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The motion of a hoop hung on a spinning string provides an illustrative and pedagogical example
of a supercritical bifurcation. Above a certain angular velocity thresholdVc , the hoop rises and
spins about its symmetry axis. The equation of motion is derived in the limit of a long massless
string, and the calculated steady states are compared to experimental measurements. This simple
experiment is suitable for classroom demonstration, and provides an interesting alternative to the
classical experiment of a bead sliding on a rotating hoop. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

The rotation of rigid bodies often displays interesting
stability problems. Bodies with three different moments
inertia are well known to have unstable rotation about
intermediate axis,1 as commonly observed from acrobat
jumps or dives. Throwing a tennis racket provides an e
illustration of this instability of free rotation. Such pure
inertial instability has no threshold, i.e., it can be observ
for very low rotation rates. In contrast, for axisymmetr
bodies such as hoops, disks, rockets, eggs, etc., the fre
tations remain stable, but different mechanisms may a
lead to instability when external forces are present. Un
some circumstances, spectacular and unexpected instab
may originate from frictional forces. This is the case for t
tippe-top, a popular toy that flips over and rotates on its st
or for the hard-boiled egg problem, which has recently
ceived a nice analysis.2 The competition between gravity an
centrifugal forces may lead to an instability with a fini
rotation rate threshold,3 as illustrated by the simple exper
ment described in this paper.

A hoop is hung on a long string, whose upper end is sp
At low rotation rate, the hoop is vertical and simply spi
about its diameter. As the rotation rate is increased, the h
progressively rises and becomes horizontal, spinning ab
its symmetry axis, while the string moves along a cone. T
situation may appear paradoxical, since the horizontal p
tion maximizes both kinetic and potential energy. The po
lar ‘‘hula hoop’’ game, where the string rotation is replac
by the oscillations of the player’s hips, is a common illust
tion of this phenomenon. It is similar to the conical pend
lum problem,1 usually illustrated in the classical demonstr
tion experiment of the bead sliding along a vertically rotati
hoop.4–7

In this paper, the equation of motion is derived fro
Lagrange’s equation. An alternate derivation, from the an
lar momentum equation, is also presented as a good illus
tion of the dynamics of a rigid body. The hoop is shown
rise following a supercritical bifurcation for the string rot
tion rateV above a critical valueVc5(2g/R)1/2, whereg is
the gravitational acceleration andR is the hoop radius. The
stable solution,ueq5cos21(Vc /V)2}(V2Vc)

1/2 for V2Vc

!1, coincides with that of the conical pendulum or the be
on-a-hoop. The nonlinear oscillations are briefly describ
by means of phase portraits, and compared to that of
bead-on-a-hoop. Simple considerations from string tors
and air friction allow us to estimate the startup and damp
999 Am. J. Phys.71 ~10!, October 2003 http://aapt.org/a
f
e

y

d

ro-
o
r
ies

,
-

n.

op
ut
is
i-
-

-
-

-
a-

-
d
e
n
g

timescales. Finally some experimental measurements ar
ported, and are shown to compare well with the theoret
solution.

In this experiment the angular rotation threshold is of t
order of a few rad/s, and thus the string can be simply s
with the fingers. Because it only requires a string and a ho
this experiment can be conveniently used as a classroom
lustration of spontaneous symmetry breaking and bifur
tion. Although the detail of the calculation is somewhat mo
subtle than that of the classical bead-on-a-hoop problem,
cause it deals with rigid body dynamics, the physics is ba
cally the same and does not require the much heavier a
ratus of the bead-on-a-hoop demonstration.

II. THEORY

A. Equation of motion

We consider a thin uniform hoop, of radiusR and massm,
fixed at a point P on its periphery by a massless string
length L@R ~see Fig. 1!. The string is spun from its othe
end O at a constant angular velocityV. The center of mass G
is assumed to remain vertically aligned with the point O.

