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The bifurcations and the nonlinear dynamics of the von Karman swirling flow between exactly
counterrotating disks in a stationary cylinder are experimentally investigated by means of
visualizations and particle image velocimetry. A regime diagram of the different flow states is
determined as a function of the height-to-radius rat@nd the Reynolds number Re based on disks
rotation speed and cylinder radius. Among the steady and time-dependent states found in the
experiment, robust near-heteroclinic cycles, which link two unstable states of azimuthal
wavenumbem=2, are observed and characterized in detaillfer2. These are compared with the
numerical findings of Norest al. [“The 1:2 mode interaction in exactly counter-rotating von
Karman swirling flow,” J. Fluid Mech477, 51 (2003], with a particular emphasis on the influence

of the imperfection and the noise of the experimental setu0@ American Institute of Physics
[DOI: 10.1063/1.1926827

I. INTRODUCTION layers®***and in the Kuramoto—Sivashinsky equafidns-
ing dynamical system theory.

A characteristic feature of dynamical systems in the In contrast, experimental observations of heteroclinic
presence of symmetries is the possible existence of robusicles are less common. Hat al’® have investigated mul-
heteroclinic cycles ™ A heteroclinic cycle connects a set of tiple instabilities of rotating layers of fluid heated from be-
saddle points in a certain range of parameters, and the tirlew, including the already mentioned Kippers—Lortz insta-
spent in the neighborhood of each saddle point increasdslity. Its experimental signature is the propagation of fronts
indefinitely as the cycle is approached. This phenomenon haghere rolls of one orientation grow to replace rolls in the
gained increasing attention after the work of Busse andinstable orientation. An experiment in a porous plug burner
HeikeS on a dynamical model describing the behavior of theat low pressure shows ordered pat}grns of cellular flame con-
Kuppers—Lortz instability of rotating convection rofidn a  Sisting of concentric rings of celfs: In certain regions of
certain range of control parameters, a system of rolls is unParameter space, these rings appear intermittently, persisting
stable to rolls at an angle of about 60°. This behavior can b&" Various periods of time and abruptly changing to the
described by a set of three coupled nonlinear real ordinar;?ame or d|ﬁerent qumper of cells. . .
equation§’, which was first proposed as a model for popula- . The_flov_v in cylindrical geometries .produced by rotating
. . 7 . . . . disks with internal shear layers provides another example
tion biology.” Nonrotating convection also provides physical

o . where heteroclinic cycles may be found, as first shown by
situations where the competition between two modes MaY|ore et al® in numerical computations. This flow configu-

create heteroclinic cycles. Indeed a normal form IrWo""ngration has recently been the subject of considerable interest,

four real amplitude equations was derived for convection inas it provides a simple hydrodynamical system where the
two superimposed fluid layers, heated from below and SeP%ymmetries play a key role in the sequence of

rated by a conducting plateThis normal form was eXhal‘gS' bifurcations'®°In the particular case of exactly counterro-
tively analyzed by Proctor and Joflesid Armbrusteet al: tating disks with a stationary sidewall at a height-to-radius
as the 1:2 mode resonance in the presend®(@f symme-  ratio '=2, when the disk rotation rate is increased, the axi-
try. The ubiquitous occurrence af:n mode resonances has symmetric basic state becomes unstable through a transition
been revealed in two-dimensional Rayleigh—Bénard conveayhich resembles the Kelvin—Helmholtz instability of the
tion without Boussinesq symmetH/,lzin turbulent boundary  equatorial azimuthal free shear layer created by the counter-
rotation of the top and bottom disks. This instability gives
¥Electronic mail: moisy@fast.u-psud.fr rise to steady states with one or two corotating radial vortices
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generated by the saturation of the corresponding azimuthal
mode. Accompanying this instability are more complex dy-
namics such as traveling waves, modulated traveling waves,
and heteroclinic cycles. These cycles connect two states,
each containing two corotating vortices and relatedd2
rotation about the cylinder axis.

The critical Reynolds numbers for this flow have been
investigated when the aspect ratio is varied between 0.5 and
3 and the counterrotation of the two disks maintaifittihe
1:2 codimension-two point at which thm=1 and them
=2 thresholds coincide has been locatedl'at:2)=1.64.
Heteroclinic cycles may occur in a large region of parameter
space when then=1 threshold precedes that of the=2,

i.e., when I'>I'(1:2), but only extremely near the
codimension-two point when the order is reverfesl, when
I'<I'(1:2)]. At I'=2, only periodic cycles with heteroclinic
type behavior have been numerically observed and are thus
called near-heteroclinic cyclégAs was first pointed out by
Busse and HeikeSnumerical noise prevents the flow from
staying an indefinite amount of time in a neighborhood of a
saddle state, leading to a periodic cycle.

