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Abstract Inertial waves generated by a small oscillating

disk in a rotating water filled cylinder are observed by

means of a corotating particle image velocimetry system.

The wave takes place in a stationary conical wavepacket,

whose angle aperture depends on the oscillation frequency.

Direct visualisation of the velocity and vorticity fields in a

plane normal to the rotation axis are presented. The char-

acteristic wavelength is found to be approximately equal to

the disk diameter. The classical dispersion relation for

plane waves is verified from the radial location of the

wavepacket, and from the ellipticity of the projected

velocity diagram.

1 Introduction

A homogeneous fluid rotating at constant angular velocity

supports a specific and unusual class of waves which

propagate in the interior of the fluid, known as inertial (or

gyroscopic) waves (Greenspan 1968; Pedlosky 1987;

Cushman-Roisin 1994). These waves are of primary

importance in geophysics and astrophysics (oceanic and

atmospheric flows, liquid planet core, rotating stars), in

which cases they are often coupled with density stratifi-

cation effects. Purely inertial waves are also relevant to

industrial flows, such as spacecrafts fuel tanks or liquid-

filled ballistics. The most striking properties of these waves

arise from their anisotropic dispersion, leading to a number

of non-intuitive geometrical behaviours, such as an energy

propagation normal to the phase velocity and anomalous

reflection on solid boundaries (Lighthill 1978; Phillips

1963).

The rationale for these fluid oscillations in the presence

of rotation is as follows. In the steady solid-body rotation

regime, the radial pressure gradient balances the centrifu-

gal force. This equilibrium is stable: if a fluid particle is

displaced outward in the radial direction, its azimuthal

velocity in the inertial frame will be lower than the velocity

of solid rotation at the new position, because it conserves

the angular momentum it had at the original position. The

lower centrifugal force at the new position is no longer

balanced by the inward pressure gradient, and the fluid

particle experiences a restoring force. In the rotating frame,

this restoring mechanism is described in terms of the

Coriolis force, Fc ¼ �2X� u (per unit mass). In the

absence of viscosity, the displaced fluid particle will start

to oscillate, describing circles in the sense opposite to that

of the background rotation (‘‘anticyclonic’’ circular trans-

lation), with a pulsation 2X.

If now a disturbance is forced with a pulsation r smaller

than 2X, the fluid particles still describe circles in the

rotating frame, but now within oblique planes. The angle h
between the normal to the plane and the rotation axis is

such that the in-plane Coriolis force, 2Xu cosh, equals the

lower acceleration ru (see Fig. 1a) (Phillips 1963). In

addition to the above-mentioned centripetal pressure gra-

dient, a new pressure gradient has to balance the
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component of the Coriolis force normal to the plane of

motion. Since this plane of motion is a surface of constant

phase (i.e. constant velocity and pressure), the pressure

gradient results in a colinear phase velocity, so that the

fluid motion appears within a transverse circularly polar-

ized travelling wave (Fig. 1b). The anisotropic dispersion

of inertial waves follows from this dependence of the

wavevector angle upon the pulsation r.

Depending on whether the characteristic wavelength is

large or small compared to the container size, inertial

waves may be considered as global (or contained) or local

(short wavelength approximation).

The global forcing is of primary importance in natural

flows in the ocean, atmosphere, or liquid planet cores. In

these systems, inertial waves, or more generally inertia-

gravity waves, may be forced either by an oscillating

homogeneous body force, as for the ocean tides, or from

the temporal variation of the background rotation vector, as

for the precessing Earth core (Aldridge and Lumb 1987). A

number of laboratory experiments of contained inertial

waves have been carried out in various geometries of

industrial or geophysical relevance, including cylinder

(Oser 1958; Fultz 1959; McEwan 1970; Ito et al. 1984;

Manasseh 1996; Duguet 2006), cone (Beardsley 1970),

spheroids (Malkus 1968), or more complex geometries

(Maas 2001; Manders and Maas 2003).

On the other hand, a small oscillating disturbance in an

infinite medium provides a local excitation of inertial

waves. Far from the source, these are essentially plane

waves propagating along ‘‘rays’’, and may display a variety

of familiar phenomena of optics, such as reflection,

refraction and interference (Lighthill 1978; Phillips 1963).

