Supercritical bifurcation of a spinning hoop
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The motion of a hoop hung on a spinning string provides an illustrative and pedagogical example
of a supercritical bifurcation. Above a certain angular velocity threslibld the hoop rises and

spins about its symmetry axis. The equation of motion is derived in the limit of a long massless
string, and the calculated steady states are compared to experimental measurements. This simple
experiment is suitable for classroom demonstration, and provides an interesting alternative to the
classical experiment of a bead sliding on a rotating hoop20@3 American Association of Physics Teachers.
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I. INTRODUCTION timescales. Finally some experimental measurements are re-
ported, and are shown to compare well with the theoretical

The rotation of rigid bodies often displays interesting in- solution. _ _ .
stability problems. Bodies with three different moments of In this experiment the angular rotation threshold is of the
inertia are well known to have unstable rotation about theorder of a few rad/s, and thus the string can be simply spun
intermediate axi$, as commonly observed from acrobatic With the fingers. Because it only requires a string and a hoop,
jumps or dives. Throwing a tennis racket provides an eas%ms experiment can be conveniently used as a classroom il-
u

illustration of this instability of free rotation. Such purely ustration of spontaneous symmetry breaking and bifurca-
inertial instability has no threshold, i.e., it can be observedion- Although the detail of the calculation is somewhat more

for very low rotation rates. In contrast, for axisymmetric Subtle than that of the classical bead-on-a-hoop problem, be-

bodies such as hoops, disks, rockets, eggs, etc., the free fg2USEe it deals with rigid body dynamics, the physics is basi-
tations remain stable, but different mechanisms may alsG2!ly the same and does not require the much heavier appa-
lead to instability when external forces are present. Undefatus of the bead-on-a-hoop demonstration.

some circumstances, spectacular and unexpected instabilities

may originate from frictional forces. This is the case for thell. THEORY

tippe-top, a popular toy that flips over and rotates on its stem

or for the hard-boiled egg problem, which has recently re—A' Equation of motion

ceived a nice analysfsThe competition between gravity and  We consider a thin uniform hoop, of radiRsand massn,
centrifugal forces may lead to an instability with a finite fixed at a point P on its periphery by a massless string of
rotation rate thresholdas illustrated by the simple experi- length L>R (see Fig. 1 The string is spun from its other
ment described in this paper. . end O at a constant angular velodity The center of mass G
Ahoop is hung on a long string, whose upper end is spunis assumed to remain vertically aligned with the point O.
At low rotation rate, the hoop is vertical and simply spins |5 aqdition to the natural coordinates, (e, ,e,), wheree,
about its diameter. As the rotation rate is increased, the hoog vertically upwards, we introduce the rotating frame
progressively rises and becomes horizontal, spinning abOL([a e,,e;) attached to ’the hoop. We labeJ the symmetry

its symmetry axis, while the string moves along a cone. This, ;¢ the hoop, ane, the axis from the center of the hoop
situation may appear paradoxical, since the horizontal POSE the point P where the string is tied up, which makes an

tlon“maX|m|ze§ both kinetic and potential energy. The p0pu'angleﬁ with the vertical axis. We consider for simplicity a
lar “hula hoop” game, where the string rotation is replaced

by the oscillations of the player’s hips, is a common illustra-2€"° T°” angle 'abouel, l.e., we assume that the pomF Pis
tion of this phenomenon. It is similar to the conical pendu-the highest point of the hoop, so that the agjsremains
lum problemt usually illustrated in the classical demonstra- herizontal. . o
tion experiment of the bead sliding along a vertically rotating L€t us first consider a rigid string, so that the hoop angular
hoop?~’ velocity ¢ about the vertical axig, instantaneously follows