The main purpose of this paper is to experimentally in-
vestigate the sequence of states which occur when the Regl_G. 1. Experimental cell. The inset illustrates azimuthal velocity contours

. . . eft) and the meridional velocity fieldright) of the axisymmetric flow
nolds number is varied for aspect ratios between 0.5 and 2.3etermined by numerical Simulat)i/qRef. 199. y

and to characterize in detail the near-heteroclinic cycles ob-

served ail"=2. The outline of the paper is as follows: Sec. II

describes the experimental setup and visualization and mea- Re =QRR/v,

surement systems. In Sec. Ill, the regime diagram and the ) ) )
steady states obtained for different aspect ratios are reportel§, varied between 140 and 600. Note that, in the numerical
Section IV describes the symmetries of the flow, and numeriSimulations of Noreet al,™" the two radii are equal and
cal results for the casE=2 are summarized. Section V is denoted byR, so that the twozcontrol parameters are simply
devoted to the study of the steady and unsteady flow statgtven byI'=H/R and Re=)R"/v.

for ['=2, with a particular emphasis on the near-heteroclinic  The basic axisymmetric steady flow is also depicted in
cycles. Section VI contains our conclusion. Fig. 1. It consists of a predominant equatorial shear layer

produced by the counterrotating top and bottom disks, and
separating two regions with opposite senses of azimuthal ve-
locities (left part of Fig. 3. Two second-order recirculation

A. Experimental cell zones due to Ekman pumping in the neighborhood of each
disk (right part of Fig. 2 converge at midheight and form an
inward radial jet.

Il. EXPERIMENTAL SETUP

The experimental cell is sketched in Fig. 1. The cylin-
drical container, made of Plexiglas, of inner radRs=35.5
and 120 mm long, is mounted vertically. The working fluid is
silicon oil of kinematic viscosityr=104m?s™* at 25 °C.
The top and bottom disks, of radil&=34.5 mm, are im- Visualizations using Iriodin flakes were performed in or-
mersed into the fluid that totally fills the cylinder. The dis- der to determine the various flow states which occur as the
tance between the diskkl, can be adjusted between a few control parameter¢l’,Re) are varied. Although crude, this
millimeters up to 89 mm. In the present paper, the aspectisualization method is convenient as a first approach, as it
ratio, defined ad’=H/R,, is varied between 0.5 and 2.5. allows us to easily define the onset modes and the associated
Finally, the cylinder is immersed into a rectangular watercritical Reynolds numbers.
tank, in order to minimize optical distortion. Two mirrors, placed at angles of 120° on each side of the

The disks are driven by a dc motor, and constrained taylinder, allow for visualization around the whole perimeter.
rotate with exactly opposite velocities. The angular velocityThe pictures, taken from a charge-coupled deW€€D)

Q) can be set between 10 and 64 rad/s with a stability otamera, were processed in order to unfold the three views:
0.1%. Typical runs are of fQotations, and the waiting time the front view is shown in the left picture, while the side
between runs is at least 2000 rotations in order to avoidviews were reversed and rescaled, and are shown in the
transient effects. The temperature, measured in the outer waiiddle and right pictureg¢see Figs. 2 and)3

ter bath, showed a maximum drift of £0.1 °C during a run, Along the equatorial shear layer, the vertical velocity
leading to an uncertainty of +0.3% for the viscosity. Thevanishes and the Iriodin flakes are essentially horizontal.
Reynolds number, based on the cylinder radRysand the  Therefore the shear layer appears as a dark horizontal line
disk velocity QR, when seen by reflection and as a bright line when seen by

B. Flow visualization
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(b)

(W)
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FIG. 2. Azimuthal modulation of the shear layer, as observed using Iriodin
flakes, for various aspect ratids The pictures were processed in order to /_\
unfold the three views: the front view is shown in the left picture, while the /\/

side views are reversed and rescaled, and are shown in the middle and rigt \/
pictures. The shear layer is seen by reflection in the left pididmek line

and by transmission in the two other pictui@sight line). The mode cor-
responds to the number of extrema along the unfolded perimeter. The lines

drawn below the pictures are guides for the €@ I'=0.75,mc=3. (b) I’ . : _ _ - _
=15 me=2. FIG. 3. Same as Fig. 2 witfe) '=2, me=1. (b) '=2, m=2.