Visualisations of the flow field emitted from a point source

may be found in the numerical study by Godeferd and

Lollini (1999). Laboratory experiments focusing on such

localized inertial waves are more sparse than for global

forcing (Oser 1958). It must be noted, however, that for

experiments in a finite container, if the viscous damping is

negligible, the observed wave pattern is the result of the

interference between multiple reflected waves, so the

intended local wave may also show global properties.

The aim of the present paper is to present simple

visualisations of inertial waves forced by a small oscil-

lating disk in a large rotating cylinder, revisiting a

classical geometry first investigated by Oser (1958) and

Fultz (1959). Although the properties of the inertial waves

are already well documented in the literature [see

Greenspan (1968) for a review of those early experi-

ments], only qualitative observations of the flow itself, by

means of visualisation using dye or anisotropic flakes,

have been carried out. In the present paper, particle image

velocimetry (PIV) has been used to directly observe the

velocity field of the wave produced by a small distur-

bance. This non intrusive technique has been also used

recently by Maas (Maas 2001; Manders and Maas 2003),

to investigate the focusing of wave on attractors in closed

geometries with sloping boundaries, using a global forc-

ing. On the other hand, the small size of the wave source

compared to the rotating tank and the significant viscous

damping make the present experiment closer to the local

forcing scheme.

The paper is organized as follows. First the dispersion

relation for plane waves and the geometry of the wave-

packet are discussed in Sect. 2. The experimental setup and

the measurement techniques are described in Sect. 3. In

Sect. 4 the velocity fields measured by PIV are described,

from which the dispersion relation and the wavelength

selection are analyzed. Finally, some concluding remarks

are offered in Sect. 5.

2 Theoretical background

2.1 Dispersion relation for plane waves

In this section we briefly derive the dispersion relation for

linear plane waves and recall their main properties. We

start from the inviscid equation for the vorticity,

x ¼ r� u; written in the frame rotating at constant

angular velocity X;

ox

ot
þ ðu � rÞx ¼ ½ðxþ 2XÞ � r�u; ð1Þ

and the continuity equation written for the velocity and the

vorticity,

k

Ω

θ
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du/dt
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Fig. 1 a Coriolis force and pressure gradient experienced by a fluid

particle in circular translation with pulsation r in a frame rotating at

angular velocity X about the vertical axis. The velocity u and the

acceleration du/dt lie in an oblique plane, normal to the wavevector k
making angle h = cos–1 (r/2X) to the rotation axis (here u is chosen

normal to X). b Three planes of constant phase 0, p/4, p/2

(corresponding to 1/4 wavelength), normal to k, enphasizing the

circularly polarized transverse wave and the shearing motion between

planes. The phase velocity is along k, showing that the circular

translation is anticyclonic
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r � u ¼ 0; r � x ¼ 0: ð2Þ

We consider for convenience X ¼ Xẑ in the z direction.

We seek for plane wave solutions for a single Fourier

component k, written in cartesian coordinates,

u ¼ U0eiðk�x�rtÞ; x ¼W0eiðk�x�rtÞ; ð3Þ

where U0 and W0 = ik · U0 are constant complex vectors,

both normal to k due to incompressibility (2), i.e., the wave

is transverse. Note here that there is no rotation but only

circular translation of the fluid particles in the plane of

motion, so the vorticity here is only associated to the

shearing between planes of constant phase (Fig. 1b). For

such plane wave, the two nonlinear terms ðu � rÞx and

ðx � rÞu in Eq. (1) vanish exactly: nonlinear effects may

only be expected from a combination of two or more

Fourier components.

Inserting Eq. (3) into Eq. (1) gives the relation disper-

sion for those plane waves,

r ¼ 2X
kz

k
¼ 2X cos h ð4Þ

where h is the angle between X and the wave vector k,

yielding the phase velocity,

c ¼ 2X cos h
k

k2
: ð5Þ

Inertial waves are therefore dispersive and anisotropic:

c depends both on the magnitude and the angle of the

wavevector k. A remarkable consequence of Eq. (4) is

that a given pulsation is not uniquely associated to a

wavelength, so that the actual wavelength (or range of

wavelengths) of the wave is expected to be selected by

an external lengthscale, e.g., the size of a disturbance for

a local forcing, or the system size itself for a global

forcing.

