
Experimental observation of near-heteroclinic cycles in the von Kármán
swirling flow

C. Nore
Département de Physique, Université Paris XI, 91405 Orsay Cedex, France and Laboratoire d’Informatique
pour la Mécanique et les Sciences de l’Ingénieur, CNRS, Boîte Postale 133,
91403 Orsay Cedex, France

F. Moisya!

Fluides, Automatique et Systèmes Thermiques, Bâtiment 502, Campus Universitaire,
91405 Orsay Cedex, France

L. Quartier
Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond,
75231 Paris Cedex 05, France

sReceived 15 September 2004; accepted 12 April 2005; published online 27 May 2005d

The bifurcations and the nonlinear dynamics of the von Kármán swirling flow between exactly
counterrotating disks in a stationary cylinder are experimentally investigated by means of
visualizations and particle image velocimetry. A regime diagram of the different flow states is
determined as a function of the height-to-radius ratioG and the Reynolds number Re based on disks
rotation speed and cylinder radius. Among the steady and time-dependent states found in the
experiment, robust near-heteroclinic cycles, which link two unstable states of azimuthal
wavenumberm=2, are observed and characterized in detail forG=2. These are compared with the
numerical findings of Noreet al. f“The 1:2 mode interaction in exactly counter-rotating von
Kármán swirling flow,” J. Fluid Mech477, 51 s2003dg, with a particular emphasis on the influence
of the imperfection and the noise of the experimental setup. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1926827g

I. INTRODUCTION

A characteristic feature of dynamical systems in the
presence of symmetries is the possible existence of robust
heteroclinic cycles.1–4 A heteroclinic cycle connects a set of
saddle points in a certain range of parameters, and the time
spent in the neighborhood of each saddle point increases
indefinitely as the cycle is approached. This phenomenon has
gained increasing attention after the work of Busse and
Heikes5 on a dynamical model describing the behavior of the
Küppers–Lortz instability of rotating convection rolls.6 In a
certain range of control parameters, a system of rolls is un-
stable to rolls at an angle of about 60°. This behavior can be
described by a set of three coupled nonlinear real ordinary
equations,5 which was first proposed as a model for popula-
tion biology.7 Nonrotating convection also provides physical
situations where the competition between two modes may
create heteroclinic cycles. Indeed a normal form involving
four real amplitude equations was derived for convection in
two superimposed fluid layers, heated from below and sepa-
rated by a conducting plate.8 This normal form was exhaus-
tively analyzed by Proctor and Jones9 and Armbrusteret al.10

as the 1:2 mode resonance in the presence ofOs2d symme-
try. The ubiquitous occurrence ofm:n mode resonances has
been revealed in two-dimensional Rayleigh–Bénard convec-
tion without Boussinesq symmetry,11,12in turbulent boundary

layers,13,14 and in the Kuramoto–Sivashinsky equation15 us-
ing dynamical system theory.

In contrast, experimental observations of heteroclinic
cycles are less common. Huet al.16 have investigated mul-
tiple instabilities of rotating layers of fluid heated from be-
low, including the already mentioned Küppers–Lortz insta-
bility. Its experimental signature is the propagation of fronts
where rolls of one orientation grow to replace rolls in the
unstable orientation. An experiment in a porous plug burner
at low pressure shows ordered patterns of cellular flame con-
sisting of concentric rings of cells.17,18 In certain regions of
parameter space, these rings appear intermittently, persisting
for various periods of time and abruptly changing to the
same or different number of cells.

The flow in cylindrical geometries produced by rotating
disks with internal shear layers provides another example
where heteroclinic cycles may be found, as first shown by
Nore et al.19 in numerical computations. This flow configu-
ration has recently been the subject of considerable interest,
as it provides a simple hydrodynamical system where the
symmetries play a key role in the sequence of
bifurcations.19–25 In the particular case of exactly counterro-
tating disks with a stationary sidewall at a height-to-radius
ratio G=2, when the disk rotation rate is increased, the axi-
symmetric basic state becomes unstable through a transition
which resembles the Kelvin–Helmholtz instability of the
equatorial azimuthal free shear layer created by the counter-
rotation of the top and bottom disks. This instability gives
rise to steady states with one or two corotating radial vorticesadElectronic mail: moisy@fast.u-psud.fr

PHYSICS OF FLUIDS17, 064103s2005d

1070-6631/2005/17~6!/064103/10/$22.50 © 2005 American Institute of Physics17, 064103-1

Downloaded 30 May 2005 to 134.157.252.132. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.1926827


generated by the saturation of the corresponding azimuthal
mode. Accompanying this instability are more complex dy-
namics such as traveling waves, modulated traveling waves,
and heteroclinic cycles. These cycles connect two states,
each containing two corotating vortices and related byp /2
rotation about the cylinder axis.