32X 32 pixels, with an overlap of 16 pixels, are used for the
transmission. In the figures, the light source being on thd®lV computations. The final velocity fields are defined on a
same side as the camera, the front view shows a dark lin®4Xx 64 grid, with a resulting spatial resolution of 1 mm. In
while the two side views show a bright line. the following figures, only one out of four velocity vectors is
shown for clarity.
C. Velocity measurements

I . - Ill. REGIME DIAGRAM AND FLOW STATES
Velocity fields in a meridional planéx,z) were mea-

sured using a particle image velocimet®iV) system. For Systematic measurements of the onset Reynolds num-
these measurements, the distahiceas set at 71 mm, lead- bers have been performed from visualization of the Iriodin
ing to an aspect ratid’=H/R.=2. Small borosilicate par- flakes, for aspect ratioB ranging between 0.5 and 2.5. The
ticles, 11um in diameter, are used as tracer, illuminated by aregime diagram in Fig. 4 summarizes our observations in the
vertical laser sheet of thickness=0.5 mm produced by a plane of parameterd™, Re). These onset Reynolds numbers
double pulsed Nd: YAG lasdiyAG—yttrium aluminum gar-  have been obtained by slowly increasing the angular velocity
nef. Images are acquired with a double-buffer high resolu-and visually inspecting the light reflected and transmitted by
tion camerg1280x 1024 pixels, 4096 gray levelssynchro-  the flakes.
nized with the laser at a rate of 1 frame pair per second. The thresholds are found in excellent agreement with the
The main difficulty for the PIV measurements in this numerical results of Noret al,?® shown as the lower solid
geometry arises from the large azimuthal velocity componeniine, except for largd”™ where the experimental thresholds
of the flow, which strongly constrains the time del@lybe-  are slightly lower than the numerical ones, probably due to
tween the two frames of a pair. The out-of-plane azimuthakxperimental noise which may slightly anticipate the bifur-
velocity is of the order ofQR and dominates the in-plane cation of the basic flow.
meridional components to be measured, which are of the Examples of flow visualizations are given in Figs. 2 and
order of 0.1QR. In order to keep an acceptable number of3. For low Reynolds numbers, the stable equatorial shear
common particles between the two frames of a pair, the timéayer shows an exactly horizontal line at midheight, which
delay ¢t has to be kept of the order & (OR. As a conse- becomes modulated as the Reynolds number is increased.
quence, the particle displacement in the meridional plane i$he shear layer is sketched below the pictures to guide the
small of the order of 0l=0.05 mm=1 pixel. With azi- eye. The corresponding mode can be easily determined as the
muthal velocities of the order d@R=0.5-2 m §%, the time  number of extrema along the unfolded perimeter. The first
delay & typically ranges from 0.5 to 2 ms. Window sizes of three figures, Figs. (8), 2(b), and 3a), obtained slightly
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600 |

500 [

d

400 [
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I'=H/R FIG. 5. Sketch of the two symmetrieS, andR(6,), of the flow between
exactly counterrotating disks. The meridional plane where the PIV measure-

FIG. 4. Experimental regime diagram, obtained from visualizati®n. ments are performed defines the2) plane, in gray.

steady nonaxisymmetric state with critical modg, A, time-dependent
state,[], steady nonaxisymmetric state with maades m.. Error bars forA
and[ are the same as f@®. The gray region represents various unsteady

states. —, numerical threshold- -, lines indicating the codimension-two scattered, sometimes closely approaching the critical curve,

points,I'(3:4)=0.63,1"(2:3)=0.95, andl'(1:2)=1.64. The numbers above . ticul th di . tw int ]E(IS'4)

the horizontal arrows indicate the onset maude In particular, near the co ImenSIOD' : 0 p0|r? S T
=0.63 andI'(2:3)=0.95. No upper limit for this region is
observed, at least for Re600. The complex flow states in

. this region could result from resonance between mades
above the onset, show the critical modes=3, 2, and 1 that =2, and have not yet been explored

appear for the aspect ratios 0.75, 1.5, and 2, respectively. In

the casd'=2, another stationary mode=2 is also obtained

for higher Reynolds number, as shown in Figh)3 IV. SYMMETRIES AND FLOW STATES FOR I'=2
The first flow state found above the onset is always sta-

tionary, with an azimuthal modulatiom: which decreases . I
y e furcations and the mode competition that takes place as the

from 4 to 1 asl’, i.e., the height, is increased. The experi-R Id ber is i d ful vsis of th
mentally observed onset modes fall into the expected regionseyno S NUMDETS Increased, a caretul analysis of the sym-

shown by the horizontal arrows, delimited by the numeri_metries of the flow is essential. A complete description of