In addition to the natural coordinates (ex ,ey ,ez), whereez
is vertically upwards, we introduce the rotating fram
(e1 ,e2 ,e3) attached to the hoop. We labele3 the symmetry
axis of the hoop, ande1 the axis from the center of the hoo
to the point P where the string is tied up, which makes
angleu with the vertical axis. We consider for simplicity
zero roll angle aboute1 , i.e., we assume that the point P
the highest point of the hoop, so that the axise2 remains
horizontal.

Let us first consider a rigid string, so that the hoop angu
velocity ḟ about the vertical axisez instantaneously follows
the imposed angular velocityV. The pitch angleu is then the
only degree of freedom for this problem. The total angu
velocity v of the hoop has two contributions. The first on
of magnitudeV, is imposed from O through the string, and
aboutez5cosu e11sinu e3 ~the points O and G are at res
so that OG is the instantaneous axis of rotation whenu is
kept constant!. The second one comes from the pitch var
tion u̇, and is about the axise2 . Hence, the total angula
velocity in the frame (e1 ,e2 ,e3) can be written

v5S V cosu

u̇
V sinu

D . ~1!
999jp © 2003 American Association of Physics Teachers
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The equation of motion is derived from the Lagrangi
function L5T2V, whereT is the kinetic energy andV is
the potential energy.

The potential energy isV5mgzG , wherezG is the center
of mass elevation. In the limit of a long string, to first ord
in R/L, we just havezG52R cosu, where the reference fo
V is taken at the horizontal hoop (u5p/2).

The kinetic energyT has two contributions: one from th
translation of the center of mass,Ttr , and one from the hoop
rotation,Trot . The translational kinetic energy is simplyTtr

5 1
2mżG

2 . Using the same approximation forzG as above, we

can writeTtr5
1
2mR2u̇2 sin2 u. The rotational kinetic energy is

Trot5
1
2v• Ĩ •v, where Ĩ is the inertia matrix of the hoop

relative to G. In the reference frame of the hoop, the ine
matrix Ĩ has diagonal componentsI 15I 25 1

2mR2 and I 3

5mR2. Hence, with the total angular velocity~1!, we have

Trot5
1
4mR2@ u̇21V2(11sin2 u)#.

The Lagrangian functionL5Trot1Ttr2V can finally be
written

L5 1
4 mR2@ u̇2~112 sin2 u!1V2~11sin2 u!#

1mgRcosu. ~2!

Writing Lagrange’s equation for the coordinateu, we end up
with the differential equation of motion

ü~112 sin2 u!2~V222u̇2!sinu cosu1Vc
2 sinu50,

~3!

where we have introduced the critical angular velocityVc

5A2g/R.

Fig. 1. A hoop of center of mass G, attached to a string OP, spins abou
vertical axis OG, making angleu to the vertical.
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This equation of motion can also be obtained from t
angular momentum equation and Newton’s law. In the ro
ing frame of reference, the angular momentum equat
reads

dL

dt
1v3L5G, ~4!

whereL5 Ĩ v is the angular momentum andG5GP3N is
the torque due to the string tension,N, relative to the center
of mass~the gravitational torque vanishes!. The string ten-
sion is obtained from Newton’s law,

mz̈G ez5N1mg. ~5!

To first order inR/L, N is vertical, so its torque is simply
G52RNsinu e2 . UsingzG52R cosu, we obtain

G52R~mg1mR~ u̇2 cosu1 ü sinu!!sinu e2 . ~6!

Substituting~6! into Eq.~4! and considering only thee2 com-
ponent, we finally recover the equation of motion~3!.

B. Steady states and small oscillations

We are interested in the steady states for the pitch angu
and the natural frequency for small oscillations about the
The steady states are obtained by lettingu̇5 ü50 in Eq.~3!.
Two equilibrium solutions are found: in addition to the trivi
solution ueq50 for all V, a nontrivial solution exists forV
above the critical valueVc ,

ueq56cos21S Vc

V D 2

, ~7!

which is plotted in Fig. 2~a!. As expected, we haveueq50
for V5Vc ~vertical hoop!, and uuequ→p/2 in the limit of
high rotation rateV@Vc ~horizontal hoop!.

