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The description of the generation mechanism of impulse surface waves remains an
important challenge in environmental fluid mechanics, owing to the need for a better
understanding of large-scale phenomena such as landslide-generated tsunamis. In the
present study, we investigated the generation phase of laboratory-scale water waves
induced by the impulsive motion of a rigid piston, whose maximum velocity U and
total stroke L are independently varied, as well as the initial liquid depth 4. By doing
so, the influence of two dimensionless numbers is studied: the Froude number Fr, =
U/(gh)'/?, with g the gravitational acceleration, and the relative stroke A p=L/h of the
piston. During the constant acceleration phase of the vertical wall, a transient water bump
forms and remains localised in the vicinity of the piston, for all investigated parameters.
Experiments with a small relative acceleration y /g, where y =U 2/L, are well captured
by a first-order potential flow theory established by Joo et al. (1990), which provides a fair
estimate of the overall free surface elevation and the maximum wave amplitude reached
at the contact with the piston. For large Froude numbers, however, wave breaking hinders
the use of such an approach. In this case, an unsteady hydraulic jump theory is proposed,
which accurately predicts the time evolution of the wave amplitude at the contact with
the piston throughout the generation phase. At the end of the formation process, the
dimensionless volume of the bump evolves linearly with A, and the wave aspect ratio is
found to be governed, at first-order, by the relative acceleration y/g. As the piston begins
its constant deceleration, the water bump evolves into a propagating wave and several
regimes such as dispersive, solitary-like and bore waves, as well as water jets are then
reported and mapped in a phase diagram in the (Fr,, A)) plane. While the transition from
waves to water jets is observed if the typical acceleration of the piston is close enough to
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the gravitational acceleration g, the wave regimes are found to be mainly selected by the
relative piston stroke A ;. On the other hand, the Froude number determines whether the
generated wave breaks or not.

Key words: surface gravity waves, wave-structure interactions

1. Introduction

The generation of waves at the surface of a liquid is a crucial physical problem for
understanding a wide range of phenomena that occur in Nature or in industrial processes,
such as periodic water waves generated by the wind at the ocean surface (Perrard et al.
2019), slamming in the context of ship hydrodynamics (Dias & Ghidaglia 2018), sloshing
in moving containers (Chwang & Wang 1984; Ibrahim 2005), impulse waves generated
by landslides (Fritz, Hager & Minor 2004; Robbe-Saule et al. 2021a; Rauter et al. 2022;
Darvenne, Viroulet & Lacaze 2024) or iceberg calving (Wolper et al. 2021).

The description of the free surface elevation resulting from an initial impulsion is a
long-standing problem in fluid mechanics that can be traced back to the classical works
of Cauchy and Poisson at the beginning of the nineteenth-century (Poisson 1818; Cauchy
1827; Darrigol 2003). Later, surface waves produced by a harmonic forcing have been
studied analytically by Havelock (1929), who employed linear theory to this end [see
also Biésel & Suquet (1951a,b,c) for more detail]. After these seminal contributions, and
motivated by the growing number of potential applications of the subject, many studies
followed, that investigated waves generated by the impulsive motion of a rigid body, with
the aim of describing the free surface elevation in the vicinity of the forcing region. In
particular, based on the prior theoretical work made by Kennard (1949); Noda (1970)
derived solutions to the linearised equations for gravity surface waves corresponding to
two idealised cases of landslides: the vertical fall of a solid block and the horizontal
translation of a rigid wall. In the second scenario, the linear relationship

Amo
T’” ~ 1.2Fr, (1.1)

was established between the maximum wave amplitude A,o at the contact with the
translating piston, the initial fluid depth h and the Froude number Fr, = U//gh. This
dimensionless quantity compares the forcing velocity U of the advancing wall to the
celerity «/gh of linear gravity waves in shallow water, where g stands for the gravitational
acceleration. The linear relationship obtained by Noda (1970) was successfully compared
with previous experiments performed by Miller & White (1966), and further confirmed
by another experimental investigation conducted by Das & Wiegel (1972). In this study,
these authors reported a phase diagram in the (Fr,, A,) plane, with A, = L/h being
the ratio between the total piston stroke L and the initial water depth &, and Fr;, being
calculated using the average velocity of the advancing wall during the generation phase.
Several wave regimes were identified: two dominated by dispersive effects (the so-called
oscillatory and non-linear transition regions), and two revealing an increasing influence of
non-linear effects (solitary and bore waves). Other experimental measurements and theory
for the force developing on an accelerating piston in a fluid channel and the resulting
surface elevation have also been reported by Synolakis (1986, 1989) for different kinds of
piston motion. In particular, these studies revealed that the maximum relative amplitude
of the wave is very close to the linear law A,,0/h = Fr,, when Fr, < 1. However, when
the Froude number becomes large, two nonlinear theoretical relations are put forward by
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Synolakis (1986, 1989) to connect the wave amplitude at the contact with the piston to
Fr,: under shallow water conditions and using the method of characteristics, one gets

A 1
% =Fr, + Fr,? (12)

while, when the plate is generating bores,

e _ Amo (14 Ano/ @)\
P p 14 Ano/h

results from the mass and momentum conservation equations (Whitham 1999). This
second nonlinear law has also been shown to give good predictions for bore waves
generated by the collapse of a granular column into shallow water, where the granular
front acts like a rigid piston (Sarlin et al. 2021b).

In another approach to the problem, several authors such as Chwang (1983); Lin
(1984), or Chwang & Wang (1984) considered the Euler equations and developed methods
based on the potential flow assumption and on small-time expansions to model the early
generation phase of impulse waves. They derived first and second-order solutions for the
free surface elevation and identified a singular behaviour at the contact point with the
advancing rigid wall. In particular, Chwang & Wang (1984) described the structure of the
nascent wave in the case of an impulsive sloshing motion, with accelerated rectangular
and cylindrical containers partially filled with water. The non-uniformity of the solution
was successfully analyzed by Roberts (1987) who developed a theory based on small-
amplitude expansions, which was shown to circumvent the singular behaviour at the
contact point between the free surface and the solid piston. This aspect was also studied
by King & Needham (1994); Needham, Chamberlain & Billingham (2008) and Needham
(2012), who considered the case of waves generated by a uniformly accelerated plate
(inclined or not) and employed matched asymptotic small- or large-time expansions, which
allowed these authors to develop temporally uniform solutions. Similar approaches were
followed later by Needham, Billingham & King (2007) and Uddin & Needham (2015),
who considered the free surface elevation caused by a rigid wall advancing at constant
velocity and the influence of weak surface tension effects on the problem, respectively. In
the latter case, Uddin & Needham (2015) demonstrated that four asymptotic regions have
to be studied to correctly describe the induced wave. They successfully compared their
analytical solution to experimental measurements of the free surface elevation during the
early times of the generation process. Following Roberts (1987), Joo, Schultz & Messiter
(1990) developed a theory based on a Fourier integral method and a small Froude number
expansion of a potential flow. Their analysis included surface tension and wettability
effects and led to the derivation of leading-order solutions for the free surface elevation
in various forcing cases including ramp, step or even harmonic velocities imposed at the
advancing wall. The asymptotic behaviour of these expressions was thoroughly discussed
by these authors, as well as the influence of surface tension which has, for instance, the
effect of removing the small wiggles that are observed otherwise in the vicinity of the
wavemaker. In a different approach, to obtain a given long wave, it is also possible to solve
an inverse evolution problem, as shown by the pioneering works of Goring (1978); Goring
& Raichlen (1980); and Synolakis (1990). By applying this method to solutions to the
Korteweg—de Vries equation, these authors were able to determine the correct trajectory
to confer to a piston wavemaker to produce a given solitary or cnoidal wave. More recently,
studies made, amongst others, by Guizien & Barthélemy (2002) or Francis et al. (2020)
refined this approach to accurately generate solitary waves either in laboratory experiments
or numerically.

