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Abstract. Turbulence produced in low temperature helium gas flowing over arrays of rectangular- and
triangular-shaped blunt obstacles is investigated experimentally. The set-up allows both low fluctuation
rates (down to 8%), and high microscale Reynolds numbers, Rλ (up to 1 150). The forced Kolmogorov
equation is found to apply accurately. Similar to another flow configuration (counter rotating flow case [1]),
the analysis of the flatness factor evolution with the Reynolds number reveals a transitional behavior around
Rλ ≈ 650.

PACS. 47.27.Gs Isotropic turbulence; homogeneous turbulence – 47.27.Jv High-Reynolds-number
turbulence

1 Introduction

Using low temperature helium gas as the working fluid
presents several advantages for the study of turbulence,
compared to conventional systems. In particular, it offers
the possibility to span a wide range of Reynolds numbers
under controlled conditions. To date the largest value of
the microscale Reynolds number, Rλ, achieved in a low
temperature helium experiment is 5 040 [2,3], which is
comfortably above the highest value ever attained in large
wind tunnels. It is hoped that much higher values will be
reached using larger low temperature helium facilities [4].
The range of variation of Rλ accessible in a single set-up
with low temperature helium can be as large as thirty,
which is again well beyond the best figures achieved with
conventional fluids. Using low temperature helium thus
potentially allows us to, under controlled conditions, ad-
dress some issues, yet open, and lying at the core of the
turbulence problem: is there any scaling at large Reynolds
numbers? Do the small scales tend to be isotropic as the
Reynolds number is increased? Is there a trend towards
an asymptotic state, which could represent the infinite
Reynolds number limit?

In the low temperature experiments mentioned in
reference [3], the flow was driven by counter-rotating disks,
equipped with blades. The measurements were performed
at a single point, in the upper part of the circular mix-
ing layer sustained by the counter-rotating disks. We now
have an abundant set of data from this system. Perhaps
the most surprising observation made was the existence of
a transitional behavior in the evolution of the flatness fac-
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tor of the velocity derivatives with Rλ. This transition was
seen for Rλ ≈ 650, a rather large value. Consistency with
the latest available compilation of flatness factors [5] was
shown [1]. We suggested that the difference between our
set of measurements and those published by other inves-
tigators is that we identify a transition around Rλ = 650,
where compiled data are too scattered to allow a firm
conclusion. Note however that recent data obtained by
Antonia [6] suggest, within their error bars, no transition.
Tests have been made to detect possible probe effects in
our experiment [7], but no artifact have been convincingly
found. It was suggested that such a transition signals an
instability of the worms (defined as the vortex tubes which
retain the highest vorticity levels), and further conjectured
that other transitions may take place at higher Reynolds
numbers [8]. Since the observation was made in a partic-
ular and perhaps unconventional flow geometry, the issue
was raised as to whether such a transition is limited to a
particular flow geometry or whether it is a general prop-
erty of all turbulent flows. It would be desirable indeed
that accurate measurements were performed in conven-
tional systems, so this can be clarified. However, this is
an extremely difficult task and to the best of our knowl-
edge, no real attempt is planned at the moment. On the
other hand, numerical simulations are still far from be-
ing in position to tackle the problem. We thus decided to
investigate another flow geometry, using again low tem-
perature helium gas. The configuration we have chosen is
a flow over a series of blunt obstacles. Apart from the tran-
sition issue, the experiment allows us to explore new flow
configurations, in the context of low temperature helium
turbulence.
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Fig. 1. Sketch of the cell.