: : 19
cally determined codimension-two points sketched as vertiEhese symmetries can be found in Neseal.™ and they are

cal dashed lines in Fig. 4. only briefly presented here.
The subsequent states for larger Reynolds number d
pend strongly on the aspect ratio. HOF1'(1:2)=1.64, in
addition to the critical modenc=1, a higher order stationary The base flow produced in a cylinder driven by the ro-
modem=2 is also found when the Reynolds number is in-tation of the top and bottom disks is axisymmetric, i.e., in-
creased. These two modes, shown in Figa) and 3b) for  variant under rotation by any angteabout the cylinder axis,
I'=2, correspond to what are called the mixed mdtlend  which we denote byS, (see Fig. 5. The present case of
the pure modé, respectively, and will be described in detail exactly counterrotating disks is unique in possessing an ad-
in Sec. V. A narrow band of time-dependent states is experiditional symmetry of rotation ofr about any horizontal axis
mentally observed between these two steady states. The uip- the equatorial plane. We denote this rotation Ry 6,),
per and lower limits of this unsteady band are roughlywhere6,e[0,m) is the direction of the horizontal axis. This
straight lines that converge towards the codimension-tw@dditional symmetry is equivalent to combined reflections in
point atl'(1:2), as predicted theoreticalty*°and confirmed  6=6, and inz=0. The main point is that rotation about the
numerically?5 In this band, two time-dependent states, trav-axis and about a horizontal axis do not commute, and hence,
eling waves(TW), and near-heteroclinic cycléblet) are ex-  the group generated by the operat&sand R, (6,) is iso-
perimentally observed, but they are not easy to distinguisimorphic to O(2). This symmetry grougd(2) is especially
from the visualizations. These two states will be described inmportant for the sequence of bifurcations present in this
detail in Sec. V forl'=2. system, and is, in particular, the key ingredient for the het-
For the range of aspect ratios £2'<1.5, in themg eroclinic cycles that take place between two rotated modes
=2 region, the flow remains stationary up to the highest Reym=2 atI'=2.
nolds number investigated, Re500. Lower aspect ratios, In the present experiment, only the velocity field in a
I's1.2, for whichm:=2, show complex unsteady states. (x,z) meridional plane, which defines by convention the ori-
Traveling waves with strong nonlinear interactions, somegin #=0, is measurable by Pl\ee Fig. 5. It is therefore of
times leading to intermittent vortex pairing, may be ob-interest to consider the restriction of the above three-
served. The lower limit of this unsteady region is somewhatimensional symmetries to this meridional plane. Note that,

In order to obtain more insight into the sequence of bi-

% Symmetries of the exactly counterrotating flow
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TABLE |. Symmetries of the various flow states and corresponding numeri- P P)
cal and experimental critical Reynolds numbers Far2. (") These modes
may also be invariant undey ands, for special values of), (see texk -
Symmetry
in (x,z2  Numerical Experimental ER 7 B*

State Symmetry plane  threshold threshold ; > ‘
Basic state Sy Ra60) S, 8¢ g
Mixed mode(M) R.(6o) @) 349.0 350+4 _

. -
Traveling wavegTW) ... 411.6 420+4 E H
Modulated wavesMW) ... 427.3 Not observed
Heteroclinic cyclegHet) ... 427.4 450+8

E*

sk
in this restriction, we consider only the velocity components H

within the meridional plane, and not the component perpenriG. 6. (Bottom) Sketch of vertical velocity variations in the equatorial
dicular to it. plane of the pure moddé2 andP’. The H-) sign designates upwaftdown-

Consider first states which are axisymmetric. In the me_vvard) vertical velocities. The heteroclinic cycle conneBteind P’, related

. . . ’ . by rotation of /2. The radial vortices are centered on the diametrically
ridional plane, these states are invariant under reflection 1Bpposite elliptic point{E,E") and are located at right angle from the hy-

the z axis, acting on coordinates &s,z) — (=X, z), which we  perbolic points(H,H"). (Top) Perspective representations of the two coro-
denote bys,. This is also the case for even wavenumbertating vortices separated by the two hyperbolic poihtsH").

states, those which are invariant under discrete rotat8ns

Wlth .HZtZW/rC? for even n]zl Ct(')ns?aeg nor\:v st;te_s Whlchb_are hyperbolic pointdH andH". Two orientations of this state are
Invariant under some reflectia,(6y), wherefy Is an arbl- = gy na in Fig. 6. This state is called the pure mBdsince

trary gngle chose_n .by the system.. These states are not ne(§:ﬁly even harmonics are present. Both the mixed migde
essarily symmetric in théx,z) meridional plane where the

PIV ¢ ‘ 4. unléssak f and the pure mod@® break the invariance und&,;, while
measurements are performed, unieg$akes on one o preserving the invariance undBr,(6,). As seen in the pre-
two special values. If, is along thex axis (6,=0), then

. . o ) ceding section, this invariance does not lead to any particular
nvariance undeR,T(a_o) reduces to reflection n the axis, symmetry in the meridional plane where the PIV measure-
denoted by, and acting gﬁx,z')e(x,—z). If 6o IS normal to ments are performed, except for special orientationgf
the plandfo=/2), then invariance undé,(6p) is the cen- i joad 1o the horizontal reflection symmesyor the

tral §ymmetry relaﬂye o the orl.gln,.denotedllqy which is central symmetng,. In addition, since it involves only even
equivalent to cqmbmed refle(':tllon kandz, i.e., %=88, Fourier components, the pure moBeés also invariant under
These_ symmetries in the mer@onal plasze,g(, ands, are Sy for 6=, and is consequently invariant undgrin the
especially useful as they provide a convenient way of iden

