computed.

The Eulerian velocity is derived at each position



from the electric potential maps as being the electric drift velocity, ~vE = ~∇φ ∧~B/B2. The mea-

surements volume is restricted to r = 15ρL to r = 160ρL in which turbulence is fully developed.

The resulting velocity field is a 145× 255 vectors array respectively in the radial and poloidal

directions. From the temporal fluctuations of the electric drift velocity, the temporal Eulerian

velocity increments are computed as δtu = u(r,θ , t + δ t)− u(r,θ , t), where u is restrict to the

radial velocity component.

The plasma Lagrangian velocity, on the other hand, is obtained from the density maps by

tracking “structures” of density. Fronts and density structures can be clearly identified using a

simple thresholding method on the density value. 50 % of the absolute density maximum value

was chosen as the threshold and both sub-dense and over-dense structures are tracked. Typically,

around ten structures are identified on a given map. In order to take into account the structure

deformation, we compute their "center of mass", ∑r,θ~r n/∑r,θ n. The velocity components are

computed as the displacement of the structure’s center during the time delay between two maps

τ = 50/Ωi, where Ωi is the ion cyclotron frequency. The average displacement of a structure

during τ is of the order of 1 Larmor radius ρL. Since the extension of density structures is about

∼ 30 and ∼ 10 ρL respectively in the radial and poloidal directions, an overlap technique is
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Figure 2: LAGRANGIAN. Probability
density functions of the radial Lagrangian
velocity increments for different time de-
lays (a) δ t = 1 τ , (b) δ t = 4 τ , (c) δ t =
10 τ and (d) δ t = 30 τ . Black dotted
lines correspond to a Gaussian distribu-
tion with same variance.

employed to recognize an identical structure from

one map to another. It consists to verify that the

center of mass of the “τ + 1” structure is always

included into the “τ” structure. If a stretched struc-

ture dislocates itself into smaller structures, the lat-

ter are considered as being new structures. A tem-

poral sequence is associated with each identified

structure. Statistics of the lagrangian velocity incre-

ments are computed for each structure n as δ (n)
t u =

u(n)(t +δ t)−u(n)(t).

Four probability distribution functions (pdf) of

the lagrangian velocity increments for different

time delays are plotted in figure 2. The shape of

the pdf is found to significantly vary as a function

of the time scale δ t. At large time scale, the pdfs

are found to be close to gaussianity. Conversely, at

small separation time scale, the pdfs depart from a

Gaussian distribution of same variance and exhibit



heavy tails with respect to their central peak. A velocity acceleration ∂u/∂ t equal to 5 times the

root-mean-square (rms) value is 200 times more probable than for a Gaussian distribution. This

non-gaussian behavior at small scale is an essential feature of the dynamic of the turbulence and

is a signature of intermittency.

The pdfs of the temporal eulerian velocity increments for different time delays δ t are plotted

in figure 3. As for the lagrangian velocity, the pdfs are Gaussian at large time delay and depart

significatively to Gaussian distribution at small δ t. As an illustration, a velocity acceleration of

5 times the rms value is 80 times more probable than a Gaussian.

To further quantify the variable flattening shape of distribution functions, the flatness factor

(or kurtosis) is defined as the normalized fourth-order structure function 〈[δtu]4〉,

F(δ t) =
〈[δtu]4〉
〈[δtu]2〉2 , (1)

where the structure function of order q is defined as 〈[δtu]q〉 =
∫
(δtu)q p(δtu)d(δtu). F = 3

corresponds to a Gaussian distribution. Large values of F correspond to highly intermittent

signals in which δtu is nearly zero much of the time and periodically burst into life.

In fluid turbulence, values of the flatness factor of the velocity increment are found to be in

the range 4-40 depending on the turbulence intensity [2]. Furthermore the structure functions
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Figure 3: EULERIAN. Probability density
functions of the radial Eulerian velocity
increments for different time delays (a)
δ t = 1 τ , (b) δ t = 4 τ , (c) δ t = 10 τ and
(d) δ t = 30 τ . Black dotted lines corre-
spond to Gaussian distribution with same
variance.

are assumed to follow a scaling law in the inertial

range 〈[δu]q〉 ∼ rζq , where r is the scale (spatial and

temporal scales can be linked through the Taylor

hypothesis r ∼Urmsδ t) and ζq is the structure func-

tion exponent. It is now clearly established that ζq

present a non linear variation as a function of the or-

der q [2]. The departure of ζq to linearity is the sig-

nature of intermittency. Kolmogorov [3] proposed

a non linear variation of ζq as ζq = c1 q− c2 q2/2,

where c2 is the intermittency coefficient and is uni-

versal in 3D turbulence. The flatness exponent in

the inertial range, F ∼ rζ4−2ζ2 according equation

(1), is connected to the c2 coefficient and is given

by ζ4−2ζ2 =−4 c2. The flatness exponent is found

to be 4 c2 = 0.1±0.012 for eulerian measurements

whereas in lagrangian turbulence 4 c2 is equal to

0.36± 0.08. Lagrangian increments are thus found



to be ∼ 3.5 times more intermittent than eulerian

ones in fluid turbulence.
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Figure 4: Eulerian (data ◦) and La-
grangian (data ×) flatness of the veloc-
ity increments. The full lines correspond
to the expected power law of the Eulerian
flatness in fluid turbulence whereas the
dashed lines correspond to the expected
increases of the Lagrangian flatness.

The Lagrangian and the Eulerian flatness, nor-

malized by 3, are plotted in figure 4, as a func-

tion of the time delay δ t normalized by, respec-

tively, the life time of Lagrangian density structures

and the correlation time of the Eulerian velocity.

At large time delay δ t, the flatness factor is close

to 3 as expected for Gaussian distributions. Con-

versely, at small δ t, F increases up to values larger

than 20, which is characteristic of strongly inter-

mittent signal. The growth of the Eulerian flatness

(data ◦), with decreasing δ t, is found to be sharper

than the expected slope (i.e. -0.1) in fluid turbu-

lence whereas the increase of the Lagrangian flat-

ness (data ×) seems to be weaker than the expected

slope, i.e. -0.36. We do not claim that the flatness

grows as a power law of the time delay. This non self-similar growth is consistent with the fact

that a clear initial range is not recovered in SOL turbulence which is may due to the presence

of several injection scales. However the growth of the Lagrangian flatness at small time delay

seems to be slightly sharper than the one of the Eulerian flatness and this effect is compatible

with a more intermittent Lagrangian velocities as previously observed in fluid turbulence.

A comparison with experimental data from Doppler backscattering [4] will be achieved in a

near future.
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