2 Experimental set-up

The flow we consider here is sketched in Figure 1. It is
driven between two coaxial disks, equipped with blades,
similar to the ones used in reference [3]. The disks ro-
tate at the same frequency and in the same direction. Far
from the wall and the central axis, the flow resembles to
a rigid-body rotation. Turbulence is produced by the flow
past an array of blunt obstacles, mounted on the inner
surface of the cylinder, in the central region. Two shapes
have been used: square bars and triangular shaped obsta-
cles. The square bars, placed in the large cell, are shown on
Figures 1 and 2. They are 0.5 cm wide, 6 cm long and are
placed with a 1 cm separation. In this system, the work-
ing fluid region is located between the two coaxial disks
with 10 cm radius, spaced 13 cm apart. The other set
of obstacles, placed in the smaller cell, are 8 triangles of
base 1.4 cm, height 0.5 cm and thickness 0.05 cm, radially
mounted on the periphery every 3.3 cm. The working re-
gion in this smaller cell is located between two disks with
3 cm radius, spaced 6 cm apart. In both cases, the cells are
enclosed in cylindrical vessels, immersed in liquid helium
bath at atmospheric pressure and 4.2 K. The vessels are
filled with helium gas, held at a controlled pressure, and
maintained at a fixed temperature between 4.2 and 6.5 K;
the temperature is controlled with a long term stability
better than 1 mK. Pressure and temperature are mea-
sured within 1% accuracy. All these characteristics allow
us to operate in well controlled conditions.

We use “hot” wire probes to measure the turbulent
fluctuations. The probes are of the same type as those
described in reference [3]. The sensors are made from a
7 µm thick carbon fiber, stretched across a rigid frame;
a metallic layer covers the fiber everywhere except on a
spot at the center, 7 µm long, which defines the active
length of the probes. The time responses of the probes are
analyzed, in some detail, in reference [3].

We use two probes, one mobile and the other fixed.
The mobile probe is displaced by using a step motor (Es-
cap P310), located outside the cylindrical vessel enclosing
the working fluid region. The elementary displacement is

Fig. 2. Picture representing the fixed probe and the inner wall
of the cylinder in which the flow takes place, on which the series
of square bars is fixed.

0.05 mm, and the maximal separation from the wall is
5 cm. It is thus possible to make measurements at differ-
ent locations, from just next to the wall and up to 5 cm
from it, so as to characterize the large scale flow structure.
The fixed probe is located 16 mm from the wall.

Table 1 shows a representative set of experimental con-
ditions we have studied. This covers only a fraction of the
data sets we have (the total number is 50). In this table,
the microscale Reynolds number is defined by:

Rλ =
u′λ

ν
,

where u′ is the fluctuation of the longitudinal velocity,
λ the Taylor microscale, and ν the kinematic viscos-
ity. The Taylor and Kolmogorov scales are defined by
λ = u′(15ν/ε)1/2 and η = (ν3/ε)1/4. To determine the
dissipation energy, ε, we consider the forced Kolmogorov
equation (see part 4). The range of Rλ we address extends
from 200 to 1 150 for the larger cell and from 100 to 800
in the smaller one; the fluctuation rate u′/U (where U is
the local mean velocity) lies between 8 and 18% in the
larger cell, but most of the files we analyze correspond to
fluctuation rates around 10% (see Tab. 1). These figures
are a factor of two below previous studies, using counter-
rotating disks. We thus work with low fluctuation rates, at
the expense of not reaching quite as high Reynolds num-
bers. We typically resolve the Kolmogorov scale for Rλ up
to 700, and three times this scale at the highest Reynolds
number. The resolution of the flatness factor in such cases
will be discussed later.

3 Large scale characteristics of the flow

In the larger cell, the large scale structure of the flow has
been investigated using the mobile probe described above.
The evolution of the mean velocity and the longitudinal
velocity fluctuations as a function of y, the distance from
the wall, are shown in Figure 3. The measurements are
restricted to a domain limited by y ≥ 0.8 cm; below this
value, the probe reaches the bars. One sees that the mean
velocity, as expected, decreases as we get closer to the wall
and drops off very fast within the last mm. The fluctua-
tion rate u′/U , shown in the inset, is found to increase
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Table 1. Typical experimental parameters: CL and R stand
for the large system, using square bars and J for the small one,
using triangular shaped obstacles.