>r . _ meridional plane.
tifying the flow patterns obtained by PIV in Sec. V. For intermediate Reynolds numbers between these two

steady states, 411s6Re=<452, three types of time-
dependent states have been numerically reported. For 411.6
The particular case of the aspect ralie2 shows the <Re<427.3, right or left TW are observed, which break
following sequence of bifurcations as the Reynolds numbeboth theS, and theR.(6,) symmetries. These waves become
is increased” basic flow; steady state witin=1, called modulated in a very narrow range of Reynolds numbers,
mixed modeM; traveling waves; modulated traveling waves; 427.3<Re<427.4. For Re>427.4, the solution follows an
near-heteroclinic cycles; and steady states with2, called attracting near-heteroclinic cycle which links two unstable
pure modeP. The symmetries and the critical Reynolds pure state$® andP’, obtained by rotation ofr/2 about the
numbers of these states are described here, and are sumrsglinder axis(see Fig. . These cycles are stable up to Re
rized in Table I. =452, where the steady pure mo&ebecomes stable. Al-
For low Reynolds number, the basic state inherits thehough the flow during the near-heteroclinic cycle presents
0O(2) symmetry from the geometric configuration. In the me-no exact spatial symmetry, during the quasistationary phases
ridional plane, it is thus invariant undeg ands,. For Re  in the neighborhood of the stat®sandP’ it does inherit the
>349.0, this basic state loses stability to ime=1 mode, symmetries of the pure mode state, i.e., invariance usder
giving rise to a stationary state with one elliptic point in the (because of the even harmonic conjeartd possibly the in-
equatorial plane and a diametrically opposite hyperbolicvariances undes, and therefore alsg, (for special orienta-
point. This state is called the mixed modg, because the tions of 6;).
nonlinear interactions produce both even and odd harmonics. The numerically computed near-heteroclinic cycles
The other stationary bifurcated flow is obtained for Refound in Noreet al’® are characterized by periodic oscilla-
=452. It is am=2 mode and consists of two radial corotat- tions between pure mode statesand P’ separated by rapid
ing vortices in the equatorial plane, located on two diametri-changes through odd-wavenumber-dominated states. The pe-
cally opposite elliptic point&€ andE", and separated by two riod is controlled by the equal time spent in the neighbor-

B. Numerical results for I'=2
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hoods ofP andP’. This durationr increases from 550 up to (a) Basic
900 rotation periods when the Reynolds number Re increases
from 428 to 435. Two distinct heteroclinic type regimes were
observed in the simulations: a two-plateau and a four-plateau
oscillation. These two regimes originate from two possible
paths connecting the two saddle poiftsand P’. Although

no systematic conclusion could be reached in the simulations
due to the prohibitive computation time, both the Reynolds
number and the choice of the initial conditions seemed to
play a role in favoring one of these two regimes.

V. PIV ANALYSIS OF THE FLOW STATES FOR I'=2

Systematic measurements of the velocity fields in the
meridional plane(x,z) have been performed fdr=H/R.
=2, with the aim of further characterization of the near-
heteroclinic cycles. In Table |, the experimentally observed
flow states are summarized, and the corresponding critical
Reynolds numbers are compared to the numerical ones.

(b) Mixed M

A. Steady states

Figure 7 shows the meridional velocity fie(d,,u,) for
the three different steady states observed'aR: (a) the
basic state for R&350+4; (b) the mixed modeM for
350+4<Re<420=4;(c) the pure modéd® for Re>480+4.
These velocity fields are time averaged over the whole run.
The experimental thresholds, given in Table |, are in very
good agreement with the numerical ones, with discrepancies
that do not exceed 6%.

Contour levels of the velocity, are also shown, and are
especially useful in depicting the symmetries of the various
flow states. In the basic state, Fidga), the contour levels are
even inz and almost odd irx; the residual asymmetry ir
probably results from a slight misalignment of the laser sheet (c) Pure P
with the meridional plane, leading to a contamination from
the large azimuthal component of the velocity. As shown in
Sec. IV, this corresponds to invariance under the reflection
symmetriess, ands,, which traces back to th@(2) symme-
try of the basic state. The mixed modie, Fig. 7(b), shows
symmetry neither irx nor in z, since theR_(6,) symmetry
for a mixed mode does not lead to any symmetry in an arbi-
trary meridional plane. The departure from reflection sym-
metry can be verified by carefully looking at the velocity
vectors near the vertical axis of Fig(bj which are not sym-
metric unders,. In the pure modeP, Fig. 7(c), the vertical
reflection symmetns, of the contour levels is recovered, as
the trace of the presence of only even harmonics.