The critical Reynolds numbers for this flow have been
investigated when the aspect ratio is varied between 0.5 and
3 and the counterrotation of the two disks maintained.25 The
1:2 codimension-two point at which them=1 and them
=2 thresholds coincide has been located atGs1:2d=1.64.
Heteroclinic cycles may occur in a large region of parameter
space when them=1 threshold precedes that of them=2,
i.e., when G.Gs1:2d, but only extremely near the
codimension-two point when the order is reversedfi.e., when
G,Gs1:2dg. At G=2, only periodic cycles with heteroclinic
type behavior have been numerically observed and are thus
called near-heteroclinic cycles.19 As was first pointed out by
Busse and Heikes,5 numerical noise prevents the flow from
staying an indefinite amount of time in a neighborhood of a
saddle state, leading to a periodic cycle.

The main purpose of this paper is to experimentally in-
vestigate the sequence of states which occur when the Rey-
nolds number is varied for aspect ratios between 0.5 and 2.5,
and to characterize in detail the near-heteroclinic cycles ob-
served atG=2. The outline of the paper is as follows: Sec. II
describes the experimental setup and visualization and mea-
surement systems. In Sec. III, the regime diagram and the
steady states obtained for different aspect ratios are reported.
Section IV describes the symmetries of the flow, and numeri-
cal results for the caseG=2 are summarized. Section V is
devoted to the study of the steady and unsteady flow states
for G=2, with a particular emphasis on the near-heteroclinic
cycles. Section VI contains our conclusion.

II. EXPERIMENTAL SETUP

A. Experimental cell

The experimental cell is sketched in Fig. 1. The cylin-
drical container, made of Plexiglas, of inner radiusRc=35.5
and 120 mm long, is mounted vertically. The working fluid is
silicon oil of kinematic viscosityn=10−4 m2 s−1 at 25 °C.
The top and bottom disks, of radiusRd=34.5 mm, are im-
mersed into the fluid that totally fills the cylinder. The dis-
tance between the disks,H, can be adjusted between a few
millimeters up to 89 mm. In the present paper, the aspect
ratio, defined asG=H /Rc, is varied between 0.5 and 2.5.
Finally, the cylinder is immersed into a rectangular water
tank, in order to minimize optical distortion.

The disks are driven by a dc motor, and constrained to
rotate with exactly opposite velocities. The angular velocity
V can be set between 10 and 64 rad/s with a stability of
0.1%. Typical runs are of 104 rotations, and the waiting time
between runs is at least 2000 rotations in order to avoid
transient effects. The temperature, measured in the outer wa-
ter bath, showed a maximum drift of ±0.1 °C during a run,
leading to an uncertainty of ±0.3% for the viscosity. The
Reynolds number, based on the cylinder radiusRc and the
disk velocityVRd,

Re =VRdRc/n,

is varied between 140 and 600. Note that, in the numerical
simulations of Noreet al.,19,25 the two radii are equal and
denoted byR, so that the two control parameters are simply
given byG=H /R and Re=VR2/n.

The basic axisymmetric steady flow is also depicted in
Fig. 1. It consists of a predominant equatorial shear layer
produced by the counterrotating top and bottom disks, and
separating two regions with opposite senses of azimuthal ve-
locities sleft part of Fig. 1d. Two second-order recirculation
zones due to Ekman pumping in the neighborhood of each
disk sright part of Fig. 1d converge at midheight and form an
inward radial jet.

B. Flow visualization

Visualizations using Iriodin flakes were performed in or-
der to determine the various flow states which occur as the
control parameterssG ,Red are varied. Although crude, this
visualization method is convenient as a first approach, as it
allows us to easily define the onset modes and the associated
critical Reynolds numbers.

Two mirrors, placed at angles of 120° on each side of the
cylinder, allow for visualization around the whole perimeter.
The pictures, taken from a charge-coupled devicesCCDd
camera, were processed in order to unfold the three views:
the front view is shown in the left picture, while the side
views were reversed and rescaled, and are shown in the
middle and right picturesssee Figs. 2 and 3d.

Along the equatorial shear layer, the vertical velocity
vanishes and the Iriodin flakes are essentially horizontal.
Therefore the shear layer appears as a dark horizontal line
when seen by reflection and as a bright line when seen by

FIG. 1. Experimental cell. The inset illustrates azimuthal velocity contours
sleftd and the meridional velocity fieldsrightd of the axisymmetric flow
determined by numerical simulationsRef. 19d.
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transmission. In the figures, the light source being on the
same side as the camera, the front view shows a dark line,
while the two side views show a bright line.

