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On the decrease of intermittency in decaying rotating turbulence
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The scaling of the longitudinal velocity structure functions, S,(r)=(|8u(r)|?)~r%, is analyzed up to
order g=8 in a decaying rotating turbulence experiment from a large particle image velocimetry
dataset. The exponent of the second order structure function £, increases throughout the self-similar
decay regime, up to the Ekman time scale. The normalized higher-order exponents {,/{, are close
to those of the intermittent nonrotating case at small times, but show a marked departure at larger
times, on a time scale Q~' () is the rotation rate), although a strictly nonintermittent linear law
{4/ $=q/2 is not reached. © 2008 American Institute of Physics. [DOI: 10.1063/1.2949313]

Whether intermittency of isotropic three-dimensional
(3D) turbulence is decreased or even suppressed in the pres-
ence of system rotation has recently received a marked
interest."> Here, intermittency refers to the anomalous scal-
ing of the structure functions (SFs) of order g, S,(r)
=(|6u(r)|%) ~ r%, where Su(x,r)=[u(x+r)—u(x)]-r/r is the
longitudinal velocity increment, r an inertial separation nor-
mal to the rotation vector £, and (-) denotes spatial and
ensemble average. A linear variation of the exponents £, with
the order ¢ is the signature of self-similar (nonintermittent)
velocity fluctuations, a situation which is found in the in-
verse cascade of two-dimensional turbulence.” On the other
hand, anomalous exponents, §q/ 4, # q/2, are the landmark of
3D isotropic turbulence.*~® Based on the qualitative ground
that rotating turbulence experiences a partial two dimension-
alization, one may naively expect a reduction or a suppres-
sion of intermittency by comparison with the 3D nonrotating
case. More precisely, describing rapidly rotating turbulence
in the limit of zero Rossby numbers as a sum of weakly
interacting random inertial waves, the vanishing of nonlinear
effects should lead to a special case of nonintermittent wave
turbulence.”®

Two papers have recently addressed the issue of the scal-
ing of the SF in rotating turbulence with a stationary forcing.
The hot-wire measurements of Baroud ef al.' in a turbulent
flow generated by radial jets in a rotating tank showed a
transition from an intermittent to a nonintermittent behavior,
characterized by a E(k)~k™? energy spectrum (i.e., {,=1)
and linear higher-order exponents {,=¢/2. In a direct nu-
merical simulation (DNS) of rotating turbulence with a large
scale isotropic forcing, Miiller and Thiele’ have observed
reduced intermittency, also characterized with ¢,=1, but
higher-order exponents ¢, intermediate between g/2 and the
values usually found in classical (intermittent) 3D turbu-
lence. Those observations are in qualitative agreement with
the increase of £, reported by Simand’ from hot-wire mea-
surements in the vicinity of a strong vortex, although no
clear separation between a constant background rotation and
an otherwise homogeneous turbulence advected by the rota-
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tion can be defined in this geometry. To date, no theoretical
description of the scaling of the anisotropic higher order SF
in rotating turbulence is available. Note that in all the above
references, only separations r normal to the rotation vector
Q) are considered, ignoring the complexity originating from
the anisotropic character of rotating turbulence.

In this letter we report new measurements of the high
order SF, carried out by particle image velocimetry (PIV), in
a freely decaying rotating turbulence experiment, aiming to
compare to the results obtained in forced turbulence. The
experimental setup is the same as in Morize et al.,'" and is
only briefly described here. It consists in a water filled glass
tank of square section, of side of 35 cm and height h
=44 cm, rotating at constant angular velocity. After the fluid
is set in solid body rotation, turbulence is generated by tow-
ing a corotating square grid, of mesh size M=3.9 cm, at a
constant velocity V,=0.65 m s~! from the bottom to the top
of the tank, and is maintained fixed near the top during the
decay of turbulence. The horizontal components of the ve-
locity fields in a centered horizontal area of 17X 14 cm? at
midheight of the tank are obtained using a corotating PIV
system operating at 1 Hz. The velocity fields are defined on
a 160X 128 grid, with a spatial resolution of 1 mm and a
signal-to-noise ratio of about 2 X 1072, Although this fails to
resolve the dissipative scales (the Kolmogorov scale is ap-
proximately 0.2 mm in the first period of the decay), this
resolution allows us to resolve the inertial range, typically
for ¥>10 mm.