In this paper, the equation of motion is derived from the imposed angular velocity. The pitch angled is then the
Lagrange’s equation. An alternate derivation, from the anguonly degree of freedom for this problem. The total angular
lar momentum equation, is also presented as a good illustra€locity w of the hoop has two contributions. The first one,
tion of the dynamics of a rigid body. The hoop is shown toof magnitude, is imposed from O through the string, and is
rise following a supercritical bifurcation for the string rota- aboute,=cosée,+sinfe; (the points O and G are at rest,
tion rateQ) above a critical valu€) .= (2g/R)*?, whereg is  so that OG is the instantaneous axis of rotation when
the gravitational acceleration amlis the hoop radius. The kept constant The second one comes from the pitch varia-
stable solution,feq=cos Y(Q./Q)?=(Q—Q)Y2 for -,  tion 6, and is about the axis,. Hence, the total angular
<1, coincides with that of the conical pendulum or the beadvelocity in the frame €, ,e,,e3) can be written
on-a-hoop. The nonlinear oscillations are briefly described

by means of phase portraits, and compared to that of the 0 C.OSQ
bead-on-a-hoop. Simple considerations from string torsion ®@= 0 . 1)
and air friction allow us to estimate the startup and damping Qsinéd
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This equation of motion can also be obtained from the
angular momentum equation and Newton’s law. In the rotat-
ing frame of reference, the angular momentum equation
reads

dL + L=r 4
—_ X =

T : (4)
whereL=Tw is the angular momentum ard=GPxN is
the torque due to the string tensidw, relative to the center
of mass(the gravitational torque vanisheshe string ten-
sion is obtained from Newton’s law,

mzs e,=N+mg. (5)

To first order inR/L, N is vertical, so its torque is simply
I'=—RNsinfe,. Using zo= — R cosé, we obtain

I'= —R(mg+mR(6? cos+ #sind))sinde,. (6)

Substituting(6) into Eq.(4) and considering only the, com-
ponent, we finally recover the equation of motic@).

B. Steady states and small oscillations

We are interested in the steady states for the pitch afigle
and the natural frequency for small oscillations about them.
Fig. 1. A hoop of center of mass G, attached to a string OP, spins about thEhe steady states are obtained by lettthg#=0 in Eq.(3).
vertical axis OG, making anglé to the vertical. Two equilibrium solutions are found: in addition to the trivial

solution #,=0 for all (), a nontrivial solution exists fof)
above the critical valu€)..,
2

, )

The equation of motion is derived from the Lagrangian
function L=T—V, whereT is the kinetic energy an¥ is
the potential energy. o o

The potential energy i¥=mgz, wherez is the center Which is plotted in Fig. 22). As expected, we havée,=0
of mass elevation. In the limit of a long string, to first order for &=Q. (vertical hoop, and |6ed— /2 in the limit of
in R/L, we just havezs= — R cos, where the reference for high rotation rate()> € (horizontal hooj o
V is taken at the horizontal hoog€ 7/2). [Itis interesting to note that these steady states coincide

The kinetic energyl has two contributions: one from the with the ones from the bead-on-a-hoop probfemvhose
translation of the center of mask,, and one from the hoop equation of motion is
rotation, T,,;. The translational kinetic energy is simply, 9— 02 sinf cosH+ Qﬁsin 6=0. (8)

1 . o
N 2mzé'. Usm? the.szanje apprOX|mat'|on fDé' as 'above, W? The difference between Eqg&) and (8) originates from the
can writeT,= ;mR?¢° sir? 6. The rotational kinetic energy is translational kinetic energy of the center of mass, which has
Tio= 30 1@, whereT is the inertia matrix of the hoop no counterpart in the bead-on-a-hoop problem. We can an-
relative to G. In the reference frame of the hoop, the inertidicipate from(3) that this additional term will act as an in-
matrix T has diagonal components=1,=mR and I creased effective inertia for nonzero anglef the spinning

- > ' hoop.
=mR. Hen_ce, with the'total angular velocif), we have It is often convenient to define the equilibrium positions as
T,or= MR 6%+ Q2(1+sir? 6)].