Equation (5) tells how points of constant phase travel,

but does not tell where the wave actually takes place, i.e.,

where the energy of a given disturbance propagates. The

velocity of energy propagation is the group velocity

which, for plane waves, is given by cg ¼ rkr (Lighthill

1978), where rk is the gradient in wavenumber space,

yielding

cg ¼ k� ð2X� kÞ=k3; ð6Þ

of magnitude cg = (2X/k)sinh. Comparing Eqs. (5) and

(6) shows that the phase and group velocities are normal,

and satisfy cþ cg ¼ 2X=k: Physically, this property

implies that an instantaneous localized disturbance prop-

agates energy in a wavepacket at velocity cg along the

direction hg = p/2 – h, and within this wavepacket the

phase of the wave travels normal to cg. More insight into

anisotropic dispersive waves can be found in Lighthill

(1978).

2.2 Wavepacket forced by an oscillating source

We now consider the inertial waves emitted from the

periodic oscillation of a small source. The details of the

flow field in the vicinity of the source may be rather

complex, but only the flow far from it is considered here.

Plane waves are not exact solutions of the problem, so we

restrict here to linear waves of small amplitude, and only a

qualitative discussion of the wave pattern is given in the

following.

Consider a small source, of characteristic size ‘, oscil-

lating with pulsation r and amplitude A (see Fig. 2),

initiating a velocity disturbance rA in its vicinity. Since the

energy propagates at an angle hg = p/2 – h from the

source, the wave pattern takes place in a wavepacket in the

form of a double cone, making an angle hg to the rotation

cg
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Fig. 2 Sketch of the inertial wave emitted from an oscillating

disturbance of size ‘ in an infinite medium. Only the upper half cone

is shown. a Low pulsation, b pulsation comparable to twice the

angular velocity 2X. The solid and dashed lines in the conical

wavepacket represent two surfaces of constant phase a = 0 and a = p
(a ‘‘trough’’ and a ’’crest’’ of a velocity component)
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axis (only the upper half cone is shown in Fig. 2). The fluid

oscillates inside the thickness of the cone, and is at rest

outside. Note that for a finite container the cone axis is

parallel but does not necessarily coincide with the rotation

axis. For a periodic oscillation, the energy fluxes continu-

ously along this conical wavepacket to infinity, so that the

wavepacket is stationary. In the absence of viscosity and

for small amplitude A, ‘ is the only lengthscale of the

problem, so both the thickness of the cone and the wave-

length are expected to be of order of ‘.

In the far field approximation, where the radius of the

cone is much larger than its thickness, the curvature of the

cone may be neglected and the above description in terms

of plane waves becomes relevant. On a surface of constant

phase, which is approximately a conical surface lying in

the thickness of the wavepacket, the velocity field describes

circles normal to k with frequency r. In the limit of small

amplitude fluid particles also describe approximately cir-

cular trajectories. This surface of constant phase travels

across the thickness of the conical wavepacket, from the

outer to the inner boundary, with a phase velocity normal

to it. Since both the thickness of the wavepacket and the

characteristic wavelength are of order of ‘, the wavepacket

merely contains one ‘‘crest’’ and one ‘‘trough’’ of each

velocity component.

For very slow oscillations, r � 2X, the cone aperture hg

shrinks to zero. In this limit, the resulting wavepacket is

reminiscent of a classical Taylor column, whose vertical

extent grows as z = cgt = 2Xt/k. In this so-called geo-

strophic limit, the velocity field becomes invariant with

respect to the rotation axis, and the fluid velocity follows

exactly the velocity of the disturbance inside the cylinder

which circumscribes the source (boundary layers actually

modify this idealized picture). In the opposite limit,

r ? 2X, the double cone degenerates into a plane normal

to the rotation axis, but whose horizontal extent grows with

a vanishing group velocity. This wavepacket contains a

stationary wave, as the result of the interference of the

upper and lower wave travelling with opposite phase

velocities c ¼ �2X=k: In this planar wavepacket, fluid

particles simply make horizontal circles at the natural

frequency of the inertial oscillations, 2X.

Along the thin conical surface of the wavepacket, a

geometric attenuation takes place because of the spatial

spreading of energy. Since the energy flux through a sphere

centred on the source must be independent of the radius,

and considering that the wave energy is localized on an

annulus of constant thickness defined by the intersection of

the conical wavepacket and the sphere, the kinetic energy

|U0(q)|2 should decrease with the circle perimeter as q–1,

i.e., the velocity disturbance should decrease as q–1/2,

where q is the distance from the source in spherical

coordinates.