It must be noted that the experimentally observed mixed
and pure modes always show similar velocity fields in the

\
\
;
]
1

meridional PIV plane, even for different initial conditions. In =
particular, thesy or s, symmetries are never observed for uy | QR

these flow patterns, as would be the case for a flow state ﬁ:l
invariant under theR_(6,) symmetry with6,=0 or 7/2. A _01 0 0.1

geometric defect in the setup, probably the residual ellipticity

of the cylindrical containefof about 0.79%, is thought to be FIG. 7. Meridional velocity field(u,,u,) and contour levels ofi, of the

- . . . . three steady state) Basic state at Re 280, invariant under the horizontal
responsible for this systematic bias of the azimuthal SYmme; 1" crical reflection symmetries, and s,. (b) Mixed modeM at Re

try breaking. This imperfection probably has no influence on= 415, which does not show any invariance as can be verified on the arrows
the transition from the basic to the mixed state. However, byear the vertical axis(c) Pure modeP at Re=550, invariant under the

forcing the flow in a preferred direction, it may delay the vertical reflection symmetry,.
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o 012 ——
0.10 |- i
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2" 0.00 ©
0.04
0.02 r T(b) 7] 0.12 [T
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0.08 |
0 500 1000 1500 2000 é F
Qr/2rm e E
=004 F
FIG. 8. Time series ofu(x=-R/2,z=0) corresponding to the traveling F
waves TW for Re=440. The labelg¢a) and(b) refer to the velocity fields in 0.00 F .

Fig. 9.

transitions toward the subsequent states. This may explaii %12

the above mentioned shifts, of the order of 6%, between the E

numerical and the experimental thresholdse Table )L 5 0.08
\)< F
=

B. Traveling waves 0.04 |

The mixed mode state loses stability at-Ré20+4, giv- g
ing rise to a first time-dependent state, as illustrated by the %% (;' S '1'0‘0(‘)' E— 20'00 E— ‘3‘0'0(')‘ — '4(;00
time series in Fig. 8 for Re 440. This figure shows nearly 0t/
periodic oscillations, with a period of 190+15 rotations, of

the horizontal velocityux, measured at the Iocatiotx,z) FIG. 10_. _Time series ofu(x=-R/2,z=0), corresponding to the near-
=(-R/2,0) heteroclinic cycle statéHet), for Re=452, 469, and 478. The labgla—(e)

L . . . in the second time series refer to the velocity fields in Fig. 11.
This first time-dependent state can be identified as the

TW state, by inspecting the velocity fields in Fig. 9. These

fields correspond to the two characteristic phases that are

labeled(a) and (b) in the time series. They are more noisy . .
than those for the steady states, as they have been averagégere the traveling waves are observed, the measured period
over only a few instantaneous velocity fields. As expectedfémains of the order of 190+15 rotations. Numerically, the
these fields do not present any particular symmetry, since tHeeriod was found to decrease as the Reynolds number is
traveling waves break both th®, and theR_(6,) symme- increased as predicted by theory. However, because of the
tries. It must be noted, however, that FigbPappears to be small range of Reynolds number \{vhere this. pattern can be
similar to the steady mixed mode shown in Figh)7 which observed, no measurable change in the period has been de-
is invariant undeR,,(). This resemblance indicates that the {€cted experimentally. Note also that the modulated waves
asymmetric (under R,;) component of the traveling wave (MW), which were observed only in a very narrow range of
state is indeed weak. Reynolds numbers in the simulations, 42ZRe<427.4

The theoretical analysis shows that these traveling wave§$e€ Table)l have not been observed in the experiments. The
originate from a drift pitchfork bifurcatiof® and thus have Very fine range of Reynolds number where they should be

infinite period at onset. In the range of Reynolds number@bserved is well beyond the experimental uncertainty. More-
over, the geometrical differences between the experimental

and the numerical configurations, in particular, the cylinder-
to-disk radius ratidR./R; of 1.03 instead of 1, cannot allow

us to expect a perfect agreement for the observed flow states
and their critical Reynolds numbers.

(@) (b)

C. Near-heteroclinic cycles

When the Reynolds number is increased above 450, the
time series cease to show a strictly periodic behavior. In-
stead, irregular oscillations between two states, punctuated
by slow relaxation phases toward a third state, are observed,
FIG. 9. Velocity fields of the traveling waves TW for Ret40(see Fig. 8 @S Shown by the time series in Fig. 10 obtained for increasing
The velocity scale and contour levels gray scale are as that in Fig. 7. Reynolds number, Re452, 469, and 478. As the Reynolds
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P (c)

ST
T2

AR WY

FIG. 12. Sketch of the experimental near-heteroclinic cycle connecting the
two pure mode$ (a) andP’ (c) [double arrow(b) and(d)], punctuated by
excursions toward the favored pure madgoriented at 45° from the diam-
etersEE" andHH" (dashed arrows The labelda)—(e) refer to those of Figs.