C. Velocity measurements

Velocity fields in a meridional planesx,zd were mea-
sured using a particle image velocimetrysPIVd system. For
these measurements, the distanceH was set at 71 mm, lead-
ing to an aspect ratioG=H /Rc=2. Small borosilicate par-
ticles, 11mm in diameter, are used as tracer, illuminated by a
vertical laser sheet of thicknessb.0.5 mm produced by a
double pulsed Nd:YAG lasersYAG—yttrium aluminum gar-
netd. Images are acquired with a double-buffer high resolu-
tion cameras128031024 pixels, 4096 gray levelsd, synchro-
nized with the laser at a rate of 1 frame pair per second.

The main difficulty for the PIV measurements in this
geometry arises from the large azimuthal velocity component
of the flow, which strongly constrains the time delaydt be-
tween the two frames of a pair. The out-of-plane azimuthal
velocity is of the order ofVR and dominates the in-plane
meridional components to be measured, which are of the
order of 0.1VR. In order to keep an acceptable number of
common particles between the two frames of a pair, the time
delay dt has to be kept of the order ofb/VR. As a conse-
quence, the particle displacement in the meridional plane is
small of the order of 0.1b.0.05 mm.1 pixel. With azi-
muthal velocities of the order ofVR.0.5–2 m s−1, the time
delaydt typically ranges from 0.5 to 2 ms. Window sizes of

32332 pixels, with an overlap of 16 pixels, are used for the
PIV computations. The final velocity fields are defined on a
64364 grid, with a resulting spatial resolution of 1 mm. In
the following figures, only one out of four velocity vectors is
shown for clarity.

III. REGIME DIAGRAM AND FLOW STATES

Systematic measurements of the onset Reynolds num-
bers have been performed from visualization of the Iriodin
flakes, for aspect ratiosG ranging between 0.5 and 2.5. The
regime diagram in Fig. 4 summarizes our observations in the
plane of parameterssG ,Red. These onset Reynolds numbers
have been obtained by slowly increasing the angular velocity
and visually inspecting the light reflected and transmitted by
the flakes.

The thresholds are found in excellent agreement with the
numerical results of Noreet al.,25 shown as the lower solid
line, except for largeG where the experimental thresholds
are slightly lower than the numerical ones, probably due to
experimental noise which may slightly anticipate the bifur-
cation of the basic flow.

Examples of flow visualizations are given in Figs. 2 and
3. For low Reynolds numbers, the stable equatorial shear
layer shows an exactly horizontal line at midheight, which
becomes modulated as the Reynolds number is increased.
The shear layer is sketched below the pictures to guide the
eye. The corresponding mode can be easily determined as the
number of extrema along the unfolded perimeter. The first
three figures, Figs. 2sad, 2sbd, and 3sad, obtained slightly

FIG. 2. Azimuthal modulation of the shear layer, as observed using Iriodin
flakes, for various aspect ratiosG. The pictures were processed in order to
unfold the three views: the front view is shown in the left picture, while the
side views are reversed and rescaled, and are shown in the middle and right
pictures. The shear layer is seen by reflection in the left picturesdark lined
and by transmission in the two other picturessbright lined. The mode cor-
responds to the number of extrema along the unfolded perimeter. The lines
drawn below the pictures are guides for the eye.sad G=0.75,mC=3. sbd G
=1.5,mC=2.

FIG. 3. Same as Fig. 2 withsad G=2, mC=1. sbd G=2, m=2.
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above the onset, show the critical modesmC=3, 2, and 1 that
appear for the aspect ratios 0.75, 1.5, and 2, respectively. In
the caseG=2, another stationary modem=2 is also obtained
for higher Reynolds number, as shown in Fig. 3sbd.

The first flow state found above the onset is always sta-
tionary, with an azimuthal modulationmC which decreases
from 4 to 1 asG, i.e., the height, is increased. The experi-
mentally observed onset modes fall into the expected regions
shown by the horizontal arrows, delimited by the numeri-
cally determined codimension-two points sketched as verti-
cal dashed lines in Fig. 4.

The subsequent states for larger Reynolds number de-
pend strongly on the aspect ratio. ForG.Gs1:2d=1.64, in
addition to the critical modemC=1, a higher order stationary
modem=2 is also found when the Reynolds number is in-
creased. These two modes, shown in Figs. 3sad and 3sbd for
G=2, correspond to what are called the mixed modeM and
the pure modeP, respectively, and will be described in detail
in Sec. V. A narrow band of time-dependent states is experi-
mentally observed between these two steady states. The up-
per and lower limits of this unsteady band are roughly
straight lines that converge towards the codimension-two
point atGs1:2d, as predicted theoretically1,2,10and confirmed
numerically.25 In this band, two time-dependent states, trav-
eling wavessTWd, and near-heteroclinic cyclessHetd are ex-
perimentally observed, but they are not easy to distinguish
from the visualizations. These two states will be described in
detail in Sec. V forG=2.