The L ion f ol =Tt TV finallv b the minima of an effective potentidl(#) such that @
it e Lagrangian function. = Tro+ Ty =V can finally be  _ _ 554 This procedure can be readily applied from Eq.
written (8) for the bead-on-a-hoop, but clearly fails for the spinning

hoop, because of the presence of théerm in Eq.(3). In
other words, the effective force acting on the coordinate

Oeq= = COS

L= ImR[X(1+2sir? 6)+Q3(1+sir? 6)]

+mgRcosé. (2 does not depend only ofy but also on its derivativée, i.e.,
the force is not conservative.
Writing Lagrange’s equation for the coordinatewe end up The stability and natural frequency for small oscillations
with the differential equation of motion are obtained by introducing in E¢3) a small perturbation in
the form
y: H 2 N2\ i 2 o _ .
O(1+2 sirf 6) — (Q%—26%)sind cosh+ QZsind 0,(3) B(t) = fog 5O L7, 9)

where 6.4 stands for the trivial or nontrivial solution and
where we have introduced the critical angular velodty = §6<1. Since the problem involves no damping, the growth
=+20/R. rate o is zero whené,, is stable(with a nonzero natural
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eter. For both solutions, one can see that the period of the
oscillations and the growth time,

R T (12)

diverge as one approaches the transition from both sides.
This critical slowing down is the usual signature of super-
critical bifurcation. However, it is worth noting that the small
angle approximatiorill) holds only very close to the bifur-
cation, as shown in Fig.(d), and the discrepancy between
Egs.(7) and(11) quickly becomes important as the control
parameter in increased.

C. Nonlinear oscillations

When the oscillation amplitudes about the steady states
are not small, the nonlinear terms in E8) become impor-
tant and may affect the dynamics of the system. The orbits in

the phase spaced(f) then provide a useful tool to charac-
terize the nonlinear dynamics of the spinning hoop, and to
compare it with the one of the bead-on-a-hd8p The equa-
tion of motion can be integrated using the Jacobi invariant,

E . oL
LU E C=6—-L, (13
(b) Q /Qc 06
. o 3 . . which takes a constant value along an orbit. This integral of
Fig. 2. (8 Equilibrium positionste, as a function of the normalized angular  the motion would simply correspond to the total energy in
velocity Q/Q . . The arrows indicate the stability of the branches. The trivial the case of a conservative system. However, there is no
branch fe=0 is stable forQ<(, ( ) and unstable fo2=8 o gjcal interpretation for this invariant here, because the

(====9). The branchd.,# 0 (7) is stable forQ=Q ( ). The small . .
angle approximatiorf1l) is also shown fof)=Q (--------- ). (b) Natural system Is _nOt_ conservative. . .
frequencyw for small oscillations for the spinning hodgg——) compared The orbits in the phase space are obtained by numerically

to that of the bead-on-a-hodp-------- ). For Q<Q., the two curves coin- solving (using MathematidaC( 6, g) =cst for different val-
f'deh FO@%ﬂc'h we havew— () for the bead-on-a-hoop, and—~Q/V3  yes of the constant. Figure 3 shows such phase portraits for
or the spinning hoop. two forcing frequencies, belof2/Q.=0.8, Fig. 3a)] and
above[Q/Q.=1.2, Fig. 3b)] the transition, together with
. _ the orbits of the bead-on-a-hogpashed lines One can
frequencyw) and positive wherd, is unstable. clearly see the trivial solutiofle;=0 for /.= 0.8 and the
The trivial solution ;=0 is found to be stable fof)  two nontrivial solutions(7) separated by a saddle point at
<Qc, with a natural frequency=(Q2— 0%, and un-  9=0 for Q/Q,=1.2. Note that we are only interested in the
stable forQ=Q., with a growth rater=(Q2-Q2)Y2(and  closed orbits in the domaihd|</2: orbits that cross
w=0). This is also valid for the bead-on-a-hoop, since the= + 7/2 are not consistent with the assumption that the point
linearizations of Eqs(3) and(8) aboutf=0 coincide. Above P remains the highest point of the hoop.
the transition, the nontrivial solutiofi,# 0 is always stable, ~ Around the stable fixed points, both systems show nearly
with a natural frequency elliptic orbits, as expected from small harmonic oscillations.
1—(Q./Q)4 22 Larger oscillations of the hoop show orbits with sharper cor-
(Qc /) 4 (10) ners aroundd=0, associated with larger angular velocities
3-2(Q./1Q)

|6]. This discrepancy originates from the vertical translation
In the case of the bead-on-a-hoop, the natural frequéncypf the center of mass, which is responsible for an additional
w=0[1-(Q./Q)*]*? takes larger values, as shown in pitch angle acceleration when the hoop is nearly vertical.
Fig. 2(b). This difference comes from the above-mentioned
additional inertia term in Eq(3) for 6¢4# 0, which tends to  D. Timescales
slow down the oscillations of the spinning hoop. . . )