10 and 11. The PIV plane is aligned with tReaxis.

where the measurements are performed appears to be ap-
proximately aligned either with the two hyperbolic poiiis
andH" [Fig. 12a)], or with the two elliptic pointsE andE"
[Fig. 12c)]. This confirms that the two unstable stakeand

’ . 27 .
FIG. 11. Velocity fields of the near-heteroclinic cycle stéittet) for Re P’ of the Cyde are relat_ed by @/ 2 rotation” The fields
=469. The fields(a) and (c), approximately invariant under the vertical corresponding to the rapid changes betwBeandP’ shown
reflection symmetrys,, correspond to the pure stat®sand P’ (plateaux of  jn Figs. 11b) and 11d) are, as expected, states of mixed

approximately constant, in Fig. 10. The fields(b) and (d) are instanta- .
neous velocity fields corresponding to the spikes in Fig. 10 that connect thgeven and oddharmonic content that connect the two pure

plateaux(a) and (c). The field (¢) in the long relaxation phase is the pure Modes. The fieldb) is approximately invariant under trs
mode favored by an experimental defect resembling the pure mode in Fig;ymmetry, while the ﬁe|dd) is invariant under thso sym-

7©. metry. The characteristic time of these transient phases is of
about 20+5 rotations, which is of the order of the time scale
of the advection by the meridional components of the veloc-

number approaches the upper bound~R&0, the relax-
ation phases are found to be longer and more frequent. ity.

The velocity fields corresponding to the different phases Finally, the I"_"St field in Fig. 1), Whic_h corrgsponds to.
of the second time series, labelé—(e), are shown in Fig. the slow relaxation phases that appear intermittently during

11. The fields(a) and (c) correspond, respectively, to the the cycles@—(d), makes the above description in terms of a

upper and the lower plateaux of the oscillations, the rapid‘neteroclinic cycle more complex. This additional state,

changes between them are denoted(tgyand (d), and the which is invariant undes, but not unders,, resembles the
last field (e) corresponds to the slow relaxation phase. steady pure mode observed at larger Reynolds nunibees

Visual inspection of the symmetries of the fields—(d) Fig. 7(c)], with two large counterrotating vortices in the up-
allows us to identify this second time-dependent state as thieer cylinder half and two smaller ones in the lower half. The
Het state connecting the two unstable pure mdel@s and  negative values ofi, along the equatorial line=0 indicate
P’(c). The two velocity fieldga) and(c) are indeed approxi- that the PIV plane now falls in between the two diameters
mately invariant under the vertical reflection symmeyzyas EE andHH’ [see Fig. 189)], i.e., at=45° from the pure
expected for pure modes=2 with only even harmonics. statesP and P’ of the cycle. As noted in Sec. V A, this
This property distinguishes without ambiguity the hetero-particular orientation of the steady pure mode seems to be
clinic cycle state from the traveling wave stdsee Fig. 9  favored by a slight asymmetry in the experimental setup.
which is not invariant undes,. In addition, the two field¢a) ~ This suggests that the imperfection of the experiment, al-
and (c) appear to be also approximately invariant undgr though weak, has a deep influence on the observed near-
(and hence undex,=s,s,), so that the vertical velocity com- heteroclinic cycles, and would be, in particular, responsible
ponent is almost zero on the equatorial lzre0. The com-  for the relaxation phases that intermittently interrupt the os-
parison with the sketches of the equatorial plane in Fig. 12¢illations betweerP and P’ (see the dashed arrows in Fig.
where the sign ofl, is shown, indicates that the PIV plane 12).
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D. Plateau durations of the near-heteroclinic cycles near-heteroclinic cycles. First, the presence of noise may pre-

For Reynolds numbers close to the lower bound wheré’ent the system from staying an infinite time close to one of
the near-heteroclinic cycle state is found, -Ré50, apart the unstable states. Second, the geometrical defect seems to

from the slow relaxation phases toward the favored puréenable the system to explore another path toward the favored

mode(e), the plateau duration is approximately constant of pure mode statg. I_—|ovx_/ever, a systematic chgracterlzanon of

the order of 100 rotations. These plateau durations becorntge dura’uop statistics is well bey?”?‘?' the. avallgble data, and

uneven as the Reynolds number is increased, with a mea‘(ﬁou'd require much longer acquisition times in a perfectly

duration(7) that gradually increasg00 rotations for Re stable system.