For the range of aspect ratios 1.2,G,1.5, in themC

=2 region, the flow remains stationary up to the highest Rey-
nolds number investigated, Re.600. Lower aspect ratios,
Gø1.2, for which mCù2, show complex unsteady states.
Traveling waves with strong nonlinear interactions, some-
times leading to intermittent vortex pairing, may be ob-
served. The lower limit of this unsteady region is somewhat

scattered, sometimes closely approaching the critical curve,
in particular, near the codimension-two points atGs3:4d
=0.63 andGs2:3d=0.95. No upper limit for this region is
observed, at least for Re,600. The complex flow states in
this region could result from resonance between modesm
ù2, and have not yet been explored.

IV. SYMMETRIES AND FLOW STATES FOR G=2

In order to obtain more insight into the sequence of bi-
furcations and the mode competition that takes place as the
Reynolds number is increased, a careful analysis of the sym-
metries of the flow is essential. A complete description of
these symmetries can be found in Noreet al.,19 and they are
only briefly presented here.

A. Symmetries of the exactly counterrotating flow

The base flow produced in a cylinder driven by the ro-
tation of the top and bottom disks is axisymmetric, i.e., in-
variant under rotation by any angleu about the cylinder axis,
which we denote bySu ssee Fig. 5d. The present case of
exactly counterrotating disks is unique in possessing an ad-
ditional symmetry of rotation ofp about any horizontal axis
in the equatorial plane. We denote this rotation byRpsu0d,
whereu0P f0,pd is the direction of the horizontal axis. This
additional symmetry is equivalent to combined reflections in
u=u0 and inz=0. The main point is that rotation about thez
axis and about a horizontal axis do not commute, and hence,
the group generated by the operatorsSu and Rpsu0d is iso-
morphic to Os2d. This symmetry groupOs2d is especially
important for the sequence of bifurcations present in this
system, and is, in particular, the key ingredient for the het-
eroclinic cycles that take place between two rotated modes
m=2 at G=2.

In the present experiment, only the velocity field in a
sx,zd meridional plane, which defines by convention the ori-
gin u=0, is measurable by PIVssee Fig. 5d. It is therefore of
interest to consider the restriction of the above three-
dimensional symmetries to this meridional plane. Note that,

FIG. 4. Experimental regime diagram, obtained from visualization.P,
steady nonaxisymmetric state with critical modemC, n, time-dependent
state,h, steady nonaxisymmetric state with modemÞmC. Error bars forn
andh are the same as forP. The gray region represents various unsteady
states. —, numerical threshold, - - -, lines indicating the codimension-two
points,Gs3:4d=0.63,Gs2:3d=0.95, andGs1:2d=1.64. The numbers above
the horizontal arrows indicate the onset modemC.

FIG. 5. Sketch of the two symmetries,Su andRpsu0d, of the flow between
exactly counterrotating disks. The meridional plane where the PIV measure-
ments are performed defines thesx,zd plane, in gray.
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in this restriction, we consider only the velocity components
within the meridional plane, and not the component perpen-
dicular to it.

Consider first states which are axisymmetric. In the me-
ridional plane, these states are invariant under reflection in
thez axis, acting on coordinates assx,zd→ s−x,zd, which we
denote bysz. This is also the case for even wavenumber
states, those which are invariant under discrete rotationsSu

with u=2p /m for even m. Consider now states which are
invariant under some reflectionRpsu0d, whereu0 is an arbi-
trary angle chosen by the system. These states are not nec-
essarily symmetric in thesx,zd meridional plane where the
PIV measurements are performed, unlessu0 takes on one of
two special values. Ifu0 is along thex axis su0=0d, then
invariance underRpsu0d reduces to reflection in thex axis,
denoted bysx and acting assx,zd→ sx,−zd. If u0 is normal to
the planesu0=p /2d, then invariance underRpsu0d is the cen-
tral symmetry relative to the origin, denoted bys0, which is
equivalent to combined reflection inx and z, i.e., s0=sxsz.
These symmetries in the meridional plane,sz, sx, ands0, are
especially useful as they provide a convenient way of iden-
tifying the flow patterns obtained by PIV in Sec. V.

B. Numerical results for G=2

The particular case of the aspect ratioG=2 shows the
following sequence of bifurcations as the Reynolds number
is increased:19 basic flow; steady state withm=1, called
mixed modeM; traveling waves; modulated traveling waves;
near-heteroclinic cycles; and steady states withm=2, called
pure modeP. The symmetries and the critical Reynolds
numbers of these states are described here, and are summa-
rized in Table I.