It is interesting to note that these steady states coinc
with the ones from the bead-on-a-hoop problem,4 whose
equation of motion is

ü2V2 sinu cosu1Vc
2 sinu50. ~8!

The difference between Eqs.~3! and ~8! originates from the
translational kinetic energy of the center of mass, which
no counterpart in the bead-on-a-hoop problem. We can
ticipate from~3! that this additional term will act as an in
creased effective inertia for nonzero angleu of the spinning
hoop.

It is often convenient to define the equilibrium positions
the minima of an effective potentialU(u) such that ü
52]U/]u. This procedure can be readily applied from E
~8! for the bead-on-a-hoop, but clearly fails for the spinni
hoop, because of the presence of theu̇ term in Eq.~3!. In
other words, the effective force acting on the coordinateu

does not depend only onu, but also on its derivativeu̇, i.e.,
the force is not conservative.

The stability and natural frequency for small oscillatio
are obtained by introducing in Eq.~3! a small perturbation in
the form

u~ t !5ueq1du e(s1 iv)t, ~9!

where ueq stands for the trivial or nontrivial solution an
du!1. Since the problem involves no damping, the grow
rate s is zero whenueq is stable~with a nonzero natura

he
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frequencyv! and positive whenueq is unstable.
The trivial solutionueq50 is found to be stable forV

,Vc , with a natural frequencyv5(Vc
22V2)1/2, and un-

stable forV>Vc , with a growth rates5(V22Vc
2)1/2 ~and

v50). This is also valid for the bead-on-a-hoop, since
linearizations of Eqs.~3! and~8! aboutu.0 coincide. Above
the transition, the nontrivial solutionueqÞ0 is always stable,
with a natural frequency

v5VF 12~Vc /V!4

322~Vc /V!4G1/2

. ~10!

In the case of the bead-on-a-hoop, the natural frequen4

v5V@12(Vc /V)4#1/2, takes larger values, as shown
Fig. 2~b!. This difference comes from the above-mention
additional inertia term in Eq.~3! for ueqÞ0, which tends to
slow down the oscillations of the spinning hoop.

It is instructive to focus on the behavior of the solutions
the close vicinity of the bifurcation,V.Vc . In terms of the
reduced angular velocitye5V/Vc21, the solutions become
~for ueu!1 andueq.0):

H ueq50 for e,0,

ueq.2Ae for e>0,
~11!

which is the classical form of a supercritical pitchfo
bifurcation.3 Following the usual terminology, the pitc
angleueq is the order parameter ande is the control param-

Fig. 2. ~a! Equilibrium positionsueq as a function of the normalized angula
velocity V/Vc . The arrows indicate the stability of the branches. The triv
branch ueq50 is stable forV,Vc ~———! and unstable forV>Vc

~–––––!. The branchueqÞ0 ~7! is stable forV>Vc ~———!. The small
angle approximation~11! is also shown forV>Vc ~---------!. ~b! Natural
frequencyv for small oscillations for the spinning hoop~———! compared
to that of the bead-on-a-hoop~---------!. For V,Vc , the two curves coin-
cide. ForV@Vc , we havev→V for the bead-on-a-hoop, andv→V/)
for the spinning hoop.
1001 Am. J. Phys., Vol. 71, No. 10, October 2003
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eter. For both solutions, one can see that the period of
oscillations and the growth time,

v21;s21}ueu21/2, ~12!

diverge as one approaches the transition from both si
This critical slowing down is the usual signature of sup
critical bifurcation. However, it is worth noting that the sma
angle approximation~11! holds only very close to the bifur
cation, as shown in Fig. 2~a!, and the discrepancy betwee
Eqs. ~7! and ~11! quickly becomes important as the contr
parameter in increased.