3 Experimental setup

3.1 The rotating tank and the oscillating disk

The experimental setup is sketched in Fig. 3. It consists in

a vertical cylinder, of radius R = 17.5 cm and height

H = 42 cm, mounted on a turntable rotating at a constant

frequency X/2p = 0.4 Hz, with a precision of DX/X ^
6 · 10–3. The turntable consists of a large annular gear

wheel, 80 cm in diameter, and the rotation is achieved by a

lateral pinion, allowing for visualisations from below

through the transparent bottom of the tank. A cover is

placed below the free surface, preventing from distur-

bances due to residual surface waves. The rotation of the

fluid is set long before an experiment, in order to avoid

transient spin-up recirculation flows and to achieve a solid

body rotation regime. More details on the turntable may be

found in Morize et al. (2005).

The choice of the size and amplitude of the perturbation

result from a compromise between several requirements:

the far field approximation, a sufficient velocity signal

compared to the residual velocity due to the variations of

the rotation rate DX, and a sufficient attenuation length to

avoid multiple reflections. A disk, of radius Rd = 10.5 mm

and thickness w = 2.5 mm, has been used. It is hung at a

distance h0 = 130 mm below the cover by a thin vertical

R = 175 mm

Laser sheet
h

m
m 

02
4 

= 
H

A, σ

2Rd

Visualization

Ω

r*

h’
θg

Fig. 3 Experimental setup. The camera (below) and the disk are

corotating with the tank, while the laser sheet (from left) is in the

laboratory frame
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stem, 1 mm in diameter, that passes through a hole in the

cover. The vertical oscillation of the disk, z(t) = A cos(rt),

is achieved by a servo-controlled brushless motor in the

laboratory frame, with a coupling device ensuring the

transmission of the translation to the rotating frame. As a

result, the motion of the disk in the rotating frame is a pure

vertical oscillation with no rotation. The amplitude of the

oscillation is A = 5 mm, and the frequency r/2p has been

varied in the range 0.10–0.78 Hz, i.e., r/2X = 0.12–0.97.

3.2 Flow regimes and non-dimensional numbers

In the absence of background rotation, two non-dimen-

sional parameters characterize the flow induced by an

oscillating bluff body: The Keulegan-Carpenter number,

KC = pA/Rd, and the Reynolds number, Re = Rd Ar/m. For

the present experiments, KC = 1.50 is constant, while Re is

varied in the range 30–260. For these values, the flow

consists of a periodic shedding of vortex rings on each side

of the disk (Tao and Thiagarayan 2003). The modification

of this flow pattern by the effects of the rotation is con-

trolled by the Rossby number, which is simply defined here

as the frequency ratio Ro = r/2X. The detail of the flow

near the oscillating disk is not investigated here, and we

focus on the resulting inertial waves far from the disk,

which exist only for Ro \ 1.

The global versus local nature of the inertial waves

generated by this forcing may be characterized by com-

paring the viscous attenuation length along the wavepacket

and the size of the container. The damping of inertial

waves originates from the shearing motion of the fluid

between planes of constant phase, and acts on a timescale

tv = (2mk2)–1. The attenuation length may thus be defined

from dv ^ cg tv, with cg the group velocity, i.e.

dv ¼ X=ðmk3Þ: ð7Þ

Taking the tank height H as the characteristic size of the

container, the ratio H/dv may be written as

H

dv
¼ 2EkðkHÞ3; ð8Þ

where Ek = m/2XH2 is the Ekman number, which is con-

stant for the present experiments, Ek = 1.13 · 10–6. For

H/dv � 1, i.e. for k � HEk1/3, the wave losts most of its

energy before reflecting, and the resulting wave pattern

may be seen as essentially local, with weak confinement

effects. Assuming a wavelength of order of the disk

diameter (measurements of k are presented in Sect. 4), the

attenuation length is dv ^ 100 mm, yielding H/dv ^ 4.

Although the condition H � dv is not strictly satisfied, a

significant energy fraction is indeed lost before the first

reflection. The strongest secondary wave occurs from the

reflection at the cover for small oscillation frequency, and

has a relative energy of exp(–2h0/dv) ^ 0.07, indicating

that multiple reflections should not affect significantly the

resulting wave pattern.