(1.3)
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Figure 1. (a) Schematic view of the experimental setup. (b) Prescribed evolution of the relative stroke x,/L
(dash-dotted line) and velocity v, /U (solid line) of the piston with the dimensionless time tU/L, which
consists of a constant acceleration phase for a time 0 <7 < L/U followed by a constant deceleration for
L/U <t <2L/U. The measured values for the relative stroke (O0) and velocity (o) of the piston are also
reported for a typical experiment where L = 14.5 cm, U = 1.19 m.s™' and » =3 cm.

Despite this extensive research, open questions remain about the generation of impulse
surface waves due to the intrinsic complexity of the problem. In particular, the phase
diagram of the possible wave regimes provided by Das & Wiegel (1972) is, according
to these authors, incomplete, as in their study a weak coupling existed between the stroke
and the velocity of the piston. A similar pairing is observed in other configurations, for
instance in model experiments studying water waves generated by the gravity-driven fall
of a granular medium (Sarlin et al. 2022a). Thus, what happens when such a coupling
is removed remains unclear. Another important aspect is to determine to which extent
the theoretical models existing in the literature are able to describe waves generated
experimentally and give a relevant prediction for the free surface elevation for the different
wave regimes.

In this study, we report extensive experiments on impulse surface waves generated by
the horizontal translation of a rigid vertical wall in a water flume. In § 2, the experimental
methods, parameters of interest, and the forcing mechanism are presented. This is followed
by an analysis of the wave regimes obtained in § 3, which leads to their mapping in a phase
diagram. Section 4 provides a qualitative and quantitative description of the generation
phase for different representative examples of impulse waves observed in the experiments.
This preludes to a thorough discussion given in § 5 on the manner to predict the transient
shape of the induced waves and the maximum amplitude reached at the contact with the
moving wall when the generation process ends. Concluding remarks and perspectives for
future work are finally given in § 6.

2. Experimental apparatus and protocol

The present investigation was conducted using the experimental setup sketched in
figure 1(a). It consists of a glass tank of length 2 m, width 15 cm and height 30 cm, in
which is placed an aluminum vertical wall of thickness 1cm, width 14 cm and height
35 cm, referred to as the piston in the following. An additional aluminum framing is fixed
to the back of the vertical wall to prevent it from deforming when it is set into motion and
to avoid oscillations when stopped. In addition, a rubber seal is glued to the lateral sides of
the piston to maximise tightness. The piston is initially positioned at one end of the flume
and is connected to a linear brushless servo-motor (Transtechnik DSM 5.22.11Z38).

At the beginning of a series of experiments, water is poured into the flume up to a
height & which defines the initial water depth, as illustrated in figure 1(a). The x axis is
defined along the streamwise direction of the channel, the y axis follows the spanwise
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direction and the z axis is oriented vertically and opposed to gravity. The origin is set at
the undisturbed water level, at the initial contact between the piston and the liquid. Water
is dyed with fluorescein to enhance the contrast. The piston is then translated along the x
axis at a controlled velocity v, and stroke x,. As aresult of its translating motion, a certain
amount of water is displaced, thereby generating an impulse wave. Two parameters set the
dynamics of the piston: the maximum velocity U reached by the translating wall during its
horizontal course and its total stroke L, i.e. its final position along the channel. It should
be emphasised that U and L can be chosen independently with the present experimental
setup. The prescribed impulsive forcing motion is the following: the piston first undergoes
a constant acceleration phase where its position is given by

2

U
xp(t)=~——1* for0<t<L/U, 2.1
2L
followed by a constant deceleration where
=L U2t2—|-2Ut 1) forL/U<t<2L/U (2.2)
x,)=L|—=—= —t— or <t < . .
b 212 L

As a result, for both stages, the prescribed evolution of the position of the piston is
quadratic in time, whereas the corresponding velocity evolves linearly, as illustrated in
figure 1(b) by the solid and dashed lines, respectively. By doing so, the prescribed wave
forcing is symmetrical with a constant acceleration y = U2 /L (respectively, deceleration
—U?/L) during the first (respectively, second) phase of the motion. The choice of this
‘free-fall’-like law of motion is motivated by its geophysical relevance, as highlighted by
recent studies on dry granular collapses and subsequent generated impulse waves, where
the granular front was found to behave in a similar manner (Sarlin et al. 2021a, 2022a).
A typical measurement of the effective motion of the piston during an experiment in terms
of relative stroke (o) and velocity (o) is shown in figure 1(b). In all cases, the recorded
motion is observed to be very close to the prescribed one.

Through the experiments, the initial water depth 4 was varied in the range [1, 23] cm,
the stroke L of the piston between 2 cm and 30 cm and its maximum velocity U in the
range [0.1, 1.2] ms~!. From these parameters, we define two dimensionless numbers that
are the relative stroke of the piston, A, = L/h, varied here between 0.1 and 10, and the
Froude number, Fr, = U/+/gh, based on the maximum velocity U of the piston and varied
in the range [0.09, 2.2]. The systematic variation of these parameters leads to a data set of
266 experiments, which substantially extends the phase space covered by previous studies
(Miller & White 1966; Das & Wiegel 1972).

A Nikon D3300 camera, operating at 50 Hz, records the wave generation process from
the side of the glass tank. As a result, the measurements of the free surface elevation
correspond to the liquid height in the vicinity of the side wall. Based on preliminary
experiments, the camera is placed so as to fully capture the formation stage of the wave and
the first moments of its propagation along the channel, with a spatial resolution varying
approximately between 0.2 mm and 0.7 mm. A set of custom MATLAB routines, based
on a thresholding method, allows us to extract the water free surface elevation, n(x, 1),
from the video recordings. From there, the amplitude Ao (7) = n(x,, ) at the contact with
the moving wall is determined, as well as the corresponding mid-height width Ay, defined
at any time ¢ from n(x, + Ao, t) = Ao(?)/2. To check the reproducibility of the generated
waves, several representative experiments were repeated five times. By doing so, the wave
characteristics Ap and Ao obtained at t = L/ U were found to vary by less than 1 % and
4 %, respectively. We did not observe any significant variation in height across the span
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Figure 2. Representative cases of the different regimes of impulse waves observed: (a) a dispersive wave
for L=7 cm, U=0.42 ms~ !, and h=20 cm (Frp =0.3 and A, =0.35) at time t =0.72 s~4.3L/U
after the beginning of the piston movement, (b) a solitary-like wave for L =15 cm, U =0.47 ms~!, and
h=10cm (Fr, =0.47and A, =1.5)attime t =0.76 s = 2.4L /U, (c) a plunging breaking bore for L =30 cm,
U=1.09ms™!, and h =3 cm (Frp =2.0 and A, =10) at time t =0.36 s~ 1.3L/U, and (d) a water jet for
L=145cm, U=1.19ms !, and h =3 cm (Frp=2.2and A, =4.8) at time t =0.3 s ~2.5U/L. For each
experiment, the corresponding scale is indicated by a white bar. (e¢) Diagram of the impulse wave regimes in
the (Frp, A)) plane: (o) dispersive waves, (0) nonbreaking and (m) breaking solitary-like waves, (a) spilling
and (») plunging breaking bores, and (* ) water jets, respectively. Crosses (X) correspond to experiments at the
transition between several wave types, for which it is not straightforward to discriminate between regimes. The
solid line (—) marks the transition from waves to water jets when A, = 2.2Frp2 or U?/L ~0.45g. The dashed
line (- -) corresponds to the expression A, = 5.8Fr1,2 (or equivalently U2 /L ~ 0.17g), observed in the context
of impulse waves engendered by the collapse of a granular column in shallow water (Sarlin ef al. 2022a).

of the channel, as reported in Sarlin et al. (2022b) where views from a different angle are
provided.