For low Reynolds number, the basic state inherits the
Os2d symmetry from the geometric configuration. In the me-
ridional plane, it is thus invariant undersz and sx. For Re
.349.0, this basic state loses stability to them=1 mode,
giving rise to a stationary state with one elliptic point in the
equatorial plane and a diametrically opposite hyperbolic
point. This state is called the mixed modeM, because the
nonlinear interactions produce both even and odd harmonics.
The other stationary bifurcated flow is obtained for Re
ù452. It is am=2 mode and consists of two radial corotat-
ing vortices in the equatorial plane, located on two diametri-
cally opposite elliptic pointsE andE* , and separated by two

hyperbolic pointsH andH* . Two orientations of this state are
sketched in Fig. 6. This state is called the pure modeP since
only even harmonics are present. Both the mixed modeM
and the pure modeP break the invariance underSu, while
preserving the invariance underRpsu0d. As seen in the pre-
ceding section, this invariance does not lead to any particular
symmetry in the meridional plane where the PIV measure-
ments are performed, except for special orientations ofu0

which lead to the horizontal reflection symmetrysx or the
central symmetrys0. In addition, since it involves only even
Fourier components, the pure modeP is also invariant under
Su for u=p, and is consequently invariant undersz in the
meridional plane.

For intermediate Reynolds numbers between these two
steady states, 411.6øReø452, three types of time-
dependent states have been numerically reported. For 411.6
øReø427.3, right or left TW are observed, which break
both theSu and theRpsu0d symmetries. These waves become
modulated in a very narrow range of Reynolds numbers,
427.3øReø427.4. For Re.427.4, the solution follows an
attracting near-heteroclinic cycle which links two unstable
pure statesP andP8, obtained by rotation ofp /2 about the
cylinder axisssee Fig. 6d. These cycles are stable up to Re
=452, where the steady pure modeP becomes stable. Al-
though the flow during the near-heteroclinic cycle presents
no exact spatial symmetry, during the quasistationary phases
in the neighborhood of the statesP andP8 it does inherit the
symmetries of the pure mode state, i.e., invariance undersz

sbecause of the even harmonic contentd and possibly the in-
variances undersx and therefore alsos0 sfor special orienta-
tions of u0d.

The numerically computed near-heteroclinic cycles
found in Noreet al.19 are characterized by periodic oscilla-
tions between pure mode statesP andP8 separated by rapid
changes through odd-wavenumber-dominated states. The pe-
riod is controlled by the equal timet spent in the neighbor-

TABLE I. Symmetries of the various flow states and corresponding numeri-
cal and experimental critical Reynolds numbers forG=2. s*d These modes
may also be invariant undersx ands0 for special values ofu0 ssee textd.

State Symmetry

Symmetry
in sx,zd
plane

Numerical
threshold

Experimental
threshold

Basic state Su , Rpsu0d sz, sx … …
Mixed modesMd Rpsu0d s*d 349.0 350±4

Traveling wavessTWd … … 411.6 420±4

Modulated wavessMWd … … 427.3 Not observed

Heteroclinic cyclessHetd … … 427.4 450±8

Pure modesPd Sp , Rpsu0d sz, s*d 452 480±4

FIG. 6. sBottomd Sketch of vertical velocity variations in the equatorial
plane of the pure modesP andP8. The +s−d sign designates upwardsdown-
wardd vertical velocities. The heteroclinic cycle connectsP andP8, related
by rotation of p /2. The radial vortices are centered on the diametrically
opposite elliptic pointssE,E*d and are located at right angle from the hy-
perbolic pointssH ,H*d. sTopd Perspective representations of the two coro-
tating vortices separated by the two hyperbolic pointssH ,H*d.
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hoods ofP andP8. This durationt increases from 550 up to
900 rotation periods when the Reynolds number Re increases
from 428 to 435. Two distinct heteroclinic type regimes were
observed in the simulations: a two-plateau and a four-plateau
oscillation. These two regimes originate from two possible
paths connecting the two saddle pointsP and P8. Although
no systematic conclusion could be reached in the simulations
due to the prohibitive computation time, both the Reynolds
number and the choice of the initial conditions seemed to
play a role in favoring one of these two regimes.

V. PIV ANALYSIS OF THE FLOW STATES FOR G=2

Systematic measurements of the velocity fields in the
meridional planesx,zd have been performed forG=H /Rc

=2, with the aim of further characterization of the near-
heteroclinic cycles. In Table I, the experimentally observed
flow states are summarized, and the corresponding critical
Reynolds numbers are compared to the numerical ones.

A. Steady states

Figure 7 shows the meridional velocity fieldsux,uzd for
the three different steady states observed atG=2: sad the
basic state for Re,350±4; sbd the mixed modeM for
350±4,Re,420±4; scd the pure modeP for Re.480±4.
These velocity fields are time averaged over the whole run.
The experimental thresholds, given in Table I, are in very
good agreement with the numerical ones, with discrepancies
that do not exceed 6%.