Two angular velocities have been used in the present
experiments, 0=1.13 and 2.26 rad s~'. The corresponding
nondimensional parameters are summarized in Table I. The
grid Reynolds number is Re,=V,M/v=2.5X 10* (v is the
kinematic viscosity) and the grid Rossby numbers Ro,
=V,/(2Q0M) are 7.4 and 3.7, so that the initial state can be
considered as a fully developed 3D turbulence weakly af-
fected by the system rotation. A previous investigation“
showed that, for those rotation rates, the energy decay was
approximately self-similar between 7,=40M/V, and 1,
=0.10tg, where tp=h/(v€)"? is the Ekman time, followed
by an exponential decay at larger times. The present investi-
gation is restricted to this self-similar range [7,.]. The in-
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TABLE 1. Nondimensional parameters for the two rotation rates. [7,,7,] is
the range of approximately self-similar energy decay (Ref. 11). Re, and Ro,
are the grid Reynolds and Rossby numbers. Rey(1)=u'(tf)M/v, Royl(t)
=u'(t)/(2QM) and Ro,(1)=w’(¢)/2() are the instantaneous Reynolds,
macro- and micro-Rossby numbers, respectively, based on the horizontal
velocity rms u'(¢) and vertical vorticity rms o’ ().

Q (rads™) 1.13 2.26
Re,=V,M/v 2.5x10* 2.5%10*
Ro,=V,/(2QM) 74 37
Qty/ 27+ Qi /27 1274 0.6---10.5
Rey(r=ty+1,) 1300---360 1400- --380
Roy(t=ty" 1) 0.38--:0.10 0.21---0.056
Ro,(1=ty *"1,) 2.1--:0.23 L1--:0.17

stantaneous Reynolds, macro- and micro-Rossby numbers,
Re,;, Roy,, and Ro,, respectively, are also given for the two
limiting values #, and 7. in Table 1.

To ensure proper convergence of the statistics, each de-
cay is repeated approximately 600 times, representing 10 h
of run for each rotation rate. It is worth pointing that com-
puting SF from PIV data requires special care, especially
when higher order are considered, for which even a small
number of spurious vectors may have a large effect. Since
those bad vectors may be preferentially found in regions of
large velocity or large gradient, finding correct criteria for
removing them without introducing biases is a delicate issue.
In particular, some of the fields were found to suffer from an
inhomogeneous lighting because the imaged area was par-
tially shadowed when the corner of the tank passed through
the laser sheet. Using a criteria based on the Q-factor (ratio
of primary and secondary correlation peaks), 20% of the
fields were affected by this problem and have been removed.
A median filter is then applied to the remaining fields, and it
was checked that the SFs computed from the raw and
median-filtered data agreed for the inertial range scales
within the error bars AS, defined below.
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FIG. 1. Time evolution of the second order exponent ¢, for

=1.13 rad s™!. (—) whole velocity field; (O) turbulent field (ensemble aver-
age substracted).
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We first focus on the time evolution of the exponent ¢,
of the second order SF, S,(r)={| du(r)|?), plotted in Fig. 1 for
Q=1.13 rad s™!. This exponent is related to the distribution
of energy among scales: Larger values of ¢, indicate a fa-
vored energy distribution toward larger scales. Significant
oscillations of ¢, are present, with a period equal to the tank
rotation period, indicating the presence of inertial modes.
Those inertial modes have been previously detected from
oscillations in the decay of the kinetic energy by Morize et
al.,'! and their temporal spectrum has been analyzed in de-
tails by Bewley et al." Since we are interested here in the
turbulent fluctuations that superimpose to those slow modes,
we have computed the turbulent velocity fields u“(x,?)
=u“(x,r)—(u“(x,t)), where a denotes the realization and
(-), is the ensemble average over the whole data set at a
given time ¢ after the grid translation. The time evolution of
the corrected exponent Z,, measured from the scaling of the
turbulent component of the SF, S,(r)=(|8i(r)|?) (also plotted
in Fig. 1), is found to follow approximately the lower bound
of the oscillations of the raw exponent ¢,. One may conclude
that the inertial mode, by superimposing a large scale modu-
lation to the turbulence, leads to an increased raw exponent
{5, of order of 10%. In the following we will discard this
slow inertial component of the flow and we will focus on the
scaling of the turbulent flow component.