3. Mapping of the wave regimes
3.1. Phase diagram of the generated impulse waves

Various kinds of waves are observed through the experiments, as illustrated in figure 2,
which suggests a great behavioural richness. These observations echo the different regimes
previously reported in the context of wave generation by a rigid wall (Miller & White 1966;
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Noda 1970; Das & Wiegel 1972) or by the entrance of a Newtonian fluid (Kriaa, Viroulet
& Lacaze 2022) or a granular material (Fritz et al. 2004; Heller & Hager 2011; Sarlin
et al. 2021b) into water. When both the stroke and velocity of the piston are small enough
(i.e. for L <h and U < \/gh), dispersive waves are generated (see figure 2a), which are
akin to damped oscillations featuring a decrease in amplitude over time and a frequency
dispersion during their propagation. The behaviour of these waves, and especially the
evolution of their free-surface elevation, is reminiscent of that of the Cauchy—Poisson
waves discussed, for instance, by Whitham (1999). Dispersion gets balanced by non-
linearity when the stroke of the piston is increased (L ~h and U < /gh), leading to
the formation of solitary-like waves as illustrated in figure 2(b). In such cases, the sole
propagating peak is not necessarily stable as, in some experiments, the wave eventually
breaks. The presence of such solitary-like waves indicates that the law of motion of the
piston approaches here the particular situations investigated in the studies of Goring &
Raichlen (1980); Synolakis (1990) and Guizien & Barthélemy (2002), where these authors
solved an inverse problem to accurately generate experimentally solitary waves. When
L > h, bore waves are engendered and present a characteristic non-linear steepening of
the wavefront that systematically leads to wave breaking as illustrated in figure 2(c).
Wave breaking is spilling when U is close to 4/gh, so that no noticeable air entrapment
is visible. By increasing U while all other parameters are kept fixed, breaking occurs
increasingly closer to the piston, as non-linear effects become dominant. This eventually
leads to the formation of plunging breakers for a sufficiently large velocity of the piston
(U > \/gh), for which a significant air entrapment by the breaking wave is observed
(see figure 2¢). Finally, a last situation is encountered experimentally when the typical
acceleration of the piston is large enough: in this case, a peculiar thin jet of water gets
propelled downstream from the forming wave, as illustrated in figure 2(d). This regime
seems to mark the transition from classical waves to splashes and, to the best of our
knowledge, this is the first report of such a fluid structure in the context of wave generation
by a translating wall. These water jets are, however, reminiscent of the ‘hydrodynamic
impact craters’ reported by Fritz et al. (2003a,b) when these authors studied the formation
of impulse waves caused by the impact of a thin granular slide propelled pneumatically. In
our case, once the jet detaches from the vicinity of the piston, it seems to experience
a ballistic motion over its course before impacting the free surface of the main fluid
body, thereby dissipating a lot of energy in the process. The water jet is reproducible, i.e.
repeating the same experiment twice results in the same observed fluid motion and free
surface deformation. The video recordings of the four cases presented in figure 2(a—d) are
available in supplementary material, alongside a typical experiment of a spilling breaking
bore. It should be emphasised that all generated waves can be considered as gravity waves,
as they exhibit a longitudinal dimension significantly larger than the capillary wavelength
of water, A, = 271((7/(,0g))1/2 ~ 1.7 cm (where 0 =72 mN m~! and 0 =997 kg m~3 are
the water surface tension and density evaluated at a temperature of 25 °C, respectively).
The only exception is the water jet regime for which, in some cases, the developing fluid
filament is very thin, as illustrated in figure 2(d). As a result, it is possible that some parts
of it are affected by surface tension after the generation process. However, we will not
focus on this situation in the following discussion.

Following these observations, the parameters 4, L and U have been systematically
varied, in order to constitute a phase map in the (Fr,, A,) plane that is represented in
figure 2(e). For each experiment, the corresponding wave regime has been determined
by visual inspection of the video recordings and is reported with distinct symbols for (o)
dispersive waves, (o) nonbreaking and (m) breaking solitary-like waves, (a) spilling and
(») plunging breaking bores, and () water jets. In the diagram, crosses (x) correspond to
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experiments at the transition between regimes, for which it is challenging to objectively
discriminate. No data are available in the bottom right-hand corner of figure 2(e) as this
is the realm of large relative accelerations y /g = U?/(gL), whereas the motorised piston
used in the present study could only reach y /g =~ 1. Furthermore, no experiments have
been reported in the top left-hand corner of figure 2(e) corresponding to low relative
acceleration, typically /g < 0.04 as, in this case, the length of our channel is too small
to be able to clearly distinguish the wave regime. As highlighted by the solid line of slope
2 in the log-log plot of figure 2(e), the transition from waves to water jets (or splashes)
occurs when A, < 2.2Fr pz, or equivalently
2
Y _ U o, 3.1)
g 8L
Interestingly, this criterion does not constitute a threshold based on A, or Fr), alone,
but it combines the two parameters. From there, it can be inferred that, for a given value
of the relative forcing length A, one can produce such a water jet by starting from either
of the three previously described regions (i.e. of dispersive, solitary-like or bore waves)
and then increasing the Froude number up to the point where relation (3.1) is satisfied.
A dashed line, corresponding to the relation y /g ~0.17 (A, =5 .8Frp2), is also reported
in figure 2(e). This particular value for the relative acceleration is observed in the context
of impulse waves triggered by gravity-driven granular collapses in shallow water, where
the granular front acts like a moving piston (Sarlin et al. 2022a). Such a relation between
y and g reveals that the existing coupling between the position of the granular front
and its velocity inherently selects the possible wave regimes observed during a granular
collapse into water (either dispersive, solitary, or bore waves) and explains why no water
jets could be observed by Robbe-Saule et al. (2021a) and Sarlin et al. (2021b). There is a
qualitative agreement between the results reported in the present study and those obtained
by Das & Wiegel (1972), who used a similar experimental configuration. However, a direct
quantitative comparison is not straightforward because the Froude number considered by
these authors is based on the average velocity of the piston rather than on the maximum
velocity used here while, at the same time, the precise law of motion of the piston is not
provided by them. The main difference lies in the fact that Das & Wiegel (1972) did not
observe the water jet regime, probably because their setup did not allow them to achieve a
high enough relative acceleration.

3.2. The observed waves regimes in light of the Korteweg — de Vries equation

The richness of the physics at play explains the long-standing research interest on how
to relate each kind of wave to an existing wave theory (Fritz et al. 2004; Heller & Hager
2011). However, a simplified analysis might already be helpful in the aim of understanding
the origins of these different regimes of impulse waves. Indeed, in the case of weakly non-
linear shallow water waves, one can consider, for instance, the classical Korteweg — de
Vries equation to describe the evolution of the free surface elevation, n(x, t) (Korteweg &
de Vries 1895). In its standardised dimensionless form, this equation reads

with t* =1./g/h/6, x* = x/h, and n* =91/ h + 6. Equation (3.2) involves a competition
between a non-linear term, n*n;’;*, that tends to steepen the wavefront, and a dispersive
one, 1%« .+, which promotes the appearance of an oscillatory behaviour (Whitham 1999;
Dauxois & Peyrard 2004). In a slightly different approach, we consider here an alternate
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transformation based on the variables 7 = t+/g/h/6, X =x/L, and 7 =9n/h + 6, which
leads to
fi + Ap iz + Ap gz =0. (3.3)

