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The small scale persistence of anisotropy in turbulent mixing of a passive
scalar is known to be related to the presence of cliffs [1], large-scale scalar jumps
concentrated over small separations. However the link, if any, between cliffs
and inertial range anomalous scaling remains far from clear. We report here a
detailed study of cliff statistics, obtained from one-point temperature time series
in a high-Reynolds number turbulence experiment in low temperature helium
gas. We will focus on statistics of spatial organization of high temperature
gradients, giving evidence of self-similar clustering for inertial range separations.

The flow takes place in a cylindrical vessel, 20 cm in diameter, and is gener-
ated between two coaxial disks, 13 cm apart [2], rotating in the same direction.
The fluid is helium gas at a temperature of 8 K and at pressures ranging from 0.3
to 3 bar. Thermal fluctuations, of typically 50 mK, are induced by the means
of a heated grid, and temperature measurements are performed at a position
30 mesh sizes downstream. The hand-made thermometers are 7 µm diameter
carbon fiber, working in constant current mode, with a resolution of 100 µK.

For this first study of temperature measurements we restrict ourself to a
range of microscale Reynolds numbers Rλ from 100 to 300. The turbulence
parameters are determined from velocity measurements at the same point and
in the same flow configuration. The integral length scales of temperature (θ)
and velocity (u) fluctuations are respectively Λθ = 0.7 cm and Λu = 1.0 cm,
with no noticeable Rλ dependence, and the Kolmogorov scale η lies between 185
and 39 µm.

The thermal cliffs are defined from a simple threshold on the temperature
derivative,

|∂θ/∂x| > s 〈(∂θ/∂x)2〉1/2,

where s is an arbitrary constant, in the range 3–20. Spatial derivatives are
obtained from temporal ones using the Taylor hypothesis. Figure 1a shows a
magnification of a cliff, concentrating a temperature jump of about 5 standard



2

-400

-200

0

200

400

0 100 200 300 400 500

θ 
 (

m
K

)

x  (cm)

s=3

s=5

s=7

s=10

s=13

δr

(b)

- 4

- 2

0

2

4

- 2

0

2

9.36 9.38 9 . 4 9.42 9.44

θ 
(t

) 
/ 

θ'

( ∂θ / ∂t ) / θ'

t (s)

(a)

Figure 1: (a) Detail of a typical cliff on the temperature signal, and its corre-
sponding time derivative. (b) Long recording of temperature fluctuations; the
bars indicate the positions of the cliffs, for different thresholds, revealing the
hierarchical organization of cliffs.

deviations. The cliff width, ∆, is defined such that the temperature derivative
takes values exceeding 90 % of its local maximum. Distributions of this width
are shown in figure 2a, for three different thresholds, at a Reynolds number
Rλ = 280. It is clear that no threshold dependence appears, giving confidence
in our detection method. Figure 2b shows the mean cliff width divided by the
Kolmogorov scale for different Reynolds number from 100 to 300. We can see a
well defined plateau,

〈∆〉 = (13 ± 3)η.

Although a λ ∼ R−1

λ scaling cannot be ruled out because of the small range of

Reynolds numbers spanned here, our data suggest that the η ∼ R
−3/2

λ scaling
is more likely. This observation indicates that the highest scalar jumps, whose
amplitude is a few temperature standard deviations, are concentrated over dis-
tances scaling as the Kolmogorov scale, the “smallest available lengthscale” of
the flow.

In order to investigate the occurrence of cliffs in the temperature signal, we
now focus on the statistics of intervals between cliffs. In figure 1b we show a long
recording of temperature fluctuations together with the positions of the cliffs,
indicated by vertical bars for different thresholds. From this plot, a hierarchical
organization of cliffs appears: the strongest gradients (highest s) are surrounded
by weaker ones (smaller s). This clustering trend appears more clearly if we
plot the probability density function (pdf) of these interval lengths, as shown
in figure 3a. These pdfs are very wide, so we have used width-varying bins
to compute the histograms. For long separations, the pdf is well fitted by an
exponential decay, a signature of uncorrelated events. The characteristic length



3

1 00

1 01

1 02

1 03

1 04

1 05

0 .1 1 1 0

N
 (

∆)

∆  (mm)

( a )

4

6

1 0

3 0

6 0 1 0 0 3 0 0 5 0 0

<∆
> 

/ η

R
λ

( b )

Figure 2: (a) Histograms of cliff width ∆, defined with thresholds s=3, 7 and
13. (b) Mean cliff width, divided by the Kolmogorov scale η, as a function of
Rλ.
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Figure 3: Distribution of interval between fronts for different thresholds s=3,
7 and 13, in log-linear (a) and log-log (b) coordinates. The dashed lines are
exponential fit for δr/η > 500.

scale of this exponential behavior is related to the ratio of events selected by the
threshold s.

For smaller separations, the pdf shows an algebraic decay,

p(δr) ∼ δr−µ,

clearly visible in figure 3b, with an exponent µ close to -1. The logarithmic
derivative of this pdf gives a local exponent µ = 0.98±0.05 for 30 < δr/η < 300,
with no variation with the threshold s. For higher thresholds, fewer events
are selected and the exponential contribution dominates the algebraic one. The
cross-over between these two regimes is Lc ' (2.4±0.1)Λθ, again with no thresh-
old dependence.

This algebraic distribution of waiting times between cliffs strongly suggests
a self-similar clustering, in which the only characteristic size appears to be the
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upper bound of the inertial range. One consequence of such a law is that the
mean interval between cliffs, 〈δr〉, is fixed by the large scale. Together with the
mean cliff width 〈∆〉 ∼ η mentioned above, we note that this result is in good
agreement with the constant ∼ o(1) skewness of temperature derivative observed
at high Reynolds numbers.

Algebraic distributions of waiting times between intense events have been
observed for other turbulent quantities. Thresholds on pressure drops in the
turbulent flow between counter-rotating disks [3] reveal an algebraic distribu-
tion for short waiting times, with an exponent µ ' 1.6 up to separations close
to the integral scale. Waiting times between successive intense velocity bursts
in the near field of a turbulent jet [4] also show algebraic distributions. For
thresholds performed on longitudinal velocity derivative [5], we observe alge-
braic distributions with an exponent µ increasing from 0.5 to 1 for Rλ < 400
(in agreement with earlier observations [6] at moderate Reynolds numbers), and
saturating at the value µ ' 1 for higher Rλ (up to 2000).

Such distributions reveal the hierarchical organization of the small scale
structures of turbulent flows, highlighting the intermittent behaviour of energy
and scalar dissipation. An exciting issue is the universality of the p(δr) ∼ δr−1

law of waiting times, for both scalar and velocity derivatives, and its link with
the inertial range anomalous scaling of scalar and velocity structure functions.
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