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Kolmogorov Equation in a Fully Developed Turbulence Experiment
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The Kolmogorov equation with a forcing term is compared to experimental measurements, in low
temperature helium gas, in a range of microscale Reynolds nuniersetween 120 and 1200.
We show that the relation is accurately verified by the experiment (i.e., witlitt relative error,
over ranges of scales extending up to three decades). Two scales are extracted from the analysis,
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and revealed experimentally, one characterizing the external forcing and the other, varymd as
defining the position of the maximum of the functienss(r)/r, and for which a physical interpretation
is offered. [S0031-9007(99)09070-5]

PACS numbers: 47.27.Gs, 47.27.Jv

The Kolmogorov equation [1] is an exact relation be-for microscale Reynolds numbeRs lower than approxi-
tween the longitudinal second order and third order strucmately 1000. For largeR,, the simplified form is found
ture functions S, (r) andSs(r), valid for the ideal case of compatible with the experiment, but sizeable deviations,
homogeneous isotropic turbulence [the structure functionen the order of 10% to 30%, are usually observed [5-8];
are defined bys,(r) = (v(x + r) — v(x)]"), wherev  the existence of such deviations raises the issue as to
is the local velocity atc and r is a separation distance]. whether the Kolmogorov equation should be amended
S»(r) is linked to kinetic energy an8i;(r) is linked to en-  to apply to real systems, and whether the fundamental
ergy transfers, two crucial quantities characterizing fullyconcepts on which it relies, i.e., isotropic homogeneous
developed turbulence. This relation is extensively used byurbulence, should be reassessed. Jeopardizing these
the experimentalists to measure, from inertial range quantissues, the results we present in this Letter show that the
ties, the mean dissipation ratéeno alternative method ex- forced Kolmogorov equation describes the real world to
ists, in general, when the dissipative scales are unresolved, remarkable degree of accuracy, throughout the range
which typically happens at large Reynolds numbers. A reof scales on which it is expected to apply. The analysis
stricted form of this equation, called the “four-fifths law,” will further enable us to single out two new scales for
is considered one of the most important results in fullyturbulence; one of them was introduced recently by
developed turbulence [2]. The Kolmogorov equation wasdNovikov [9], in a related context, but never observed.
originally derived, after von Karman and Howarth [3], for The setup we use is the same as the one described
freely decaying turbulence, and its adaptation to stationarin Refs. [10—12]. The flow is confined in a cylinder,
forced turbulence, in a form suitable for a detailed comdimited axially by disks equipped with blades, rotating
parison with experiment, was done by Novikov [4]; thein opposite directions at approximately equal angular
corresponding equation, valid for scales well below an exspeeds. The working volume is a cylinder, 20 cm in

ternal forcing lengthL ;, reads diameter and 13.1 cm in height. The cell is enclosed
ds, 4 5 2 in a cylindrical vessel, in thermal contact with a liquid
S3=6v——— — er(l - — —2> (1) helium bath. The vessel is filled with helium gas, held
dr 5 14 Ly at a controlled pressure, and maintained between 4.2 and

wherer is the scale and is the kinematic viscosityL,is 6.5 K; the temperature is controlled with a long term
an external scale, characterizing the forcing. Equation (13tability better than 1 mK. Pressure and temperature are
represents a balance between power injected at large scateeasured within 1% accuracy. The large scale structure
energy transfers in the inertial range, and viscous dissipasf the flow is a confined circular mixing layer [10]. Local
tion. We will call this equation a “forced Kolmogorov velocity measurements are performed by using “hot”-wire
equation;” Ly is distinct from the integral lengthl\, anemometry. The sensors are made from @am-thick
defined as the correlation length of the longitudinalcarbon fiber, stretched across a rigid frame; a metallic
velocity fluctuations. While the integral scaleis well  layer covers the fiber everywhere, except on a spot at the
documented, no systematic measurement pfhas yet center,7 um long, which defines the active length of the
been reported. More generally, the extent to which therobes. The time responses of the probes are analyzed,
forced Kolmogorov equation describes real turbulence isn some detail, in Ref. [11]. We use here a probe located
poorly known. The few investigations reported thus far4.7 cm from the midplane of the system and 6.5 cm from
consider a simplified form of this equation, i.e., without the cylinder axis; the speeds of the counter-rotating disks
the last term in the right-hand side (rhs) of Eq. (1), which,are finely tuned so as to maintain a local fluctuation rate
as will be shown in this Letter, is likely to be inaccurate close to 20%. We restrict our investigation to a range of
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R, comprised between 120 and 1200. Hetg,s defined Figure 2 collects results obtained for seveRy), in
by Eq. (1), in the range 120-1200, i.e., one decade of
R, = M7 (2) Variation inR,. We make use here of the Kolmogorov
v function K(r) = —S3/er (similar to that in [6]), which