file ν × 104 U u′ u′/U Rλ η

(cm2/s) (cm/s) (cm/s) (µm)

1CL 7.6 60.4 6.50 0.18 558 14

4CL 7.6 176 17.9 0.10 1116 4.75

8CL 5 104.8 11.9 0.11 823 6.12

19CL 26.7 45 3.8 0.084 632 9.4

39CL 9.5 90.5 8.8 0.098 522 13.5

45CL 9.5 73.5 9.25 0.13 442 16.8

55CL 9.5 129 12.4 0.104 542 9.06

14R 8 33.2 4.9 0.15 283 15.8

22R 8 190 17.8 0.094 785 5.9

166J 16.7 30 6 0.20 242 22

209J 8 78 16 0.20 448 8.1
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Fig. 3. Mean (filled triangles) and fluctuation (error bars)
velocity profiles, as a function of the distance to the wall, y;
the dashed lines are guides to the eyes (see text). The inset
shows the fluctuation rate u′/U as a function of y.

as y decreases. For y > 3 cm, the mean velocity tends
to decrease (indicated by the straight dashed line), as ex-
pected for a rigid-body rotation, with Uθ ≈ Ω(R − y)
(where Ω is the angular velocity and R, the cell radius).
An interesting aspect of the large scale structure, from our
perspective, is that we can work with low fluctuation rates
(down to 12% in this case), a figure appreciably smaller
than the counter-rotating situation. The data sets in Ta-
ble 1 have been obtained with the fixed probe, 16 mm
from the wall, near the maximum of the velocity profile.

Another interesting characteristic is the probability
density function (pdf) of the velocity. A representative
example is shown in Figure 4 (55CL). For reasons diffi-
cult to figure out, the distributions show deviations from
Gaussianity, and suggest the presence of exponential tails.
This has to be compared with other flow configurations,
where pdfs are found to be closer to Gaussian [3]. The
main concern here is not the existence of such deviations,
but rather to verify that there are no pathologies (such

10 -6

10 -5

50 100 150 200

p
(U

)

U (cm/s)

10
-4

10
-3

10
-2

10
-1

Fig. 4. pdf of the velocity fluctuations for file 55CL; the mean
velocity is 129 cm/s, and the fluctuation rate is 10.4%. The full
line is a Gaussian fit.
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Fig. 5. Evolution of Λ and Lf in function of Rλ obtained in
the larger cell.

as bumps, or bimodality), in the statistics of the velocity
fluctuations at large scales. This appears to be the case.

The integral scale, Λ, is worth being mentioned here.
It is defined by the velocity autocorrelation function
through the relation:

Λ =
1
u′2

∫ ∞
0

〈u(x)u(x+ r)〉dr, (1)

in which u is the zero mean fluctuation velocity, time is
converted into distance by using Taylor hypothesis, and
the brackets mean spatial average. In Figure 5, the evolu-
tion of Λ is plotted as a function ofRλ in the large cell case:
as expected, no evolution is seen and Λ = 1.05± 0.15 cm.
For the small cell we obtain Λ = 0.47±0.05 cm. It is diffi-
cult to provide a precise interpretation of these measure-
ments. In both cells, a plausible candidate for the integral
scale is the typical size of the forcing (periodicity or height
of the obstacles).

4 Energy spectrum and forced Kolmogorov
equation

In order to identify possible artifacts in the signal, we
analyze the turbulent spectrum and appreciate the quality
of the signal in terms of signal to noise ratio. Figure 6
shows such an energy spectrum obtained with the fixed
probe, at Rλ = 672 (file 39CL). One obtains the expected
shape, i.e. a power law in a region of scales separated
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Fig. 6. Energy spectrum for file 39CL, for Rλ = 672; kf is the
filter wave-number.

by the large scale forcing (signalled here by a peak at
six times the rotation frequency of the disks), and the
dissipative range. The sampling frequency (30 kHz) and
the probe wave-number, 1/lw (1 500 cm−1, where lw is the
active sensor length), are out of scale, and the low pass
filter frequency, at 14 kHz, placed between the electronics
and the data processing system, is indicated by an arrow
on the spectrum. One sees in this particular case that
the signal to noise ratio is comfortable (over 70 dB) and
the various limiting factors do not prevent analyzing the
fluctuations down to the dissipation scale. Such a situation
is typical for Reynolds numbers up to 1 150. Above this
value, we cease to resolve the dissipative range.