C. Nonlinear oscillations

When the oscillation amplitudes about the steady sta
are not small, the nonlinear terms in Eq.~3! become impor-
tant and may affect the dynamics of the system. The orbit
the phase space (u,u̇) then provide a useful tool to charac
terize the nonlinear dynamics of the spinning hoop, and
compare it with the one of the bead-on-a-hoop~8!. The equa-
tion of motion can be integrated using the Jacobi invaria8

C5 u̇
]L
]u̇

2L, ~13!

which takes a constant value along an orbit. This integra
the motion would simply correspond to the total energy
the case of a conservative system. However, there is
physical interpretation for this invariant here, because
system is not conservative.

The orbits in the phase space are obtained by numeric
solving ~using Mathematica! C(u,u̇)5cst for different val-
ues of the constant. Figure 3 shows such phase portraits
two forcing frequencies, below@V/Vc50.8, Fig. 3~a!# and
above@V/Vc51.2, Fig. 3~b!# the transition, together with
the orbits of the bead-on-a-hoop~dashed lines!. One can
clearly see the trivial solutionueq50 for V/Vc50.8 and the
two nontrivial solutions~7! separated by a saddle point
u50 for V/Vc51.2. Note that we are only interested in th
closed orbits in the domainuuu<p/2: orbits that crossu
56p/2 are not consistent with the assumption that the po
P remains the highest point of the hoop.

Around the stable fixed points, both systems show nea
elliptic orbits, as expected from small harmonic oscillation
Larger oscillations of the hoop show orbits with sharper c
ners aroundu.0, associated with larger angular velocitie

uu̇u. This discrepancy originates from the vertical translati
of the center of mass, which is responsible for an additio
pitch angle acceleration when the hoop is nearly vertical

D. Timescales

Two timescales are relevant for a practical experiment:
startup timescale of rotationts and the damping timescale o
oscillationstd . The startup timescale may be obtained co
sidering the string torsion. We start from an initially vertic
hoop (u50), and then let its rotation anglef aboutez be
free. The string transfers a torquek(f2Vt)5k df to the
hoop, wherek is the torsion constant anddf is the string
torsion. The angular momentum equation aboutez applied to
the hoop then reads

1
2 mR2df̈1k df50. ~14!

l
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Taking df̈.df/ts
2 gives the startup timescalets

.R(m/2k)1/2—which also corresponds to the period of t
string torsion oscillations if no damping were present.

The damping timescaletd is relevant both for thef oscil-
lations due to the string torsion, and for theu oscillations
around the equilibrium states. It can be obtained conside
the friction with the surrounding air. With a typical velocit
of order m/s and hoop thicknessw of a few millimeters, the
air flow around the hoop is expected to be turbulent,9 and the
drag force on the hoop varies then as the square of the
locity. Neglectingu̇ compared toḟ, a unit lengthdl of the

hoop experiences a drag forced f.r(Rḟ)2w dl, wherer is
the air density. Integrating over the hoop perimeter lead
the frictional torque

Gr.2rR4ḟ2w
V

uVu
. ~15!

Hence the angular momentum equation aboutez reads

Fig. 3. Orbits in the phase space (u,u̇/Vc) for the hula hoop~solid lines!
compared to the bead-on-a-hoop~dashed lines!. (a) V50.8Vc . (b) V
51.2Vc .
1002 Am. J. Phys., Vol. 71, No. 10, October 2003
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f̈1S r0

r

w

RD ḟ250, ~16!

wherer0 is the hoop density. Takingḟ.V and f̈.V/td ,
the damping timescale finally becomes

td.S r0

r

w

RDV21. ~17!

For values of practical interest,td is of order of a few tens of
the rotation periodV21. Note here that in the case of th
hula hoop game, the rolling friction on the player’s hips
fortunately dominant, leading to a damping timescale of
der V21.