3.3 Velocity measurements

Instantaneous velocity fields in a horizontal plane located

at a distance h = 5.2Rd = 55 mm, intercepting the cone at

the radius

r� ¼ h tan hg; ð9Þ

are obtained from PIV. The water is seeded by borosilicate

spheres, 11 lm in diameter, and the imaged plane is illu-

minated by a laser sheet of thickness 1 mm produced by a

pulsed Nd:YAG laser (25 mJ per pulse). The cylindrical

container is immersed into a rectangular water tank, in

order to minimize optical distortion of the lighting. Images

are acquired from below, through the transparent bottom of

the tank, with a camera (1,280 · 1,024 pixels, 4,096 gray

levels) located 50 cm below the laser sheet and corotating

with the tank. Only a central region of 17.7 · 14.1 cm2 of

the flow is imaged. A sampling rate of 8 Hz was used,

ensuring a typical particle displacement of the order of

1 mm (5–10 pixels) between two frames. Since the laser

source is kept in the laboratory frame, the cylinder and the

camera rotate of 18� between two frames, yielding a slight

apparent particle displacement even for zero fluid velocity,

which contributes to the measurement noise.

Window sizes of 32 · 32 pixels, with an overlap of 16

pixels, are used for the PIV computations.1 The final

velocity fields are defined on a 80 · 64 grid, with a spatial

resolution of 2.2 mm. A velocity resolution of 0.1 pixel

can be achieved using a classical subpixel interpolation

scheme for the correlation peak, yielding an uncertainty of

0.12 mm/s. This uncertainty represents about 2 · 10–2

of the velocity amplitude of the inertial wave, and 5 · 10–4

of the velocity of the solid body rotation at the scale of the

imaged area.

3.4 Phase average

A residual modulation of the rotation rate of 6 · 10–3X,

probably originating from a nonconstant friction of the

turntable due to a slight misalignment between the rotation

axis and the cylinder symmetry axis, superimpose to the

mean solid-body rotation X. As a result, the measured

1 DaVis software, by LaVision GmbH, Anna-Vandenhoeck-Ring 19,

37081 Göttingen, Germany, complemented with the PIVMat toolbox

for Matlab, http://www.fast.u-psud.fr/pivmat.
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velocity field is the combination of the inertial wave pat-

tern of interest, of frequency r, and a background

oscillating flow. The velocity signal of the inertial wave

being very weak (it is only twice larger than the back-

ground flow), it was necessary to phase-average the

velocity fields over a large number of periods to extract the

mode oscillating at the excitation frequency. For each

value of r, 30 oscillation periods were recorded, each

period containing between 6 and 40 velocity fields because

of the constant sampling rate.

It must be noted that, since the fundamental frequency

of the residual modulation is given by the turntable rotation

rate itself, the harmonics rres = nX are not solution of the

dispersion relation (4) for n ‡ 2, indicating that inertial

waves cannot be excited by any harmonics of the residual

modulation. As a consequence, the only possible inertial

wave excited by the modulation has the fundamental fre-

quency of the turntable, rres = X, and, except for the

special case r ^ X (synchronized oscillation and rota-

tion), which is not considered here, the residual modulation

should be cancelled out by the phase average procedure.

4 Results

4.1 Velocity and vorticity fields

Two examples of horizontal velocity fields are shown in

Fig. 4, for oscillation frequencies r/2X = 0.24 and 0.74.

Only one out of four velocity vectors is plotted for clarity.

The vertical component of the vorticity xz, computed from

second-order centred differences from the horizontal

velocity, is also shown on the color background, empha-

sizing the approximately axisymmetric shearing motion of

the wave in the horizontal plane. As expected, the vorticity

concentrates into an annulus, defined as the intersection of

the conical wavepacket with the horizontal measurement

plane, whose radius increases as r is increased. For these

two frequencies, the radii expected from the linear theory

are r* = htanhg = 13.6 and 60.5 mm, respectively [with

hg = sin–1(r/2X)], which is in good qualitative agreement

with the pictures. For the lower frequency (Fig. 4a), a weak

secondary wave can also be seen at larger radius, originating

from a reflection of the primary wave with the cover. Here

again, the expected radius, r* = (h + 2h0)tanhg = 77.9 mm,

is compatible with the observation.