This writing, which differs from the previous one by using L instead of /4 for making
x dimensionless, reveals the importance of the relative stroke of the piston, A, =L/h,
in the selection of the wave regime. Indeed, equation (3.3) suggests that increasing A,
tends to favor non-linearity, which is in agreement with the presence of bore waves (»),
for large values of this dimensionless number (figure 2e). Contrariwise, decreasing A,
enforces dispersive effects and, as a result, the development of oscillatory waves (o), which
also agrees with the present experimental observations. This analysis also suggests that
the Froude number has a less significant influence on the selection of the wave regime,
as illustrated in figure 2(e). Indeed, it can be observed at a crude first order that, by
increasing Fr, while keeping a constant value for A, there is almost no change from a
wave regime to another above the transition from waves to water jets delimited by equation
(3.1). Nevertheless, the Froude number strongly determines whether the generated waves
are stable or not: for instance, as can be seen in figure 2(e), empty (i.e. non-breaking)
and filled (i.e. breaking) symbols for the solitary-like and bore wave regimes are separated
based on Fr), in such a way that breaking systematically occurs when Fr), 2 0.6, regardless
of the value of A,. However, all these observations do not apply to the water jet regime,
which occurs for relative accelerations larger than the critical value given by equation
(3.1), as discussed previously.

The presence of these various wave regimes raises questions about their generation
process: is there a universal manner of describing it, or are different approaches necessary
to this end? What governs the typical extent of the disturbance produced by the
translational motion of the piston when it injects energy into the fluid? To address these
points, a more thorough analysis of the wave hydrodynamics during the generation phase
is provided thereafter.

4. The birth of an impulse surface wave
4.1. Time evolution of the induced water bump

When the piston starts its translational motion along the channel, a water bump forms
in the vicinity of the advancing wall, leaving the rest of the fluid undisturbed. This
initial perturbation then grows in volume as long as the vertical wall is accelerating, as
illustrated in figure 3 for four representative experiments. At the end of this generation
phase, the bump reaches its maximum elevation A,,q at the contact with the piston. After
this moment, i.e. during the deceleration of the wall, the local water disturbance detaches
from the piston and relaxes, thereby evolving to a wave that propagates away from the
source region and belongs to one of the regimes previously described in figure 2. The shape
of the growing water bump varies between the investigated configurations, as highlighted
in figure 3. Broadly speaking, the perturbation has a small amplitude and a large width
for a small velocity of the piston (figure 3a,b), whereas it has the shape of a slim water
column for large values of U (figure 3¢,d).

The temporal evolution of the wave amplitude Ao (7) = n(x = x,, ) at the contact with
the piston is illustrated in figure 4(a—d) for the four experiments reported in figure 3. For
every configuration, Ag increases with time until it reaches a maximum value A, at
time 7 = 7,. Ao then decreases when the moving wall decelerates and the wave begins to
propagate along the channel. At later times, when the wave has left the vicinity of the
piston, Ag tends to zero as the water locally comes back to rest: this is illustrated, for
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20 cm

(b)

Figure 3. Image sequences of the generation phase, for the impulse waves presented in figure 2: (a) L =7 cm,
U=042ms~!, and h =20 cm (Fr, =0.3 and A, =0.35); (b)) L=15cm, U =0.47 ms~', and & = 10 cm
(Frp =0.47and Ay =1.5); (¢) L=30cm, U =1.09 ms~!, and h =3 cm (Frp=2.0and A, =10); (d) L =
14.5cm, U=1.19ms !, and h =3 cm (Frp =2.2 and A, =4.8). The last picture of each line is taken at the
end of the generation phase, i.e. when the wave amplitude at the contact with the piston reaches its maximum
value A,,o. For each experiment, the white bar traced on the first image gives the scale.

instance, in figure 4(b) when ¢t 2 0.6 s. Noticeably, all curves display the same overall
behaviour, regardless of the experimental parameters. The bell-shaped trends for Ag are
not perfectly symmetrical about the vertical line t = t,, which suggests that the two phases
of generation and propagation are driven by different physical mechanisms. Indeed, during
the first stage, the translating wall injects momentum into the fluid, but once the wave
travels into the channel it does not receive energy anymore, so that its evolution is then de-
scribed by a competition between dissipation, non-linearity and dispersion. The generation
time t,, defined as the duration of the growth phase of Ay, is systematically extracted for
all experiments and compared in figure 4(e) to the duration of the acceleration phase of the
piston, L/U. Overall, it can be observed that the two times coincide for the whole dataset.
The scattering of the data are mainly due to the experimental uncertainty in determining
7, which is of order 0.03 s, however no systematic deviation can be observed. This result
indicates that the wave generation process is closely tied to the acceleration phase of the
translating piston, so that L/ U is the relevant time scale for the generation stage.

To further elaborate on the description of the water bump formation, the free surface
elevation 7 (x, ) is presented in figure 5(a—d) as a function of the distance x" = x — x,(t)
from the vertical wall, for the representative experiments presented in figure 3. On each
plot, several successive profiles are reported (one for each marker colour), with a time
increment between two consecutive curves of 0.04 s in (a—c) and 0.02 s in (d). In all cases,
one may note that both the height and the horizontal extent of the water perturbation
increase with time. In figure 5(a), A, < 1 and Fr, < 1, which results in a short bump with
a small vertical extent compared to the large horizontal length affected by the disturbance.
At all times, the elevation of the free surface in this situation essentially exhibits a decay
with the distance from the piston, except at the very vicinity of the advancing wall. This
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Figure 4. (a—d) Temporal evolution of the free surface elevation Ao(t) =n(x =x,(t), t) at the contact with
the piston, for the four experiments of figure 3 (a) L =7 cm, U =0.42 m s~ and h =20 cm, (b) L=15cm,
U=0.47 ms~!, and h=10 cm, (¢) L =30 cm, U =1.09 ms~!, and h=3 cm, and (d) L=14.5 cm,
U=1.193ms!, and & = 3 cm. For each case, the vertical dash-dotted line indicates the generation time, tg,
whereas the horizontal dashed line corresponds to the maximum wave amplitude A, at the junction between
the fluid and the advancing wall. (¢) Generation time 7, as a function of the duration L/ U of the acceleration
phase of the piston. The solid line corresponds to 7, = L/U. In (a—e), the symbols and colours used are the
same as in figure 2(e).

decrease of the free surface elevation with x’ is reminiscent of the logarithmic decay at
small times identified by previous theoretical studies (Chwang 1983; Lin 1984). When
Ap ~ 1while Frj, < 1, similar characteristics are observed, as illustrated in figure 5(b), but
the decrease of n with x’ is now divided into two regions: a relatively small slope in the
vicinity of the piston, which is less pronounced than the one occurring further downstream
(highlighted, for instance, by the evolution of n after x>~ 7 cm for the upper green curve
in figure 5b). This phenomenon gets accentuated when A, > 1 and Fr;, ~ 1, as illustrated
in figure 5(c): the region of gentle slope then becomes wider. In the upper green curve of
figure 5(c), corresponding to the last time belonging to the generation phase, n decreases
by only about 2 cm over a distance of 6 cm in the inner region located upstream of the
shock. A non-linear steepening occurs before the end of the generation process, leading to
the formation of a hydrodynamic shock, that is illustrated by the onset of breaking visible
in figure 3(c) for t =0.32 s or by the upper green curve in figure 5(c) which features a
straight front around x’ ~ 6 cm. Finally, by reducing the piston stroke L while keeping
the same initial water depth /2 and velocity U of the piston as in figure 5(c), one obtains
a tall water bump, as illustrated in figure 5(d), which will evolve to a water jet after the
generation phase (figure 2d). In that case, the gentle slope region has a smaller extent than
the outer one, and the aspect ratio of the growing perturbation becomes significant.