III. EXPERIMENTAL RESULTS

An experiment has been carried out using a wooden h
(r0.0.67 g.cm23) of massm515.5 g, radiusR586 mm,
and cross-sectional area 4310 mm2. The expected fre-
quency threshold is thenVc/2p.2.40 Hz ~classical hula
hoops haveVc/2p.1 Hz). A simple cotton thread, of lengt
L50.68 m and mass less than 3% of the hoop mass,
fixed to a constant current motor. The startup timescale
this string can be estimated from the free oscillation peri
ts.5 s ~corresponding to a torsion constantk.2
31026 N.m). This string is far from being rigid, and durin
the early stage of the rotation, torsional energy is stored
the string. The string progressively transfers rotation to
hoop, and the fluctuations~due to a varying imposed rotatio
rate at its upper end, or to pitch angle variation at the ot
end! are smoothed down on a timescaletd .

Figure 4 shows pictures of the spinning hoop for differe
angular velocitiesV, obtained from a simple CCD camer
Seen from the side, the hoop appears as an ellipse. The
tures are somewhat blurry, because the time aperture o

Fig. 4. Pictures of the hoop.~a! The hoop at rest.~b! and ~c! u.37°. ~d!
u.78°. In picture~c! the procedure used to measure the angleu is shown.
1002Fre´déric Moisy
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camera,.40 ms ~25 frames per second!, is not negligible
compared to the rotation timescale, (Vc/2p)21.400 ms.
On frames where the ellipse is nearly in profile, as in Fi
4~c! and 4~d!, the pitch angleu can be easily measured t
within 1°.

The measured pitch anglesu, shown in Fig. 5, are in ex-
cellent agreement with the exact solution Eq.~7!, except for
low rotation rate, where nonzero angles are measured be
the expected transition. The experimental frequency thre
old, obtained by extrapolating the curve down tou.0, is
Vc/2p.(2.3060.03) Hz, which agrees within 5% with th
theoretical value. The discrepancy at low rotation rate is ty
cal of an imperfect bifurcation, where a small asymmetry
the apparatus~such as the position of the knot! slightly an-
ticipates the destabilization of the basic state.

An interesting observation is that, forV>2.6Vc ~see the
dashed line in Fig. 5!, the bifurcated state is not stable an
more: a secondary instability appears, in the form of a s
precession of the center of mass, with a period of about
rotation periods. This new behavior is probably an effect
the nonzero mass of the string, and clearly can not be
scribed in our calculation, where the hoop center of mas
constrained to remain on the vertical axis.

Transient phenomena may also be investigated by me
of the usual video processing. An illustration is given in F
6, showing a spatio-temporal diagram obtained by collect
the light intensity recorded on a horizontal line pass
through the string. In this example, the imposed freque
V/2p has been suddenly increased from 0 to 5.5
.2.4 Vc/2p ~first arrow!. One can see that, after a transie
time of around 7 s~second arrow! during which the string
rotation propagates down to the hoop, the amplitude
creases and saturates to a finite value.

From this diagram, the instantaneous pitch angle as w
as the instantaneous oscillation frequencyḟ/2p may be ex-
tracted, as shown in Fig. 7. The frequency is obtained fr
averaging over six successive oscillations. Due to the p
gressive torsion of the string, this frequency slowly a
proaches its imposed value 5.5 Hz. As a consequence
increase of the pitch angle towards its stationary valueueq

.1.40 rad is rather slow.
It is interesting to note that, when plotting the instan

neous pitch angle as a function of the instantaneous
quency ~see Fig. 8!, the bifurcation diagram of Fig. 5 is
recovered to a high degree of accuracy. This suggests tha
pitch angle follows ‘‘adiabatically’’ the instantaneous fr

Fig. 5. Bifurcation diagram of the pitch angleu as a function of the nor-
malized angular velocityV/Vc . The solid line is the calculated solution Eq
~7!, with Vc adjusted to fit the experimental data.
1003 Am. J. Phys., Vol. 71, No. 10, October 2003
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quency so that the apparent growth rate is essentially c
trolled by the string torsion more than by the intrinsic d
namics of the instability~at least far from the transition!.