The corrected exponent, hereafter simply noted ¢, is
found to gradually increase during the decay, starting from
values close to 2/3 at t=t,, as expected for an initial state
weakly affected by rotation and increasing up to 1.4 = 0.05 at
t=t,, reflecting the growing importance of the large scales
compared to the small ones. This behavior compares well
with the gradual steepening of the energy spectrum reported
by Morize et al.,"" with a spectral exponent p increasing
from 1.7 to 2.3 0.1 during the decay [dimensional analysis
gives {,=p—1, with E(k)~k™ the one-dimensional spec-
trum computed from the horizontal velocity and k the hori-
zontal wavenumber]. Beyond 7., the energy decreases expo-
nentially as the result of the dissipation by the inertial waves,
and no scaling range could be defined from the power
spectrum.lo’11 In the following we restrict to times <<t
where a correct scaling over an appreciable range of scales is
observed from both S,(r) and E(k).

We now turn to the higher order SFs. Figure 2(a), where
SFs up to order g=8 are plotted at a given time ¢, shows
power laws for intermediate scales, here for 12<r
<80 mm. It is worth pointing that the determination of the
highest measurable order and its uncertainty for a given
sample size is a delicate issue. The highest order for con-
verged SF is determined by visual inspection of the truncated
integral,

Su*
C,(r; ou*) =f p(6u)|du(r)|idéu, (1)
—ou*

which increases up to Sq(r) as the cutoff du* is increased.”
Here p is the probability density function (pdf) of the veloc-
ity increment ou. For large separations and/or moderate or-
ders, C, increases smoothly toward a well defined plateau as
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FIG. 2. SFs for increasing orders for =1.13 rad s and Q¢/27=2.7, nor-
malized by the velocity rms u’(z) (a) plotted as a function of the separation
r and (b) plotted as a function of S, (ESS method). The curves for ¢
=4,6,8 have been vertically shifted by factors of 10% 10* and 10° for
visibility. The dashed lines show the range where the exponents are fitted.

ou™— oo, indicating a correct convergence of the SF. On the
other hand, smaller separations, r<<10 mm, show strong
jumps when large velocity increments enter into the integral
(1). Those jumps may be due to either spurious vectors or
insufficient statistics and are the signature of an unconverged
SE. According to this criterion, the range of separations r
ensuring a correct convergence of S, for ¢>8 is found too
small for a reliable measurement of the scaling exponents,
and measurements are restricted to order ¢g=8. For orders ¢
=<8, scales r>10 mm were always correctly converged, al-
lowing to safely define scaling exponents in the inertial
range. Finally, the uncertainty AS,(r) is estimated by plotting
S,(r) at a given order and a given separation as a function of
the sample size. Defining AS,(r) as the standard deviation of
S,(r) computed over the last third of the whole sample yields
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FIG. 3. (a) Raw exponents ¢, and (b) normalized exponents ¢,/{, measured
using ESS, at various times during the decay, for Q=1.13 rads~\.

order q

FIG. 4. Intermittency factors y,=q/2~{,/ {, (same data as in Fig. 3). Error
bars are only shown for the last curve (*) for clarity.

a relative error AS,(r)/S,(r) of 4% for g=4 and 10% for q
=8, which is smaller than the symbol size in Fig. 2.

Figure 3 shows both the raw exponents £, and the nor-
malized exponents {,/{, at different times during the decay.
Those raw (normalized) exponents are obtained from a linear
least-squares fit of log S, versus log r (log S,), following the
extended self-similarity” (ESS) procedure [see Fig. 2(b)]."*
The main contribution of the error bars for ¢, is due to the
uncertainty on the determination of the SF discussed above,
AZ,=2(AS,/S,)/In(ry/ 1)), where | and r, are the lower and
upper cutoffs of the scaling range, yielding A{;=0.05 and
Alg=0.14. At the beginning of the decay, the effect of rota-
tion is small and the exponents are indeed found very close
to classical values for 3D nonrotating turbulence.® For com-
parison, the She—LéVéque5 formula is also plotted, showing
good agreement up to order g=38, giving confidence on the
reliability of our PIV measurements. At larger times, the nor-
malized exponents increase and become closer to the linear
law £,/ {,=q/2, confirming the intermittency reduction in-
duced by the background rotation. It is worth noting that the
instantaneous Reynolds number at r=r., Re, =360 (see
Table I), together with the correct scaling of the SF at that
time, ensures that this intermittency reduction is not associ-
ated with the trivial scaling {,=¢ (and hence ¢,/ {,=¢q/ 2) of
a smooth velocity field.