4.2. Volume and aspect ratio of the water bumps

At the end of the generation phase (at 7, >~ L/U), the two characteristic lengthscales
associated with the induced water hump can be taken as the maximum amplitude A,
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x' (cm)

Figure 5. Transient free surface elevation n during the generation phase as a function of the distance x’ from
the piston for the four examples of figure 3, corresponding to relative accelerations y /g of (a) 0.26, (b) 0.15,
() 0.4 and (d) 1, respectively. Experiments are represented by the coloured markers, with a timelapse between
each consecutive curve of (a—c) 0.04 s and (d) 0.02 s. The solid lines are the corresponding predictions from
the theory of Joo et al. (1990), given by equation (5.1) with 0 =72 mNm~!, p =997 kg m~> and assuming a
contact angle of 90°. Here, x" = x — x,(¢) for the experimental curves, while x” = x for the theoretical profiles.

at the contact with the piston and the mid-height width A,,9, which is defined as the
width of the perturbation at z = A;,0/2 so that n(x, + A0, Tg) = Amo/2. These two
quantities define a typical bump volume per unit width, A,,04,,0. By mass conservation, it
is straightforward to establish that A,,0d,,0 = 9 Lh, where ¢ is a numerical prefactor that
depends on the shape of the forming wave and on the leaks between the flume walls and
the piston that lower the displaced volume of water. By making this relation dimensionless
with the use of the lenghtscale /, one obtains

AmO/lmO _
2

In figure 6(a), the dimensionless bump volume per unit width, A,,04,.0/ k2, is reported
as a function of the relative stroke of the piston, A, for all experiments. All data
collapse on the master curve A;0dmo0/ h?2=0.47A p revealing that, at leading order, the
typical volume per unit width A,,04,,0 of the nascent wave is proportional to L/ with no
significant influence of the details of the bump shape through the numerical prefactor .
In other terms, when L and A are set to a fixed value, the higher the maximum amplitude
Ao, the smaller the characteristic length A,,0 and vice versa, regardless of the ultimate
wave regime obtained after the generation process. Furthermore, this implies that there is
solely one relevant lengthscale to describe the generated water bump, which will be taken
as Ao in the following.

In addition, the wave aspect ratio A,,0/A,0 is compared in figure 6(b) with the relative
acceleration y /g = U?/(gL) of the piston. A monotonic increase with y /g is observed:
the larger the acceleration of the piston, the slender the resulting water bump. At a crude
first order, one can observe the wave aspect ratio to be approximately linear in y /g, here
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Figure 6. (a) Dimensionless water bump volume A,,04,,0/h> per unit width at the end of the generation
phase as a function of the relative piston stroke A . (b) Evolution of the bump aspect ratio A;,0/A,,0 with the
relative acceleration y /g of the piston. In both plots, all experiments are represented and the solid line indicates
(a) Amo/lmo/h2 =047A, and (b) Apuo/Amo=3y/g. The symbols and colours used are the same as in
figure 2(e).

again independently of the wave regime obtained at long time. An important remark can
be made from these scalings for the displaced volume of water and the aspect ratio of
the wave: one can anticipate that A,,0/h should be linearly related to the ratio A, /Fr),
whereas the relative amplitude A,,o/h should scale with the Froude number Fr),, at first
order. Nevertheless, a power law fit on the data displayed in figure 6(b) gives an exponent
of 1.23, which slightly departs from such a linear evolution. Furthermore, if the collapse
of the measurement points is quite convincing in figure 6(a), a larger scattering can be
noticed in figure 6(b).

5. Modelling the wave generation process

In this section, a particular attention will be devoted to the description of the wave
amplitude Ag(¢) at the contact with the translating vertical wall, and especially to its
maximum value Ao reached at the end of the generation stage (i.e. at the time L/U).
Given the variety of the observed wave behaviours, it already appears that finding a unique
description might be a challenging path. Instead of doing so, we will consider successively
the two limiting scenarios of a small relative acceleration y /g = U?/(gL) of the piston
and of a high Froude number Fr),.

5.1. Small relative acceleration

Describing the impulse wave generation process is a long-standing and challenging
problem in the fluid dynamics community, which explains the numerous theoretical
studies devoted to the expression of the free surface elevation for various configurations
(Chwang & Wang 1984; Lin 1984; Roberts 1987; Joo et al. 1990; King & Needham
1994; Needham et al. 2007; Uddin & Needham 2015). Among these, Joo et al. (1990)
addressed the problem of waves generated by a piston translating horizontally with a
uniform acceleration, using a potential flow assumption and taking into account capillary
effects due to surface tension and wettability. Using an asymptotic analysis based on a
small relative acceleration y /g of the piston, they obtained the following leading-order
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solution for the free surface elevation

( t)_2hy /‘+°°1—cos (B(k, T)t\/g/h)
U= e b k2 (14 Tk2)

cos (kx/h) dk, 5.1

where the bound variable k corresponds to a dimensionless wavenumber, T = o /(pgh?)

with o the surface tension of the fluid, and 8(k, T) = \/ k(1 4+ Tk?) tanh k.

Even if expression (5.1) does not constitute a closed-form solution, it can be evaluated
numerically. As there is no small-time assumption in the approach followed by Joo et al.
(1990), this model is expected to be more relevant than those of Lin (1984); Chwang &
Wang (1984); King & Needham (1994); Needham et al. (2007) and Uddin & Needham
(2015) for a comparison with the present experimental results.

Equation (5.1) is evaluated for the four initial conditions of figure 3, up to the time
t =L/U, and is reported in black solid lines in figure 5(a—d). In doing so, the surface
tension of water is set to 0 =72 mN m~! and its density p to 997 kg m~ (i.e. their values
at a temperature of 25 °C), while the contact angle with the wavemaker was assumed to
be 90°. The analytical profiles from equation (5.1) are shown in figure 5 with a timelapse
of (a—) 0.04 s, and (d) 0.02 s between each curve. It should be specified that while x" =
x — x, (1) for the experimental curves, x" = x for the theoretical curves. This is due to the
fact that Joo et al. (1990) considered the case of a small displacement of the wavemaker,
which resulted in neglecting x,(¢) in their analysis while retaining only the influence of
the velocity of the piston. An overall good agreement is observed for the first two cases
reported in figures 5(a) (for which y /g >~ 0.26) and 5(b) (y /g =~ 0.15), corresponding to
small relative accelerations of the piston that eventually lead to the formation of (a) a
dispersive and (b) a solitary-like wave, respectively. This is especially true in the vicinity
of the wavemaker, where the analytical predictions are very close to the measured free
surface elevations. This is expected as, for both cases, the relative acceleration is y <
g. The observed agreement reveals that, in this case, the theory developed by Joo et al.
(1990) gives a quite accurate description of the generated wave, both qualitatively and
quantitatively. It should be emphasised that the experimental and theoretical curves are
not perfectly superimposed because of the initial time shift present in the video recordings,
that never start exactly at the beginning of the motion of the piston. Furthermore, one may
notice in figure 5 that the generation stage can last a little longer than L/ U for some cases,
for there are more experimental curves than theoretical ones. This slight difference could
be attributed to second-order entrainment effects. Away from the wavemaker, however, the
theoretical predictions deviate from the experimental curves, a feature that is clearly visible
in figure 5(b), for instance around x’ ~ 10 cm for the upper curve. This discrepancy can
possibly be attributed to the assumption of a small wavemaker displacement made by Joo
et al. (1990) that is not satisfied here. Finally, as expected, when the relative acceleration
becomes significant in the experiments, as illustrated in figures 5(c) (where y /g >~ 0.4) and
5(d) (for which y /g >~ 1), the leading-order theory of Joo et al. (1990) fails in predicting
efficiently the wave generation phase. Indeed, in such cases, non-linear effects become
significant, as highlighted for instance by the steepening of the wave front observed during
the wave generation for the example in figure 5(c). As a result, the higher-order terms in
the analysis of Joo et al. (1990) can no longer be neglected, hence requiring a dedicated
analysis.