Contour levels of the velocityux are also shown, and are
especially useful in depicting the symmetries of the various
flow states. In the basic state, Fig. 7sad, the contour levels are
even inz and almost odd inx; the residual asymmetry inx
probably results from a slight misalignment of the laser sheet
with the meridional plane, leading to a contamination from
the large azimuthal component of the velocity. As shown in
Sec. IV, this corresponds to invariance under the reflection
symmetriessx andsz, which traces back to theOs2d symme-
try of the basic state. The mixed modeM, Fig. 7sbd, shows
symmetry neither inx nor in z, since theRpsu0d symmetry
for a mixed mode does not lead to any symmetry in an arbi-
trary meridional plane. The departure from reflection sym-
metry can be verified by carefully looking at the velocity
vectors near the vertical axis of Fig. 7sbd which are not sym-
metric unders0. In the pure modeP, Fig. 7scd, the vertical
reflection symmetrysz of the contour levels is recovered, as
the trace of the presence of only even harmonics.

It must be noted that the experimentally observed mixed
and pure modes always show similar velocity fields in the
meridional PIV plane, even for different initial conditions. In
particular, thes0 or sx symmetries are never observed for
these flow patterns, as would be the case for a flow state
invariant under theRpsu0d symmetry withu0=0 or p /2. A
geometric defect in the setup, probably the residual ellipticity
of the cylindrical containersof about 0.7%d, is thought to be
responsible for this systematic bias of the azimuthal symme-
try breaking. This imperfection probably has no influence on
the transition from the basic to the mixed state. However, by
forcing the flow in a preferred direction, it may delay the

FIG. 7. Meridional velocity fieldsux,uzd and contour levels ofux of the
three steady states.sad Basic state at Re.280, invariant under the horizontal
and vertical reflection symmetriessx and sz. sbd Mixed mode M at Re
.415, which does not show any invariance as can be verified on the arrows
near the vertical axis.scd Pure modeP at Re.550, invariant under the
vertical reflection symmetrysz.
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transitions toward the subsequent states. This may explain
the above mentioned shifts, of the order of 6%, between the
numerical and the experimental thresholdsssee Table Id.

B. Traveling waves

The mixed mode state loses stability at Re.420±4, giv-
ing rise to a first time-dependent state, as illustrated by the
time series in Fig. 8 for Re.440. This figure shows nearly
periodic oscillations, with a period of 190±15 rotations, of
the horizontal velocityux, measured at the locationsx,zd
=s−R/2 ,0d.

This first time-dependent state can be identified as the
TW state, by inspecting the velocity fields in Fig. 9. These
fields correspond to the two characteristic phases that are
labeledsad and sbd in the time series. They are more noisy
than those for the steady states, as they have been averaged
over only a few instantaneous velocity fields. As expected,
these fields do not present any particular symmetry, since the
traveling waves break both theSu and theRpsu0d symme-
tries. It must be noted, however, that Fig. 9sbd appears to be
similar to the steady mixed mode shown in Fig. 7sbd, which
is invariant underRpsu0d. This resemblance indicates that the
asymmetricsunder Rpd component of the traveling wave
state is indeed weak.

The theoretical analysis shows that these traveling waves
originate from a drift pitchfork bifurcation,26 and thus have
infinite period at onset. In the range of Reynolds numbers

where the traveling waves are observed, the measured period
remains of the order of 190±15 rotations. Numerically, the
period was found to decrease as the Reynolds number is
increased as predicted by theory. However, because of the
small range of Reynolds number where this pattern can be
observed, no measurable change in the period has been de-
tected experimentally. Note also that the modulated waves
sMWd, which were observed only in a very narrow range of
Reynolds numbers in the simulations, 427.3øReø427.4
ssee Table Id, have not been observed in the experiments. The
very fine range of Reynolds number where they should be
observed is well beyond the experimental uncertainty. More-
over, the geometrical differences between the experimental
and the numerical configurations, in particular, the cylinder-
to-disk radius ratioRc/Rd of 1.03 instead of 1, cannot allow
us to expect a perfect agreement for the observed flow states
and their critical Reynolds numbers.

C. Near-heteroclinic cycles

When the Reynolds number is increased above 450, the
time series cease to show a strictly periodic behavior. In-
stead, irregular oscillations between two states, punctuated
by slow relaxation phases toward a third state, are observed,
as shown by the time series in Fig. 10 obtained for increasing
Reynolds number, Re.452, 469, and 478. As the Reynolds

FIG. 8. Time series ofuxsx=−R/2 ,z=0d corresponding to the traveling
waves TW for Re.440. The labelssad andsbd refer to the velocity fields in
Fig. 9.

FIG. 9. Velocity fields of the traveling waves TW for Re.440 ssee Fig. 8d.
The velocity scale and contour levels gray scale are as that in Fig. 7.