Again in view of analyzing the signal we have plotted
the function, J(r), defined by:

J(r) = −S3

r
+

6ν
r

dS2

dr
, (2)

in which S3 is the third order longitudinal structure
function, defined by:

Sp(r) = 〈(u(x+ r) − u(x))p〉, (3)

with p=3. It is interesting to introduce J(r), because in the
case of homogeneous, isotropic turbulence, this function is
known to verify the following relation [9–11]:

J(r) =
4
5
ε

(
1− 5

14
r2

L2
f

)
, (4)

where ε is the dissipation rate, and Lf is the effective
forcing scale. We follow here a notation introduced by
Novikov [11]. The relation is exact when isotropy and ho-
mogeneity hold, and when the forcing is applied at large
scales. We called it the “forced Kolmogorov equation” ac-
cording to reference [12]. ε and Lf are not known a priori,
and using the above relation allows an accurate determi-
nation of them.

We have compared the experimental measurement
of J(r) with formula (4), and the result is shown in
Figure 7 which is a linear-logarithmic plot. One sees
the theoretical expression (4) provides an acceptable
representation for the measurements, in a range of scales
from 2 × 10−3 cm to 0.15 cm, i.e. almost two decades.
Equation (4) becomes inappropriate above 0.15 cm,
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Fig. 7. Function J(r) for file 55CL, Rλ = 542.

suggesting that the hypotheses under which it was
derived (i.e. essentially isotropy and large scale forcing)
ceases to apply. The forcing scale, Lf , we find with this
approach, is 0.22 cm for file 55CL, a quantity well below
the integral scale, Λ (1.05 cm). We obtain the following
value for the larger set-up:

Lf = 0.23± 0.07 cm

and for the smaller one:
Lf = 0.19± 0.02 cm.

As there is no relation between equations (1) and (4), there
is no reason for Lf and Λ to be equal. However, we expect,
on physical grounds, that they have the same scaling as
functions of the Reynolds number. These two scales are
plotted in Figure 5. One can see that they can be indeed
considered as constants for this range of Rλ, although a
slight increase of Lf with Rλ can not be ruled out from
these data. This may suggest that the forcing here acts at
a slightly higher effective scale for larger Rλ.

It is worth pointing out that Lf is smaller than Λ. Lf is
an effective forcing scale, below which the flow can be con-
sidered to be well described by the Kolmogorov equation,
which requires homogeneity and isotropy. It is interesting
to note that such a difference between Λ and Lf did not
appear in previous experiments performed with counter-
rotating disks [12]: for such experiments, the two scales
were found to be indistinguishable. This suggests perhaps
such scales are sensitive to different aspects of the system.
Since it is plausible that Lf is more sensitive to the forc-
ing than the integral scale, their ratio may probably be
used, in general, to characterize the efficiency of the forc-
ing to generate isotropic flow. We conclude that, in these
experiments of turbulence over array of obstacles, the ef-
fective forcing scale is much lower than in experiments
where disks are counter-rotating.

Note also that for several files, we have observed that
the plateau is poorly defined; this is mostly due to the
presence of a bump, whose amplitude may reach 20% of
the plateau level. Such bumps are not systematic, and
certainly signal the presence of a source of noise (vibra-
tions, electromagnetic perturbations...), hard to identify
in practice. Such bumps are well visible on the third order
structure function, while often barely detectable on the
spectrum. We actually have used the theoretical expres-
sion of ε from equation (4) to determine Rλ in all cases.
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Fig. 8. Distributions of velocity increments for file 10CL, at
Rλ = 763, and η = 11.40 µm; the separations are (a) 6 000η,
(b) 60η, (c) 6η.