The exponents at the end of the decay are comparable or
even slightly larger than those reported by Miiller and
Thiele,2 although their macro-Rossby numbers (0.01 and
0.05) are slightly lower and their Reynolds number (2300
and 4000) significantly larger than the present ones (note that
the nondimensional numbers here are based on the mesh size
M, which underestimates the true integral scale). It must also
be noted that the present exponents differ from the strictly
linear law g/2 reported by Baroud et al." for similar Rossby
numbers. This slight discrepancy may be due to the different
forcing mechanisms: In the present experiment, the initial
turbulence produced by the grid translation is approximately
isotropic, and rotation gradually breaks this initial isotropy in
the course of the decay. In the experiment by Baroud et al.)!
turbulence is maintained by radial jets originating from a
circular array of holes, generating a strong radial flow de-
flected by the Coriolis force. This forcing scheme is likely to
produce an anisotropic, partially two-dimensional flow, even
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FIG. 5. Time evolution of the fourth and eighth-order intermittency factors
for the two experiments. (O) Q=1.13 rads™"; () Q2=2.26 rads™!. The
dashed lines show the intermittency factors from the She-Léveéque model,
v4=0.161 and y3=0.824. The error bars (not shown) are of the order of the
scatter, Ay,=0.05 and Ay;=0.14.

in the absence of rotation. When rotation is present, this forc-
ing probably reinforces the two-dimensional character of the
turbulence, resulting in strictly nonintermittent exponents.

The reduction of intermittency during the decay is best
appreciated from the intermittency factors y,=q/2-{,/{,
(Figs. 4 and 5), which vanish for nonintermittent fluctua-
tions. Although the scatter is important on these quantities
(of the order of A,), a clear trend toward smaller intermit-
tency is present. It is interesting to note the approximate
collapse of the data from the two rotation rates, suggesting
that (07! is the relevant time scale for the intermittency re-
duction.

The fact that the factors v, start decreasing from the
beginning of the decay is probably due to the low instanta-
neous Rossby numbers when 7=, (see Table I). A crossover
between constant v, at early time and a decrease at larger
times would be actually expected for larger grid Rossby
number Ro,. However, a large grid Reynolds number Re, is
required for a developed turbulence to remain throughout the
self-similar decay regime, up to the Ekman cutoff r=t¢_, lim-
iting the maximum initial Ro, at fixed rotation rate and grid
size. We finally note that extrapolating the trend toward 7,
—0 in Fig. 5 suggests that the upper bound 7. of the self-
similar decay regime, in our experimental conditions, pre-
vents from a clear observation of a vanishing intermittency,
which may occur after 10-15 tank rotations.

To summarize, our measurements of high order SF in
decaying rotating turbulence show a strong increase of the
exponents ¢, during the decay, which essentially follows the
increase of the second order exponent {,. It is worth noting
that values for ¢, larger than 1 are found, in contradiction
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with the S,(r) ~ r [i.e., E(k) ~ k~*] phenomenological law for
rotating turbulence, derived under the assumption of nonlin-

. . . ~1215
ear interactions governed by the timescale ~'."> Once nor-

malized by {,, a marked increase of {,/{, is observed, a clear
signature of a reduction of intermittency induced by the
background rotation. This intermittency reduction is compa-
rable to the one reported in the forced DNS of Miiller and
Thiele,” but it is less pronounced than in the forced experi-
ment by Baroud et al." This difference may originate from
the anisotropic forcing mechanism of Ref. 1 or from our
limited temporal range of self-similar decay due to the Ek-
man dissipation regime, which is specific to the decaying
case.
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