FIG. 10. Time series ofuxsx=−R/2 ,z=0d, corresponding to the near-
heteroclinic cycle statesHetd, for Re.452, 469, and 478. The labelssad–sed
in the second time series refer to the velocity fields in Fig. 11.
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number approaches the upper bound, Re.480, the relax-
ation phases are found to be longer and more frequent.

The velocity fields corresponding to the different phases
of the second time series, labeledsad–sed, are shown in Fig.
11. The fieldssad and scd correspond, respectively, to the
upper and the lower plateaux of the oscillations, the rapid
changes between them are denoted bysbd and sdd, and the
last field sed corresponds to the slow relaxation phase.

Visual inspection of the symmetries of the fieldssad–sdd
allows us to identify this second time-dependent state as the
Het state connecting the two unstable pure modesPsad and
P8scd. The two velocity fieldssad andscd are indeed approxi-
mately invariant under the vertical reflection symmetrysz, as
expected for pure modesm=2 with only even harmonics.
This property distinguishes without ambiguity the hetero-
clinic cycle state from the traveling wave statessee Fig. 9d,
which is not invariant undersz. In addition, the two fieldssad
and scd appear to be also approximately invariant undersx

sand hence unders0=sxszd, so that the vertical velocity com-
ponent is almost zero on the equatorial linez=0. The com-
parison with the sketches of the equatorial plane in Fig. 12,
where the sign ofuz is shown, indicates that the PIV plane

where the measurements are performed appears to be ap-
proximately aligned either with the two hyperbolic pointsH
andH* fFig. 12sadg, or with the two elliptic pointsE andE*

fFig. 12scdg. This confirms that the two unstable statesP and
P8 of the cycle are related by ap /2 rotation.27 The fields
corresponding to the rapid changes betweenP andP8 shown
in Figs. 11sbd and 11sdd are, as expected, states of mixed
seven and oddd harmonic content that connect the two pure
modes. The fieldsbd is approximately invariant under thesx

symmetry, while the fieldsdd is invariant under thes0 sym-
metry. The characteristic time of these transient phases is of
about 20±5 rotations, which is of the order of the time scale
of the advection by the meridional components of the veloc-
ity.

Finally, the last field in Fig. 11sed, which corresponds to
the slow relaxation phases that appear intermittently during
the cyclessad–sdd, makes the above description in terms of a
heteroclinic cycle more complex. This additional state,
which is invariant undersz but not undersx, resembles the
steady pure mode observed at larger Reynolds numbersfsee
Fig. 7scdg, with two large counterrotating vortices in the up-
per cylinder half and two smaller ones in the lower half. The
negative values ofuz along the equatorial linez=0 indicate
that the PIV plane now falls in between the two diameters
EE* and HH* fsee Fig. 12sedg, i.e., at<45° from the pure
statesP and P8 of the cycle. As noted in Sec. V A, this
particular orientation of the steady pure mode seems to be
favored by a slight asymmetry in the experimental setup.
This suggests that the imperfection of the experiment, al-
though weak, has a deep influence on the observed near-
heteroclinic cycles, and would be, in particular, responsible
for the relaxation phases that intermittently interrupt the os-
cillations betweenP and P8 ssee the dashed arrows in Fig.
12d.

FIG. 11. Velocity fields of the near-heteroclinic cycle statesHetd for Re
.469. The fieldssad and scd, approximately invariant under the vertical
reflection symmetrysz, correspond to the pure statesP andP8 splateaux of
approximately constantux in Fig. 10d. The fieldssbd and sdd are instanta-
neous velocity fields corresponding to the spikes in Fig. 10 that connect the
plateauxsad and scd. The field sed in the long relaxation phase is the pure
mode favored by an experimental defect resembling the pure mode in Fig.
7scd.

FIG. 12. Sketch of the experimental near-heteroclinic cycle connecting the
two pure modesP sad andP8 scd fdouble arrowsbd andsddg, punctuated by
excursions toward the favored pure modesed oriented at 45° from the diam-
etersEE* andHH* sdashed arrowsd. The labelssad–sed refer to those of Figs.
10 and 11. The PIV plane is aligned with thex axis.
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D. Plateau durations of the near-heteroclinic cycles

For Reynolds numbers close to the lower bound where
the near-heteroclinic cycle state is found, Re.450, apart
from the slow relaxation phases toward the favored pure
modesed, the plateau durationt is approximately constant of
the order of 100 rotations. These plateau durations become
uneven as the Reynolds number is increased, with a mean
duration ktl that gradually increasesf200 rotations for Re
.469 in Fig. 10sbdg. In addition, the relaxation phasessed
are longer and more frequent, and are preceded by a gradual
increase of the plateau durations, as clearly seen in Fig.
10sbd. This scenario of a gradual increase of the plateau du-
rations interrupted by an excursion toward the favored pure
modesed and back to the plateau oscillationssad–sdd is ob-
served in most of the time series.