So far, the region of validity of the theory of Joo ef al. (1990) remains to be clarified.
In order to discuss this aspect in a more quantitative manner, the comparison between the
modelling derived by these authors and the present experimental measurements can be
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Figure 7. (a) Comparison between the relative maximum wave amplitude A,,0/ # measured experimentally and
the prediction Ajoo/h from the theory of Joo ef al. (1990), obtained using equation (5.1). The solid line is the
linear trend of slope one. (b) Evolution of A0/ Ajoo as a function of the relative acceleration y /g = U%/(gL).
The horizontal solid line is the plateau value A,,0/Ajo0 = 1.

further completed by considering the maximum wave amplitude A,,o at the contact with
the piston, which is reached at the end of the generation phase. For each experiment,
the corresponding prediction Ajoo from Joo et al. (1990) is determined by evaluating
equation (5.1) for the same initial parameters and at the time L/U. The measured and
theoretical values, normalised by the initial liquid depth &, are compared in figure 7(a).
A good agreement is observed between the two quantities for a large number of water
bumps that will ultimately lead to (o) dispersive or (z) nonbreaking solitary-like waves,
as well as for most of the forming (a) spilling breaking bores. However, the vast majority
of the (») plunging breaking bore waves and (*) water jets depart significantly from the
modelling. This observation is completed by the analysis of the ratio A,,0/Ajo0, Shown as
a function of the relative acceleration y /g in figure 7(b). One may note that A0/ Ajoo
increasingly deviate from unity as y /g increases, which is expected due to the small
relative acceleration assumption in the theory of Joo et al. (1990). Furthermore, the most
non-linear wave regimes [(m) breaking solitary-like waves, (») plunging breaking bores
and (*) water jets] tend to have a maximum wave amplitude larger than the analytical
prediction. If it is not obvious to define a clear criterion for the applicability of the
analytical model, one can observe that the data located at y/g < 0.2 seems to be fairly
well distributed around the plateau value A,,0/Ajoo = 1 with a typical dispersion of order
410 %. Therefore, this sets an upper limit for the validity of the theory developed by
Joo et al. (1990) for the present configuration. Strictly speaking, an additional assumption
is made in the work of Joo et al. (1990), which is that of a small displacement of the
vertical wall. This translates into x,/h < 1 which, at the time t = L/ U, implies A, < 2.
However, the theory gives an accurate estimate of the wave maximum amplitude even in
the case of the (a) spilling breaking bore waves, for which the value of A, is always greater
than 2. We infer from this observation that the small piston displacement assumption has
a minor influence on the free surface elevation in the vicinity of the translating wall, and
thus is not critical for estimating A ;0.

Therefore, the theory developed by Joo et al. (1990) efficiently describes the generated
waves for small relative accelerations of the piston such that y /g < 0.2, both in terms of

1008 A25-15


https://doi.org/10.1017/jfm.2025.127

https://doi.org/10.1017/jfm.2025.127 Published online by Cambridge University Press

W. Sarlin, Z. Niu, A. Sauret, P. Gondret and C. Morize

‘A
1
H v,(?)
! cv
I A
i
+
_O_L Ay(O)+h L . >
: IREY x
1
[

x(0) ¢ 8

Figure 8. Schematic of an idealised transient hydraulic jump of upstream and downstream elevations Ag(¢) + i
and h, respectively. Here, x, (¢) is the distance travelled by the piston at time ¢, v, (¢) its horizontal velocity, ¢ (¢)
the location of the shock and § the position of the shock at the end of the generation phase,i.e. 6 =¢(t=L/U).
The letters CV stands for control volume (per unit width), which is highlighted by the red contour.

the overall free surface elevation 7(x, ¢) and the maximum wave amplitude A, at the
contact with the translating wall. Nevertheless, this approach fails at larger values of y /g,
especially in cases where a hydrodynamic shock occurs, as highlighted in figures 5(c) and
5(d).

5.2. Large Froude number: the unsteady hydraulic jump

As already discussed beforehand, non-linear effects induce a steepening of the wave near
the end of the generation phase for large values of the Froude number Fr),. This feature is
pronounced for the plunging breaking bores and the water jets, as illustrated in figures 3(c)
and 3(d). This observation is reminiscent of the formation of a hydrodynamic shock
close to the source region, which is the response of the fluid to the impulse motion of
the translating wall. To capture the physical mechanism at play in those circumstances,
we consider the idealised case of a two-dimensional unsteady shock located at position
¢(t) at time 0 <t < L/ U, which separates an upstream region of thickness Ag(?) + A,
for x,(t) < x < ¢(t), from another one of thickness & located downstream, i.e. for which
x > ¢(t). Such a scenario is illustrated by the schematic shown in figure 8. It will be
assumed here that (i) the flow is purely horizontal and invariant along the z direction, that
(i1) the fluid is inviscid and incompressible, and that (iii) the pressure can be considered
as hydrostatic, i.e. p(x, z, t) = pg[n(x, t) — z]. Conditions (i) and (iii) correspond to the
shallow water approximation, which implies that the vertical acceleration of the fluid
is neglected (Acheson 1990), and (ii) means that no dissipation occurs at the bottom
of the flume during the bump formation. The fixed downstream position §, indicated
in figure 8 and corresponding to the right side of the control volume (CV), is chosen
as the location of the shock along the x axis at the end of the generation phase,
i.e.§=¢(t = L/U). Therefore, the volume of fluid comprised between the abscissa x (¢)
and § and between the altitudes —#/ (bottom of the water tank) and n(x, ¢) always contains
the same water particles during the generation process. From a calculation detailed in
Appendix A, the mass and horizontal momentum conservation equations applied to such
an unsteady control volume read

(Ao(t) + h) (£ (1) — v, (1)) — hE (1) =0, (5.2)
. . 1
(Ao(t) + h) (& (1) — vp(1))? — hE (1)* + S8((Ao() + h)?* —h*) =0. (5.3)

The combination of these two equations leads to the following non-linear relation
between the instantaneous Froude number Fr(s) =v,(7)/+/gh and relative amplitude of
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Figure 9. Wave amplitude A at the contact with the piston as a function of the adjusted time ¢’, for the
four experiments of figure 5. Only the generation phase is represented here and ¢’ is defined as ¢t — 9, where
tp corresponds to the starting time of the generation process. The solid () and dashed (- - -) lines are the
predictions given by equations (5.5) and (5.6), respectively. The symbols and their colours are the same as in
figures 4(a)-(d).

the bore Ag(7):

(5.4)

Ao (1) <1 + A1)/ (2h>>1/2
h 1+ Ao(t)/h '

Equation (5.4) constitutes a transient version of the classical bore relationship
(Synolakis 1989; Whitham 1999). Furthermore, a comparison between this expression
and the prediction for a stationary hydraulic jump given by equation (1.3) reveals the
quasi-static behaviour of the unsteady hydraulic jump. As this equation corresponds to
a third-order equation for Ag(#)/ h, the only explicit expression for Ag(¢)/h as a function
of Fr(z) which is physical is therefore

A _2 [, [ amas
=3 {2 1+ 3Fr(1)2/2

cos lcos_l E(Fr(t) - 2«/5/3) (Fr(t) + 2ﬁ/3) n (5.5)

3 4 (Fr()2 +2/3) /1 + 3Fr(0)2/2

It should be emphasised that the equations (5.2)—(5.5) are obtained for the generation
phase, i.e. when tU /L < 1. Interestingly, as during this stage the piston velocity is v, () =
U?t /L, equations (5.4) and (5.5) predict that the maximum amplitude A, reached at
t = L/ U is independent of the piston stroke L.