In Fig. 5, a sequence of six vorticity fields xz regularly

spaced during one excitation period is shown. An inward

propagating circular wave, located in a stationary annular

wavepacket, can be clearly seen from these fields.2 The

seemingly paradoxical propagation towards the centre is

easily understood from the direction of the wavevector k

normal to the cone surface (see Fig. 2), whose compo-

nent in the plane normal to the rotation axis is inward.

The wavepacket actually contains approximately one crest

and one trough, confirming that the width of the wave-

packet is indeed of the order of the characteristic

wavelength.

It must be noted that a significant level of vorticity is

also found near the centre, of the same order or even

larger than the vorticity in the cone, on a size comparable

to the disk diameter. This feature is not described by the

linear inviscid theory in an infinite medium, which

(a) σ / 2Ω = 0.24

(b) σ / 2Ω = 0.74

0

ω (s−1)
−0.4 0 0.4

50-50

-50

0

50

-50

0

50

Fig. 4 Examples of velocity field (arrows) and axial vorticity field xz

(color scale), at small (a) and large (b) excitation frequency. The

imaged area is 177 · 141 mm2, and the rotating tank diameter is

35 cm

2 Animations of vorticity fields are available at the URL

http://www.fast.u-psud.fr/inertialwaves.
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predicts no fluid motion outside the cone. It resembles a

Taylor column, although strict Taylor columns only exist

in the limit r � 2X. At low oscillation frequency, this

vorticity patch oscillates with zero mean, in phase with

the disk. It may be associated to an alternatively stretched

and compressed columnar structure between the disk and

the bottom wall (another one is expected above the disk),

similar to that observed by Fultz (1959). More surpris-

ingly, at larger frequency, this vorticity patch at the centre

also shows a significant nonzero mean (anticyclonic vor-

ticity), as can be seen in Fig. 5. A possible origin for this

steady vorticity component is a nonlinear drift, analogous

to the Stokes drift for surface waves (Lighthill 1978;

Kistovich Yu and Chashechkin Yu 2000). However, the

accuracy of the PIV measurements at this scale is prob-

ably not good enough to resolve the details of this central

vorticity patch, which is left for future investigation, and

we focus in the following on the wave in the conical

wavepacket.

4.2 Verification of the dispersion relation

A first verification of the dispersion relation (4) is provided

from direct measurement of the radius r* of the maximum

of the wavepacket profile. This profile is computed from

the azimuthal and temporal average of the squared vertical

vorticity,

hx2
z ðrÞi ¼

1

T

ZT

0

1

2p

Z2p

0

x2
z ðr;/; tÞd/

0
@

1
Adt: ð10Þ

Examples of profiles are shown in Fig. 6 for various

oscillation frequencies. For increasing frequency r, the

radius of the maximum is shifted outwards. Note also the

secondary peak for r/2X = 0.46 (circles), associated to a

reflection on the cover.

From Fig. 6 the radial location of the maximum, r*, has

been measured, from which the angular aperture of the

cone is deduced, hg = tan–1r*/h. In Fig. 7 are plotted the

measurements of sinhg (asterisks) as a function of the

normalised oscillation frequency r/2X, showing a good

agreement with the linear prediction from the dispersion

relation (4).

Another verification of the dispersion relation is pro-

vided by the ellipticity of the velocity diagrams, or

hodographs, (vr, v/), shown in Fig. 8. Here, the phase- and

azimuthally-averaged radial and azimuthal velocity com-

ponents are measured at the location r* of maximum

vertical vorticity. These diagrams show elliptical patterns,

as the result of the projection on the horizontal plane of the

tilted circular motion along the cone. As expected, the

polarization of the wave is anticyclonic, which corresponds

here to an anticlockwise circular translation of the fluid

ω (s−1)
−0.4 0 0.4

α = π/3α = 0

α = 2π/3 α = π

α = 4π/3 α = 5π/3

Fig. 5 Phase-averaged vorticity fields, at six equally spaced phase

a = rt = (0..5) · 2p/6, for r/2X = 0.83. One can see approximately

one wavelength propagating inward in the stationary envelope of the

wavepacket. The scale is the same as in Fig. 4

0 20 40 60 80 100
0

0.02
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0.08

0.1

0.12

r (mm)