The broad distribution of plateau durations at fixed Rey-
nolds number is a genuine property of the approach toward a
heteroclinic cycle in the presence of noise.28 The plateau
duration is indeed controlled by the time spent by the system
in the neighborhoods of the two unstable statesP and P8.
These two states being saddle points, there is no intrinsic
time scale for this approach, which should tend to infinity in
the absence of noise.5 When a certain amount of noisee
!1 is present, the system approaches one of the saddle
points along its attracting direction as exps−lstd down to a
distance of the order ofOsed. Meanwhile, it moves away
along the repulsing direction as expslutd, until it reaches a
distance,Os1d at which it escapes from the saddle point.
Herels andlu are the absolute values of the leading eigen-
values in the stable and unstable directions, respectively. As
a consequence, the mean plateau duration is given by28

ktl .
1

lu
uln eu.

The distribution oft cannot be deduced from this crude
description and depends on the statistical properties of the
noise. The observed increase of the mean plateau duration
ktl as the Reynolds number is increased presumably does not
originate from the noise of the system, which should not
evolve significantly over this small range of Reynolds num-
bers ReP f450,480g, but is more likely due to a Re depen-
dence of the unstable eigenvaluelu. This eigenvalue is in-
deed expected to vanish at Re.480, when the heteroclinic
cycle branch disappears and the pure mode branch becomes
stable, which should lead to an infinite mean plateau dura-
tion.

Note that an ideal heteroclinic cycle without any noise
nor geometrical defect should lead to infinitely increasing
plateau durations.9,10 This could explain the gradual increase
of the plateau durations before the relaxation phasessed ob-
served in most time series. In contrast, the simulations of
Noreet al.19 only showed strictly periodic cycles with a fixed
finite period. In the numerics, various sources of noise, such
as round-off errors and temporal discretization, by systemati-
cally bringing the system to the same distance from the
saddle points, may have a saturating effect on the period of
the cycles. In our experiment, both the noise and the geo-
metrical bias seem to play an important role in the observed

near-heteroclinic cycles. First, the presence of noise may pre-
vent the system from staying an infinite time close to one of
the unstable states. Second, the geometrical defect seems to
enable the system to explore another path toward the favored
pure mode state. However, a systematic characterization of
the duration statistics is well beyond the available data, and
would require much longer acquisition times in a perfectly
stable system.

VI. CONCLUSION AND DISCUSSION

We have experimentally investigated the dynamics of the
exactly counterrotating von Kármán swirling flow at low
Reynolds numbers and for different height-to-radius aspect
ratios GP f0.5,2.5g. Visualizations based on Iriodin flakes
have demonstrated that the first instability gives rise to sta-
tionary vortex patterns, the number of vortices increasing as
G decreases. The experimental thresholds are in good agree-
ment with the numerical findings.25 A survey of the subse-
quent flow states that take place for higher Reynolds num-
bers has been performed. In the particular case ofG=2, all
flow states observed in the numerical simulations have been
recovered except for a single state, the modulated traveling
waves, which occur numerically in a very narrow range of
Reynolds numbers.

For the first time, experimental evidence is given for the
existence of robust heteroclinic cycles in this flow, as pre-
dicted by the numerical simulations of Noreet al.19 for G
=2. This regime originates from a resonance between two
stationary states,m=1 andm=2, in the presence of theOs2d
symmetry. It is worth pointing out that the existence of
steady bifurcated states and heteroclinic cycles depends
strongly on the exact counterrotation of the top and bottom
disks. For a rotation ratio different from −1, theOs2d sym-
metry would have been broken, and the system would have
only kept the axisymmetrySOs2d. Therefore, the patterns
would have generically rotated and the heteroclinic cycles
would have been destroyed by this symmetry breaking, see,
e.g., Porter and Knobloch.29 The experimental setup used in
the present study, where a single dc motor drives the two
disks, constrains the rotation ratio to be exactly −1, thus
allowing us to experimentally observe the steady bifurcated
states and the heteroclinic cycles.

Perhaps the most interesting observation concerning the
near-heteroclinic cycles is the broad distribution of the time
spent in the vicinity of each unstable pure mode state and the
excursions toward another pure mode favored by a geometri-
cal imperfection. While for low Reynolds numbers approxi-
mately periodic oscillations are found, uneven periods are
encountered as the Reynolds number is increased, showing
increasing plateau durations followed by long relaxation
phases toward the favored pure mode state. These oscilla-
tions differ from the strictly periodic near-heteroclinic cycles
reported in the numerical simulations of Noreet al.19 In our
experimental realization of the von Kármán flow, both noise
and geometrical defects, although weak, play a role in the
observed irregular oscillations, and only further investigation
can show which of the two is of primary importance.
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