In order to compare the outcomes of this modelling to the experiments, figure 9 displays
the temporal evolution of Ay during the generation phase for the four experiments of

1008 A25-17

Fr(t) =



https://doi.org/10.1017/jfm.2025.127

https://doi.org/10.1017/jfm.2025.127 Published online by Cambridge University Press

W. Sarlin, Z. Niu, A. Sauret, P. Gondret and C. Morize

T ‘ ‘ T T — 7]
100 F A .
-~ P
~ A
(== Py
qu =
107" £ T © 3
10’2/ ! ! e ' ‘ e
1072 10-! 10°
Fr

P

Figure 10. Evolution of the relative maximum amplitude of the wave at the contact with the piston, A0/ i, as
a function of the Froude number, Fr),. The black solid line (—) corresponds to the quasi-static hydraulic jump
prediction obtained by evaluating equation (5.5) att = L/ U, the black dashed line (- -) corresponds to equation
(5.6) from Synolakis (1989), calculated at the same time, while the gray dash-dotted line (—-—) corresponds to
equation (1.1) from Noda (1970). All experiments from the present study are reported, with the same symbols
and colours as in figure 2(e), alongside data from Synolakis (1986, 1989) (»).

figure 5. In each plot, the solid line is the prediction given by the quasi-static hydraulic
jump theory presented in this section, that is obtained by evaluating equation (5.5). The
time ¢’ corresponds to ¢ — ty, where 7y has been slightly adjusted for the experimental
curves to initially coincide with the analytical ones, as the acquisition frequency of
the camera (50 Hz) did not allowed us to determine accurately the starting time of the
generation process. Despite the strong underlying assumptions of the present modelling,
there is a striking agreement between the theoretical predictions and the experimental
water bumps that will eventually evolve to (c) a bore wave and (d) a water jet, for which
the Froude number Fr), is large (Fr, = 2.0 and Fr,, = 2.2, respectively). More surprisingly,
the prediction from equation (5.5) also captures the time evolution of the wave amplitude
Ag for the two cases leading to a dispersive wave (figure 9a) and a solitary-like wave
(figure 9b), even if these regimes consist during their formation of a water bump that seems
to be quite different from the idealised situation considered in figure 8. This suggests that
the approach followed in § 5.2 remains valid for a large range of Froude numbers. In
addition, the prediction

Ao(1)

=Fr(r) + %Frz(t) (5.6)

from Synolakis (1986, 1989) is also reported in dashed line in figure 9(a—d). This law also
exhibits good agreement with the measured values for the two low Froude number cases
of figures 9(a) and 9(b), where it is almost indistinguishable from equation (5.5). However,
the prediction from equation (1.2) slightly overestimates Aq at the end of the generation
phase for experiments featuring large values for the Froude number (figures 9c and 9d).
To further compare the experimental results with the different available models, the
relative maximum amplitude of the wave at the contact with the piston, A0/ k, is shown
as a function of the piston Froude number Fr, in figure 10, for all the experiments
performed in the present study. Regardless of the wave regime that is obtained after the
generation process, all data collapse on a master curve, highlighting once more the strong
link between A,,0/h and Fr, that has already been emphasised in several past studies
(Noda 1970; Das & Wiegel 1972; Fritz et al. 2004; Viroulet et al. 2013; Robbe-Saule et al.
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2021b; Sarlin et al. 20215, 2022a). As a corollary to this observation, there is no significant
influence of the stroke L of the piston on the value of A,,0/h. The data from Synolakis
(1986, 1989), corresponding to three laws of motion for the piston (constant velocity,
trajectory optimised for solitary wave generation and asymmetric parabolic trajectory),
are also reported in figure 10 (-). These measurements lie on the same trend as the
experiments from the present study, which suggests that the relationship between Ao/ h
and Fr), is robust and independent on the detail of the forcing in a wide range of Froude
numbers. Furthermore, as the studies performed by Synolakis (1986, 1989) involved a
much larger tank as the one used here, this confirms that there is no significant effect of
capillarity in the present experiments. The quasi-static hydraulic jump prediction, obtained
by evaluating equation (5.5) at time t = L /U, is also reported in figure 10 in black solid
line. It closely matches the experimental measurements, especially for Fr;, 2 0.4, without
any adjustable parameters. This further validates the approach of describing the generated
waves as quasi-static shock waves. As equation (5.5) is obtained in the limit of large
Froude numbers, experiments for which the shock is pronounced, i.e. (a,») bore waves
or (*) water jets, are better captured by the theoretical prediction than, for instance, (o)
dispersive waves. The prediction given by equation (1.2) (which is equation (5.6) from
Synolakis (1989) evaluated at time ¢t = L/ U), reported in black dashed line in figure 10,
is almost superimposed with equation (5.5) when Fr,, < 0.8 but slightly overestimates the
generated wave height for the experiments at larger values of Fr),. Furthermore, equation
(1.1) obtained by Noda (1970) using the linear theory is also reported in figure 10 in gray
dash-dotted line for comparison. Although it gives a good first order estimate of the relative
maximum amplitude A,,o/ &, it can be observed that the quasi-static hydraulic jump theory
gives a slightly better prediction when Fr, < 0.7. For larger Froude numbers, the good
agreement between the theory of Noda (1970) and the experimental measurements is
surprising as there is no proper justification for using the linear theory anymore, given
that non-linear effects then become dominant.

The successful comparison between the experiments and the analytical development
presented in the present section thereby suggests that, during the generation process, the
observed water bumps behave as quasi-static hydraulic jumps whose vertical heights at
the contact with the piston are dictated by the wall velocity v,(¢) and the initial fluid
depth &. This leads, at the end of the formation stage, to a maximum wave amplitude Ao
which follows a weakly non-linear evolution with the Froude number Fr,, as highlighted
by the evaluation of equation (5.5) at time ¢t = L/ U. From there, when the piston starts its
deceleration, the water bump of height A,,( relaxes into one of the different wave regimes
reported in figure 2(a—d).

6. Conclusion and perspectives

In the present study, the formation and early propagation of impulse surface waves in a
water channel have been investigated experimentally at the laboratory scale. Waves were
generated by the translational motion of a rigid vertical wall, which follows a constant
acceleration phase followed by a constant deceleration, thereby advancing in a quadratic-
in-time manner in the flume. This model experimental set-up allowed to systematically and
independently vary three initial parameters: the total stroke of the piston, L, its maximal
velocity, U, and the initial water depth, 4. This was tantamount to exploring the role of
two dimensionless numbers, the Froude number Fr, = U//gh and the relative stroke
Ap =L/ h of the piston.

During the wave generation process, a water bump is generated in the vicinity of the
source region, as a result of the translational motion of the piston, with a volume that
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grows with time. This nascent wave can have a large horizontal extent and a small vertical
amplitude when A, <1 and Fr,, < 1 or, on the contrary, exhibits the shape of a slim and
tall water column when A, > 1 and Fr), ~ 1. For a relative acceleration of the piston such

that y /g = U?/(gL) < 0.2, the leading-order potential flow theory derived by Joo et al.
(1990) gives a satisfactory description of the free surface elevation close to the advancing
piston during the generation phase, alongside an accurate prediction for the maximum
wave amplitude Ao at the contact with the rigid wall. The main observed discrepancy lies
in the fact that the free surface elevation is overestimated by theory far from the translating
wall, a fact that is possibly due to the assumption of a small piston displacement made by
Joo et al. (1990). Thereupon, a theoretical analysis in which this hypothesis is relaxed is
needed to reach a more comprehensive description of the free-surface elevation. At larger
values of y /g, non-linear effects are no longer negligible, and the theory developed by
Joo et al. (1990) then systematically underestimates A .