whereu is the rms of the velocity flustzljgtion& is the  represents a measure of the deviation from a constant
kinematic viscosity, andh = u(15v/€)"/* is the Taylor  energy transfer regime, and is thus useful for accurately
microscale (based on the measurementeofliscussed analyzing the distance between the measurement and the
below). . ; . four-fifths law limit. The points are measurements of
For all data files, more tha@ X 10° data points are g (,) and the full lines correspond to a determination
recorded, ensuring comfortable convergence of the secong the right-hand side of Eq. (1), using best fit values
and third moments. We check, for each file, that thefor ¢ and L, obtained by using the above procedure.
velocity distribution is Gaussian and we discard situations g R, increasesk(r) tends to form a plateau in the
where the dissipative scale is not resolved. We alSgnertial range, as expected from the Kolmogorov theory.
eliminate files for which the spectrum shows noise levelgyowever, the trend, in terms of this parameter, is slow:
above 70 dB, or for which peaks (generally signalinginspecting the set of files we have for varioRg shows
the presence of a mechanical vibration) are visible in tthat, belowR, = 1000, there is no clear plateau, and one
inertial or dissipative ranges. This procedure leads Us tghay ask to what extent an inertial range can be defined
reject 50% of the files. FoR, > 1200, the noise level pelow this value. Therefore, in all cases, the experiment
becomes prohibitive to ensure a reliable determinatioRonfirms that the forced Kolmogorov relation accurately
of S3(r), and for Ry > 2300 we cease to resolve the po|gs (the relative deviations between the theory and the

dissipative scales. . experiment lying below 3%) for a set of records exploring
To investigate to what extent Eq. (1) agrees with thehree decades in scales, which is remarkable.
experiment, we write it in the following form: We now turn to the analysis of the dependenc&gmf
Sy 6vdS, 4 5 42 the characteristics of the curves of Fig. 2. Those curves
-+ ———=_€ll-——], (3)  can be characterized by several quantities. One of them,
r r dr 5 14 Ly

the external scalé ;, is represented at various Reynolds
following a procedure already used in Ref. [6]; we will numbers on Fig. 3. There is substantial scatter, but no
call the expression, which forms on the left-hand sidesystematic evolution withR, is found, which indicates
J(r). All quantities on the left-hand side can be accuratelythat L, can be treated as a constant. We may thus
measured: The structure functions are obtained froneonsider that the effective forcing experienced by the flow
the hot-wire time series, and viscosity is known withinis controlled by the flow geometry, which is physically
+2% accuracy. Spatial separationsare deduced from acceptable. We estimate this scale as

temporal fluctuations by the use of Taylor's hypothesis _ +

(which consists of determining by the relationr = Ly=12=03cm “)
—Ut, wherer is the time andU is the time-averaged We thus findL, slightly smaller than the integral scale
local velocity; it is permissible to use such a hypothesisA (estimated to 2 cm in the present case), and 1 order
owing to the low level of the fluctuation rate at hand).

The procedure thus consists of finding a best fit for , e

the measured left-hand side, by using the polynomial 1000 [ x .
form given by the right-hand side of Eg. (3); in this A ]
calculation, two parameterse-and Ly —are free. The -~ 800 x 1
result is shown in Fig. 1 forR, = 720. One finds ™ : RS ]
that the fit accurately reproduces the left-hand side of§ 600 ]
Eqg. (3), within a range of scales covering two decades ™ P T T s ]
The difference between the fit and experimental data isE 400¢ | — bt ]
shown in the inset. The amplitudes of the deviations A T Y

are below 3%, forr ranging betweer8n and 9007 200 ¢ ] 1% ]
[here, n = (v*/€)'/* denotes the Kolmogorov scale]. [ T Y
One could say that, in this range, the forced Kolmogorov N T T T T e e

equation is verified withint3% accuracy. Outside this
range, discrepancies are observed: Bel8w, they , .
are due mainly to noise which, although comfortablyFIG. 1. (X): J(r) = =S3/r + 6vS;/r compared to a best fit

en by the rhs of Eq. (3), foR, = 720. In the inset, we
small for the usual measurements on turbulence, becomg ow the difference between the best fit and the experiment;