0.1

1

10

1 10 100 1000 10 4

S p

r /η

p=6

p=4

p=2

10 2

10 3

10 4

10 5

Fig. 9. Structure functions of order 2,4,6 for file 10CL; on the
ordinate axis, the unit is (cm/s)p; the lines are drawn to guide
the eyes.

5 Inertial range intermittency

It is worth analyzing the small scale intermittency of our
turbulent flow, in the inertial range, by using the usual di-
agnostics, i.e. measuring pdfs of velocity increments at dif-
ferent scales, and the associated structure functions. They
are presented in Figures 8 and 9 for Rλ = 763 (file 10CL).

In Figure 8, one sees that the pdfs of the velocity in-
crements become broader as we approach the dissipative
range, a well known evolution for three dimensional flows.
The evolution of such distributions can be characterized
by inspecting the structure functions, Sp(r), some of which
are shown in Figure 9, for the same Rλ. Again, one dis-
tinguishes three ranges of scale — dissipative at small r,
inertial between r/η ≈ 20 and r/η ≈ 2 000, and large
scale beyond. In the inertial domain, a power law is a
plausible, albeit inaccurate, representation of the struc-
ture functions. We suggest here, for the particular set-up
we investigate, that there is insufficient scale separation to
expect power law behavior of the structure functions. The
regimes we examine here are such that the Kolmogorov
function does not show a plateau which may explain that
power laws do not accurately hold. Such an explanation
may indeed not apply at extremely large Reynolds num-
bers [13].

The difficulties of defining structure function expo-
nents vanish once relative exponents, obtained by the so
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Fig. 10. Structure functions exponents for files 5-15CL. The
straight line is Kolmogorov expectation and the dashed curve
represents usual values obtained in other configurations.

called Extended Self Similarity [14], is used. The corre-
sponding values of the exponents, for the absolute values
of the increments, are shown in Figure 10. Here again,
our system displays characteristics close to those found in
other flow configurations [15].

6 Analysis of the intense longitudinal
gradients

In this section, we focus on the intense longitudinal gra-
dients, and in particular on the associated “structures”
that we have identified as worms. A previous study of
such events has been made in references [16,17]. As the
procedure has been described in the quoted papers, we
only recall the main points here.

We assume that the intense gradients are produced by
the sweeping of vortex tubes across the probe. In partic-
ular, we have checked in reference [16] that the effect of
a Burger-like vortex on the probe is consistent with the
general shape of high gradient structures [17]. We present
the result of the analysis, of file 55CL, corresponding to
Rλ = 542. To identify the high gradient events, we con-
sider the pdf of the velocity derivative and we focus on
the events for which |du/dx| > 5.6 times the standard de-
viation of the pdf, this threshold selects a small fraction
of the signal (5%). Once the events occurring on the tails
of the pdf of the velocity derivative are identified, one can
measure their amplitude and their size. To perform this
measurements, the two local extrema around the gradient
are localized, and the peak to peak distance (resp. ampli-
tude) gives the measurements of the size (resp. azimuthal
velocity) of the events. Figures 11 and 12 show the distri-
butions of the sizes and amplitudes of the worms we may
associate with the large gradients. These distributions can
be well fitted by lognormal distributions, which is consis-
tent with previous observations. The mean radius of the
worms is 3.7 η and their mean amplitude is 1.5 u′, two
values again consistent with previous estimates [16]. We
see here that worms can be singled out from the time se-
ries, with the same properties as those obtained in other
situations. This confirms their general relevance.
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7 Dissipative range intermittency

Here we come to an issue, central in the discussions on
dissipative range intermittency: the evolution of the flat-
ness of the velocity derivatives as a function of Rλ. The
flatness of the longitudinal increment F (r) is defined by:

F (r) =
S4(r)

(S2(r))2
· (5)