For large enough Froude numbers, the non-linear steepening of the generated water
bumps, especially visible at the onset of breaking, reveals the presence of a hydrodynamic
shock. In that case, a quasi-static hydraulic jump theory successfully captures the transient
behaviour of Ag(¢) in the vicinity of the vertical wall during the whole formation stage
and for all kinds of water bumps produced experimentally. As a result, it allows one to
finely predict the maximum wave amplitude A, reached at the end of the generation
process. While this is expected for experiments where the Froude number is large, by
assumption, we yet showed that the quasi-static hydraulic jump theory applies to all
investigated configurations where Fr;, 2 0.4. This analysis shines light on the previously
identified relevance of the hydraulic jump solution for describing the typical height of
such perturbations (Miller & White 1966; Synolakis 1986, 1989; Sarlin et al. 2021b).
As the wave amplitude Ao reached at the end of the formation stage can be estimated
finely, it is also possible to calculate the typical horizontal extent, taken for instance as
Amo in the present study, using the fact that the dimensionless volume of the waves,
Amodmo/ h2, evolves as 0.47 A p for all experiments reported here. All these considerations
open the path for a more detailed examination of the free surface elevation. In particular,
it would be of great interest to investigate the spatial structure of the shock (Whitham
1999) more thoroughly, which could be done by relying on the quasi-static hydraulic jump
model derived here. Notwithstanding the fact that this constitutes a challenging theoretical
prospect, it could lead to the obtainment of the complete shape of the transient jumps
during the acceleration phase of the piston.

When the translating piston begins to decelerate, the water bump of maximum amplitude
A0 and mid-height width A,,,0 then relaxes into a propagating wave. In the experiments,
several wave regimes are obtained and mapped in the (Fr,, A,) plane, ranging from
dispersive waves obtained at small Fr,, and A, to unstable spilling or plunging breaking
bore waves obtained at large Fr;, and A, which reflects the richness of the physics at play.
The occurrence of stable solitary-like waves, when A, is of order unity and Fr, <0.8,
denotes a situation of equilibrium between dispersion and non-linearity. More generally,
in the present experiments, the value of A, selects at first order which of these two effects
will prevail, while the Froude number Fr, governs the relative maximum amplitude of
the wave and its ‘stability’ (whether it will break or not). However, when A, < 2.2Fr,,2,
corresponding to y /g 2 0.45, a transition from classical wave regimes to water splashes is
identified, the latter consisting of reproducible water jets that are abruptly ejected from the
vicinity of the piston. These peculiar liquid structures differ significantly from the other
regimes. Preliminary investigations suggest that these water filaments possibly undergo a
ballistic flight, although this point deserves further analysis. If, in the present study, the
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explored accelerations of the piston were constrained by the motor limitations, it would be
interesting to conduct systematic experiments at larger values of the relative acceleration
v/ g or the Froude numbers Fr),, to determine whether this conducts to the fragmentation
of the water filament into large drops or not. This could help compare these water jets to
other splashing phenomena as, for instance, those occurring during drop impacts (Riboux
& Gordillo 2015).

Lastly, several directions of investigation emerge from the results of the present study.
On one hand, although the impulse surface wave diagram presented in figure 2(e) extends
the present state of knowledge, the region located at large A, but small Froude number
was hardly accessible using the experimental setup presented here, as it resulted in very
small bump amplitudes. Preliminary experiments suggest that undular bores could be
observed in this situation. However, further investigations are needed to conclude on
that point. A water channel and wavemaker of larger scales could be helpful to observe
these waves more accurately. Moreover, to complete the present findings, a forthcoming
study dedicated to the estimation of the energy budget during the wave generation and
propagation processes for the different wave regimes would be of great interest, for
instance using Particle Image Velocimetry (PIV) measurements. On the other hand,
studying impulse capillary waves generated, for instance, using a piston with a millimetric
course, could also provide an original extension to the present work. Furthermore, it should
be recalled that attention was restricted here to the case of a symmetrical forcing (see
figure 1b). However, symmetry breaking is expected to alter drastically the behaviour of
the induced waves: we infer that this point should be further explored experimentally.
In the same vein, the case of waves produced by the submarine impulsive motion of
a rigid wall could be of great interest, especially in the aim of comparing the results
gathered to experiments involving immersed granular collapses (Cabrera et al. 2020). This
could constitute a model experiment to observe the transition from shallow to deep water
waves, which is of paramount interest if one keeps in mind the applications to geophysical
modelling.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.127.
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Appendix A. The quasi-static hydraulic jump

As described in § 5.2 of the main text, the mass and horizontal momentum conservation
equations applied to the control volume of figure 8, under the shallow water approximation
applied to an inviscid fluid, read

8

- p (m+h) dx=0, (Al)
dr xp (1)
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4 [ Ao(t) 0
— pm+h)udx = pdz—/ pdz
dr Jy, —h —h

_ 1 2 2
= 308 (Ao + 1) = 1?). (A2)

where u is the horizontal velocity of the fluid, which by assumption depends only on x
and ¢. Then, following the development made by Stoker (1957) in a similar situation, one
may observe that the left-hand side integrals of equations (A1) and (A2) are of the form

d b(t) d Z(t) d b(1)

— Y(x,t)dx=— Y(x,t)dx + — ¥(x, t)dx, (A3)

dr a(t) dr a(t) dr 40
with a and b two continuous functions such that a < b and ¥ corresponding either to
p(n+ h) orto p(n + h)u depending on whether equation (A1) or (A2) is to be considered,
respectively. Then, by Leibniz’s rule,

d [bo b(1) .
T Y(x, 1) dx = Y (x, 1) dx + (& (2), )¢ (1) — Y (a(t), Ha(t)
t Ja) a(t)
+ Y b0, D) — Y (T (@), HE®). (A4)

Here, a(t) and b(r) are the horizontal components of the velocities at the contact
with the vertical wall and at the end of the control volume, respectively, while ¢ (r)
is the velocity of the travelling shock. Besides, ¥ (¢~ (¢), t) and ¥ (¢T(¢),t) are the
limits of ¢ to the left and to the right of the shock, respectively. As highlighted by
Stoker (1957), in the limiting case where a(¢) — b(¢) but such that the discontinuity
remains inside the control volume, the integral in the right-hand side of equation (A4)
vanishes. We assume that this is the case here, and apply this approach to equations (A1)
and (A2). By considering that a =x,(t) and b =4 (so that a(t) =v,(¢) and b(t) =0
as § is constant), that ¥ (£7(2), 1) =¥ (xp(t), 1) and V(& (), t)=v(5,t) and since
nx=xp(),1) =Ap(t) and n(x =4, ) = 0 by definition, one obtains

p(Ao(t) + h) (& (1) — vy (1)) — phl(t) =0, (A5)
. 1
P(A0(1) + W& (1) = vp(1)vp (1) = Zpg((Ao(r) + h)* — h?). (A6)

From there, by observing that

(Ao(t) + ) (& (1) — vy () (1) = E(1)2h — (Ao(t) + R)(E (1) — vp(1))?, (A7)

one eventually establishes that
(Ao(t) + ) (& (1) — vy (1)) — hE (1) =0, (A8)
(Ao(0) +h)(E (1) = vp()* = hE (1) + %g((Ao(t) +h)?—hH=0. (A9
Equations (A8) and (A9) constitute the transient version of the classical hydraulic jump

relationships, and correspond to equations (5.2) and (5.3) in the main text.
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