〈ω
)t,r(
2

〉

0.24
0.46
0.66
0.74
0.83

Fig. 6 Wavepacket profiles, defined as the envelope of the squared

vorticity profiles (10), for various oscillation frequencies. Note the

secondary peak for r/2X = 0.46 (circles), due to a reflection of the

wave. The dashed line is the law (15), with dv = 140 mm and b = 0.5,

plotted as a function of a shifted radius r – 15 mm
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particles (the background rotation is clockwise). Mea-

surements of the ellipticity vr/v/, which is given by sinhg,

are also plotted in Fig. 7 (circles). Here again, an agree-

ment with with the linear prediction is obtained, although

the data is more scattered than those from the direct

measurement of r*.

4.3 Wavelength

A quantity of interest is the characteristic wavelength k, or

range of wavelengths, of the inertial wave. Since the

wavelength is not given by the excitation frequency r, it

has to be selected by some characteristic scale of the dis-

turbance. In the inviscid theory, the size of the disturbance,

here the radius and thickness of the disk, and the oscillation

amplitude A, are the only relevant lengthscales. In a vis-

cous fluid, k may also depend on the viscosity, through the

thickness of the Stokes boundary layer due to the disk

motion (m/r)1/2, or the thickness of the Ekman boundary

layer (m/X)1/2. The wavelength dependence on those vari-

ous lengthscales are governed in general by the Reynolds

number, the Keulegan-Carpenter number, and the Rossby

number.

The wavelength has been measured for different exci-

tation frequencies r. The apparent wavelength in the

horizontal plane, k\, has been simply estimated from the

distance between two vorticity maxima. Since the wave-

vector component in the plane normal to the rotation axis is

k? ¼ jkj cos hg; the true wavelength k = 2p/|k| is related to

the apparent one k\ by

k ¼ k? cos hg: ð11Þ

The apparent and corrected wavelengths are shown in

Fig. 9. The angular correction is obtained from the

measured r*, using the relation hg = tan–1(r*/h). The

corrected wavelength is found to remain approximately

constant, k ^ 24 ± 2 mm, a value close to the disk

diameter,

k
2Rd
’ 1:15� 0:1: ð12Þ

Although the scaling of k with respect to the disk radius,

disk thickness, oscillation amplitude and viscosity has not

been checked, this result indicates that the disk diameter

provides here a reasonable estimate for the wavelength, and

hence for the wavepacket thickness.

4.4 Estimate for the maximum of xz
2

Finally, an estimate for the magnitude of the maximum of

the squared vertical vorticity, xz
2 = hxz

2(r*)i, may be

derived from assumptions about the characteristic vorticity

disturbance and geometric considerations. The disk oscil-

lation induces in the near field a disturbance of size d,
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Fig. 7 Cone aperture as a function of the normalized oscillation

frequency. Asterisks measured from the location of the maximum of

the vorticity envelope (Fig. 6). Circles measured from the hodograph

ellipticity (Fig. 8). The line is the prediction from the linear theory,

Eq. (4)
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Fig. 8 Phase- and azimuthally-averaged velocity diagram in the

plane (vr, v/), measured in the centre of the wavepacket for various

frequencies, showing the anticlockwise (i.e., anticyclonic) polariza-

tion of the wave. The ellipses in continuous line are fit of the data.

The small number of points at high oscillation frequency is due to the

constant sampling rate
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which may depend on the details of the flow, and charac-