We present in Figure 13 the evolution of F (r) as a func-
tion of the separation r for one of the highest Rλ we could
achieve (Rλ = 1 116, file 4CL). One sees that F (r) in-
creases as r decreases, signalling the presence of internal
intermittency. In the present case, the smallest scale we
resolve is 3 η. To infer the flatness of the velocity deriva-
tive from this plot (labeled F ), we make a quadratic ex-
trapolation of the curve, assuming it levels off as r goes
to zero. This procedure is unnecessary when the satura-
tion is clearly visible, i.e. up to Rλ = 700. It becomes
unavoidable at larger Rλ. The corresponding uncertainty
increases with Rλ; we estimate it to be on the order of
15% up to Rλ =1 000 and roughly 20% for the highest
Reynolds numbers we achieved.

We have carefully examined the statistical convergence
of our flatness measurements. Convergence becomes an
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Fig. 13. Flatness factor for file 4CL, i.e. for Rλ = 1116. The
full line is drawn to guide the eyes.
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Fig. 14. Flatness of the velocity derivatives vs. Rλ. (•): present
series of measurements. (×): earlier measurements, made with
counter-rotating disks [1].

issue for the smaller separation, as Rλ increases beyond
900. Indeed, for highRλ, as the tails of the distribution get
wider, more statistics are needed to compute the moments
of a given order. Here again, the level of uncertainty we
can infer from this analysis, added to the previous one, is
on the order of 25% for the largest Rλ we could reach.

The results, obtained as explained above, are displayed
in Figure 14. One sees that F increases up to Rλ ≈ 600
and tends to saturate, between 700 and 1 000, at a lower
level. This suggests that a transition occurs around, say,
Rλ ≈ 650, consistently with previous measurements made
in the counter-rotating system [1]. In order to check that
this saturation does not come from the extrapolation of
F (r) for r → 0, it is interesting to note that the flatness
of the velocity increments for a separation scale of 3 η to
8 η also displays the same transitional behaviour around
Rλ ≈ 650. These quantities are interesting to consider,
because their statistical convergence are easier to achieve,
and no extrapolation is involved. The fact that we obtain
the same evolution for the increments and the derivative
strengthens the existence of a transitional behaviour and
indicates that it contaminates a substantial part of the dis-
sipative range. The present measurements of F , together
with the ones obtained in the counter-rotating case, are
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shown in Figure 14: the evolutions of the flatness as a
function of Rλ in these two configurations are the same.
The consistency between the two sets of measurements is
worth being pointed out.

8 Conclusion

In conclusion, we have made the following observations:
- Forced Kolmogorov equation is shown to apply; from

it, an effective forcing scale Lf can be defined. This scale
turns out to be well below the integral scale for our series
of experiments; its low value may explain why scaling laws
are not accurately observed in our case. We suggest that
the effective forcing scale, Lf , is an important quantity
to measure since it determines the range of scales within
which, from inspection of the forced Kolmogorov relation,
turbulence can be considered homogeneous and isotropic.
The scales between Lf and Λ are probably affected by
the large scale structure of the flow. We believe that Lf

should be systematically taken into account in the discus-
sion of the origin of the deviations from pure scaling laws
in the inertial range. We also suggest that the ratio Lf/Λ
provides a diagnostic on the efficiency of the forcing to
generate isotropic turbulence.

- The intense longitudinal gradients have a structure
similar to the one obtained in previous studies. If such
events are associated to the sweeping of vortex tubes
across the probe, then the characteristics of such tubes
are the same as in previous experiments: their core size
is around 3-4 η and the velocity difference is of the or-
der of u′. These observations are also found to be in good
agreement with numerical simulations [18].

- The flatness of the velocity derivatives shows a transi-
tional behavior aroundRλ ≈ 650, consistent with previous
investigations in the helium experiment [1]. This observa-
tion raises the issue of the general relevance of such a
transition. At the moment, we don’t know what to think
about it.
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