IV. DISCUSSION

This simple experiment provides an interesting alternat
to the bead-on-a-hoop4–7 experiment as a mechanical analo
to bifurcation and second-order phase transition in phys
Close attention does not need to be paid to the choice of
material and the experimental conditions, making this
periment one that is easy to perform by undergraduate
dents. Further experiments can be carried out, e.g., stud

Fig. 6. Spatio-temporal diagram of the light intensity recorded on a h
zontal line, showing the string oscillation, when the frequencyV/2p is
increased from 0 to 5.5 Hz.

Fig. 7. Instantaneous pitch angleu ~left! and rotation frequencyḟ/2p ~right!
as measured from Fig. 6. The origin timet0 corresponds to the second arro
in that figure.
1003Fre´déric Moisy



io
tic
e
ra

s

e-
bo
it
m

sh

he

o
th
ge

e
itu
us
th
m
l f
ta

ced
ed
on-
well,
d.
id

e of
lar

the
o-
re,
n-
f

th
to
u-

us

ase

d-

c-
rse

cu,

x-

a-
the transient phenomena resulting from a small perturbat
As a suggestion, one may restrain the point P on the ver
axis whenV.Vc by means of a small hook around th
string. Releasing the hook lets us measure the growth
and characterize its divergence ase→0. This method can be
hardly achieved with a bead-on-a-hoop apparatus as acce
inherently difficult.

Another motion may compete with the bifurcation d
scribed in this paper: the hoop can rotate as a whole a
the vertical axis, its center of mass remaining aligned w
the string. This is the usual motion for the conical pendulu
which also leads to a supercritical bifurcation with a thre
old simply given by the natural frequencyv0

.Ag/(L1R). The conical pendulum motion overcomes t
spinning hoop motion forv0 of order ofVc , i.e., for a string
length of order of the hoop radius. Moving the center
mass away from the vertical axis may allow us to observe
competition between the two regimes, even for a lon
string.

Similar bifurcations as the result of a competition betwe
centrifugal force and gravity are present in a number of s
ations. Spinning plates provide an interesting illustration j
as for the hula hoop, except that the motion is forced by
precession of the rigid rod rather than its rotation. The i
posed precession frequency has to overcome the natura
quency for the plate to stand up, and then the horizontal s

Fig. 8. Instantaneous pitch angleu as a function of the instantaneous rot

tion frequencyḟ/Vc ~same data as in Fig. 7!. The solid line is the calculated
solution ~7!, as in Fig. 5. The cross indicates the stationary solutionueq

.1.40 rad forV52.4 Vc .
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is maintained by a parametric oscillation mechanism.10 Lasso
roping is another example, where the rigid hoop is repla
by a deformable loop. Here again the motion is maintain
by the precession of the rope rather than rotation. As a c
sequence, the knot on the loop makes the rope rotate as
so that it has to be continuously untwisted at its other en

Note that this experiment can be carried out with any rig
body, not necessarily axisymmetric. In this case, the angl
the equilibrium state~7! remains unchanged, and the angu
velocity threshold just becomesVc5Amga/(I 32I 1), where
a5uGPu is the distance between the center of mass and
knot. Note, however, that for bodies with three different m
ments of inertia, in addition to the bifurcation described he
inertial instabilities may also occur. Such an instability i
volves the roll angle aboute1 as an additional degree o
freedom, and is not described by our calculation.
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9Étienne Guyon, Jean-Pierre Hulin, Luc Petit, and Catalin D. Mites
Physical Hydrodynamics~Oxford U.P., Oxford, 2001!, Sec. 11.

10Thomas K. Caughey, ‘‘Hula-Hoop: An Example of Heteroparametric E
citation,’’ Am. J. Phys.28, 104–109~1960!.
1004Fre´déric Moisy