teristic vorticity xd = rA/d. For the values of r in Fig. 6,

the Reynolds number Re lies in the range 60–220. In this

regime, vortex shedding of size d ^ A is expected, so that

the vorticity disturbance is simply given by xd ^ r =

2Xsinhg. The vorticity vector far from the source, x; is

rotating in a plane tangent to the cone, making angle hg to

the vertical. Its magnitude may be estimated using the q–1

decrease of the energy due to the spreading along the cone,

where q is the distance from the source. Using the fact that

the wavelength is found to be approximately independent

of r (Fig. 9), the squared vorticity also decreases as q–1,

and may be written

x2ðqÞ ’ bx2
d

Rd

q
ð13Þ

for q � Rd, where b is a constant of order unity. Now,

since only the vertical component of x is measured, we

write an expression for the maximum of xz ¼ jxj cos hg as

a function of r*. Expressing q and hg in terms of r* only,

this maximum of the squared vertical vorticity reads

x�2z ¼ bð2XÞ2Rd
r�2h2

ðr�2 þ h2Þ5=2
: ð14Þ

The growth as r*2 for Rd � r* � h is due to the

increasing energy injected by the oscillating disk as the

frequency r is increased, while the decrease as r*–3 when

r* � h originates both from the geometric attenuation due

to the energy spreading and from the vanishing vertical

projection of the vorticity as the cone widens. Although the

scale separation in our experiment, h/Rd = 5.2, is not large

enough to assess these two limiting behaviours, the

presence of a maximum in Fig. 6 near r* ^ h is indeed

in qualitative agreement with Eq. (14). Other choice for the

disturbance size near the disk, e.g. d ^ Rd or d ^ (m/r)1/2,

would not change significantly the behaviour of Eq. (14) in

the range of interest for r*, in particular the presence of a

maximum near r* ^ h.

The effects of the viscosity may be estimated as follows.

Due to the shearing motion of the wave, the energy inside the

cone, and hence the squared vorticity, is damped with a factor

e = exp[–2mk2 t], where t is the time for a disturbance to

travel along a distance q from the source. Taking t ^ q/cg,

with cg = (2X/k)coshg the group velocity, the damping

factor at the radial location r = r* can be written as

e = exp[–mk3 (r*2 + h2)/(Xh)]. Expressed in terms of the

attenuation scale (7), dv = X/(mk3), the maximum squared

vertical vorticity finally reads

x�2z ¼ bð2XÞ2Rd
r�2h2

ðr�2 þ h2Þ5=2
exp � r�2 þ h2

dvh

� �
: ð15Þ

This law may be compared to the measurements, using

dv = X/(m(2p/k)3) = 140 mm from the value k = 24 mm

obtained in Fig. 9. A reasonable agreement is indeed

obtained when Eq. (15) is plotted as a function of a suitably

chosen shifted radius, r � ~r; with ~r ’ 15 mm and taking

b ^ 0.5 (see the dashed curve in Fig. 6). This virtual origin

accounts for near field effects, since the limit h � Rd is not

satisfied in our experiment. The discrepancies between Eq.

(15) and the measured xz* most probably originate from the

exact vorticity disturbance near the disk, which may have a

more complicated form than the basic scaling xd ^ r. In

spite of those uncertainties, one may however conclude that

the general behaviour of the maximum of the vorticity

envelope in Fig. 6 is reasonably well captured by the

present estimate.

5 Conclusion

A series of visualisations of inertial waves, excited by

oscillating a small disk in a rotating cylinder, have been

performed by means of PIV. This non-intrusive technique

allows us to quantitatively investigate the flow field of the

wave, by contrast with most previous experiments in sim-

ilar geometries for which only qualitative observations

could be performed. From these PIV measurements, the

angle of the conical wavepacket has been measured using

two methods, from the radius of the cone and from the

ellipticity of the velocity components projected in the

measurement plane. Both methods are in good agreement

with the dispersion relation for plane waves. The magni-

tude of the maximum vertical vorticity of the wavepacket,

measured in the horizontal plane, is reasonably well

described from a simple estimate based on the vorticity
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Fig. 9 Apparent wavelength k\ (asterisks) and corrected wavelength

k (circles) as a function of the normalized oscillation frequency. The

horizontal line shows k = 24 mm
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disturbance in the vicinity of the disk and the energy

spreading along the cone.

The two conditions to observe localized inertial waves

in a finite container are (1) the far field approximation,

and (2) negligible reflected waves from the walls. Satis-

fying these two requirements in a laboratory-sized

experiment, while keeping an acceptable signal-to-noise

ratio, is a difficult task. In the present experiment, these

two requirements are only barely satisfied: the distance

between the wave source and the measurement plane is

h = (2.3 – 4.2)k (depending on the cone angle hg), and the

attenuation length is dv ^ R/1.8 ^ H/4.2, where R and H

are the radius and height of the cylindrical container.

However, in spite of these limitations, it is remarkable

that the essential properties of the inertial waves, in

particular the dispersion relation and the wavelength

selection, could be verified to within a reasonable

accuracy.
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