here too large to be fully neglected. Abo9807, the  ihe full scale is+15%, and the dashed lines represerd.
discrepancies simply signal that the equation is no longefor this file,u/U = 20.9%, n = 11.2 um, Ly =964, I, =
applicable. 1477, ande = 855 cn? s3,

r/n
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of magnitude below the cell radius. The extent to whichder structure functio, by the expression
scales separate must be discussed by comparirtg 7. S,(r) = coler)?3
The fact thatL, is 1 order of magnitude smaller than _ T ’
the cell size implies that, in practice, one must achievednd reinserting in Eqg. (3), one gets
high Reynolds numbers to obtain scale separation and 4 Y3 2 r\2
therefore fill conditions in which scaling behavior can be K(r)= - — 4Co<—> - RX3<—> (7)
observed. The experiment also reveals an extended gap of . . 7
scales, comprised betweén and the cell size, for which _Moreover, the maximum ok (r) is found to be located
turbulent fluctuations seem to escape from a theoreticdt & Scale s
description, based on simple assumptions. Iy = LfR)™", (8)
Another quantity of interest, useful for characterizing and the maximum of the functioki(r) is calculated as
the plot of Fig. 2, is the location of the maximum &fr), 6/
which we calll,, for reasons which will appear later. By 4 |:1 B ( R, ) }

where ¢y = 2, (6)

— 9
Ro 9)
I3(vith R0 ~ 30. The two results are well verified in the
experiment: The value /5 we find is consistent with
C057+0.04 the experimental value 0.570.04, and the expression for
Iy = (7.1 £ 0.6)LyR) ™. (5) K, plotted againsi, in Fig. 4, agrees well with the

A last quantity of interest is the maximum value of experiment. We recall here that Eq. (9) applies only for
K(r), whose evolution withR, is displayed in Fig. 4. As moderate and Iarg_m, i.e., well above 30, and should not
expected, the maximum converges towards dsR, in- b€ used for describing low Reynolds number turbulence,
creased. Nonetheless, the evolution is rather slow; thir which approximation (6) ceases to be valid.
asymptotic regime is accurately reached (i.e., within 3%) It is also interesting to reveal an equivalence between
only at R, > 600. This observation, together with the L and another scale—which we temporarily cgl—
preceding remarks on the formation of a clear plateauNtroduced by Novikov [9] quite recently, and which was
underlines the fact that, in experimental systems, condiProposed to represent the size of vortex strings in fully
tions for reaching the high Reynolds number limit, for thedeveloped turbulence. The equivalence betwgemd/,
third order structure function, are difficult to achieve. Thecan be shown by reexpressing the quantity [catidd)]
situation seems more favorable for the even order strud¥hich controls, in the analysis of Ref. [9], the generation
ture functions, and for the energy spectrum, the crossovelf Vorticity correlations, and from whicli; is defined.
appearing atL, being less pronounced, and hardly de-Assuming isotropy and homogeneity, one can derive, after

construction, this scale is well within the inertial range. Komax = 5

I; is plotted againsi®, in Fig. 3; here again, there is
substantial scatter, but one finds a clear power law wit
R, in the form

tectable if logarithmic scales are used. some manipulations, the following exact relation between
Simple characteristics of the maximum of the Kol- @(r) andSs(r):
mogorov functionk (r) can be deduced from Eq. (1), by 1 43 d? 8 d 8
determining its approximate form, for scales well above a(r) = —|r 5 T8-St == = S3(r)
) . i . 24 dr dr d r
7, in a way similar to Ref. [9]. Estimating the second or-
(10)
1 T T T
0.8} I ]
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FIG. 2. The Kolmogorov functionK(r) = —S3/er versus

r/m, for different Reynolds numbeR,. The values ofe FIG. 3. ScaleL; and the ratiol,/L,, wherel, is defined by
are obtained by using best fits, as discussed in the texthe extremum ofK(r), versus the Taylor Reynolds number
(V): Ry = 120; (O): Ry = 300; (A): Ry = 1170. The solid R,. The solid line shows the best fit with an exponent
lines show the expected curves, obtained from Eg. (1). —0.57 = 0.04.
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0.85 T | A A function is concerned, the formation of an inertial range
is slow. However, the results we found, whether close

| IS

0.8 |-

e P — or far from the asymptotics, can be accurately interpreted
- /..°/“ 1 by assuming an isotropic homogeneous turbulence state,

x 0751 . which demonstrates the relevance of this approximation,
s X - used in almost all theoretical approaches to turbulence.
0.7 ¢ 7 The scales we infer from the analysis are observed for the

. ] first time, and we suggest here that they may be useful

0.65 - to consider in order to characterize more completely

] experimental situations.
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