=469 in Fig. 1@b)]. In addition, the relaxation phasés)

are longer and more frequent, and are preceded by a gradual

increase of the plateau durations, as clearly seen in Fig/l. CONCLUSION AND DISCUSSION

10(b). This scenario of a gradual increase of the plateau du- ) ) ) )

rations interrupted by an excursion toward the favored pure Ve have experimentally investigated the dynamics of the

mode (e) and back to the plateau oscillatiof@—(d) is ob- exactly counterrotating von Karman swirling flow at low

served in most of the time series. Reynolds numbers and for different height-to-radius aspect
The broad distribution of plateau durations at fixed Rey_rans I'e[0.5,2.5. V|sual|zat|.ons_ base_d. on .|I’I0dlll’l flakes

nolds number is a genuine property of the approach toward have demonstrated that the first instability gives rise to sta-

heteroclinic cycle in the presence of nof&eThe plateau tionary vortex patterns, the number of vortices increasing as

duration is indeed controlled by the time spent by the systenh decreases. The experimental thresholds are in good agree-

in the neighborhoods of the two unstable staeand P'. ment with the numerical findingS.A survey of the subse-

These two states being saddle points, there is no intrinsiguent flow states that take place for higher Reynolds num-

time scale for this approach, which should tend to infinity inP€rs has been performed. In the particular casé=g, all

the absence of noifeWhen a certain amount of noise (10w states observed in the numerical simulations have been

<1 is present, the system approaches one of the saddigcovered _except for a single sta_te, the modulated traveling

points along its attracting direction as éxpg) down to a  Waves, which occur numerically in a very narrow range of

distance of the order 0®(e). Meanwhile, it moves away Reynolds numbers. _ _ o

along the repulsing direction as @xgt), until it reaches a For the first time, experimental evidence is given for the

distance~O(1) at which it escapes from the saddle point. existence of robust heteroclinic cycles in this flow, as pre-

: . : . 19
Here A, and )\, are the absolute values of the leading eigen-dictéd by the numerical simulations of Noet al.™ for I

values in the stable and unstable directions, respectively. A2: This regime originates from a resonance between two

a consequence, the mean plateau duration is givéh by ~ Stationary statesn=1 andm=2, in the presence of th@(2)
symmetry. It is worth pointing out that the existence of

1 steady bifurcated states and heteroclinic cycles depends

(1) = )\—|In g. strongly on the exact counterrotation of the top and bottom

! disks. For a rotation ratio different from -1, tl&2) sym-

The distribution ofr cannot be deduced from this crude metry would have been broken, and the system would have
description and depends on the statistical properties of thenly kept the axisymmetny/5Q2). Therefore, the patterns
noise. The observed increase of the mean plateau duratiomould have generically rotated and the heteroclinic cycles
() as the Reynolds number is increased presumably does nafould have been destroyed by this symmetry breaking, see,
originate from the noise of the system, which should note.g., Porter and Knoblocli. The experimental setup used in
evolve significantly over this small range of Reynolds num-the present study, where a single dc motor drives the two
bers Re=[450,48(, but is more likely due to a Re depen- disks, constrains the rotation ratio to be exactly -1, thus
dence of the unstable eigenvalhg This eigenvalue is in- allowing us to experimentally observe the steady bifurcated
deed expected to vanish at R480, when the heteroclinic states and the heteroclinic cycles.
cycle branch disappears and the pure mode branch becomes Perhaps the most interesting observation concerning the
stable, which should lead to an infinite mean plateau duranear-heteroclinic cycles is the broad distribution of the time
tion. spent in the vicinity of each unstable pure mode state and the

Note that an ideal heteroclinic cycle without any noiseexcursions toward another pure mode favored by a geometri-
nor geometrical defect should lead to infinitely increasingcal imperfection. While for low Reynolds numbers approxi-
plateau duration$° This could explain the gradual increase mately periodic oscillations are found, uneven periods are
of the plateau durations before the relaxation ph&gesb-  encountered as the Reynolds number is increased, showing
served in most time series. In contrast, the simulations oincreasing plateau durations followed by long relaxation
Noreet al® only showed strictly periodic cycles with a fixed phases toward the favored pure mode state. These oscilla-
finite period. In the numerics, various sources of noise, suctions differ from the strictly periodic near-heteroclinic cycles
as round-off errors and temporal discretization, by systematireported in the numerical simulations of Naeeal® In our
cally bringing the system to the same distance from theexperimental realization of the von Karmén flow, both noise
saddle points, may have a saturating effect on the period aind geometrical defects, although weak, play a role in the
the cycles. In our experiment, both the noise and the gembserved irregular oscillations, and only further investigation
metrical bias seem to play an important role in the observedan show which of the two is of primary importance.
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