It is instructive to focus on the behavior of the solutions in  TWO timescales are relevant for a practical experiment: the
the close vicinity of the bifurcatiof) =0 . In terms of the ~ Startup timescale of rotation, and the damping timescale of
reduced angular velocity=Q/Q.— 1, the solutions become 0Scillations7y. The startup timescale may be obtained con-

w=

(for |e|<1 andfe=0): sidering the string torsion. We start from an initially vertical
ea hoop (9=0), and then let its rotation angl¢ aboute, be
0eq=0 for <0, 1) free. The string transfers a torqud ¢— Qt) =« 8¢ to the

hoop, wherex is the torsion constant anép is the string
torsion. The angular momentum equation abeupplied to
the hoop then reads

feq=2\/e for e=0,

which is the classical form of a supercritical pitchfork
bifurcation® Following the usual terminology, the pitch )
angle 0, is the order parameter ardis the control param- IMRSP+ Kk 84=0. (19
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Fig. 4. Pictures of the hooga) The hoop at resttb) and(c) #=37°. (d)
6#=78°. In picture(c) the procedure used to measure the arfgke shown.

6/Q,

. Po W . 2

¢+( ; R)¢ =0, (16)
wherep, is the hoop density. Takingg=0Q and ¢=0/ 74,
the damping timescale finally becomes

po W\ _
Tq4= ( ? ﬁ) Q 1. (17)
0 (rad) For values of practical interesty is of order of a few tens of

the rotation period) 1. Note here that in the case of the

Fig. 3. Orbits in the phase spac§, 6/Q,) for the hula hoop(solid lineg hula hoop game, the rolling friction on t.he P_layer’S hips is
compared to the bead-on-a-hoégiashed lings (a) 0=0.80.. (b) Q fortunately dominant, leading to a damping timescale of or-
=1.2Q.. derﬂ_l.

Ill. EXPERIMENTAL RESULTS

Taking S¢=5¢/7: gives the startup timescaler, An experiment has been carried out using a wooden hoop

=R(m/2«)?>—which also corresponds to the period of the (p,=0.67 g.cn13) of massm=15.5 g, radiusR=86 mm,

string torsion oscillations if no damping were present. and cross-sectional areax40 mnf. The expected fre-
The damping timescalg, is relevant both for thep oscil-  quency threshold is thef)/27=2.40 Hz (classical hula

lations due to the string torsion, and for tifeoscillations  hoops have) /27=1 Hz). A simple cotton thread, of length
around the equilibrium states. It can be obtained consideringzo_68 m and mass less than 3% of the hoop mass, was
the friction with the surrounding air. With a typical velocity fiyeq to a constant current motor. The startup timescale for

of order m/s and hoop thicknessof a few millimeters, the s string can be estimated from the free oscillation period,
air flow around the hoop is expected to be turbufeand the r=5s (corresponding to a torsion constank=2

drag force on the_ hoop varies t_hen as the square of the V& 1076 N.m). This string is far from being rigid, and during
locity. Neglectingé compared tog, a unit lengthdl of the  the early stage of the rotation, torsional energy is stored in

hoop experiences a drag fordé=p(R¢)?w dl, wherep is  the string. The string progressively transfers rotation to the

the air density. Integrating over the hoop perimeter leads t&oop, and the fluctuatior(siue to a varying imposed rotation
the frictional torque rate at its upper end, or to pitch angle variation at the other

end are smoothed down on a timescale.

I~ — oR* o2 ﬁ 15 Figure 4 shows pictures of the spinning hoop for different
=~ pRIG"W Q| (15) angular velocitieq), obtained from a simple CCD camera.
Seen from the side, the hoop appears as an ellipse. The pic-
Hence the angular momentum equation al®ueads tures are somewhat blurry, because the time aperture of the
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Fig. 5. Bifurcation diagram of the pitch angteas a function of the nor-
malized angular velocity)/(). . The solid line is the calculated solution Eq.
(7), with Q. adjusted to fit the experimental data.

t(s)

camera,=40 ms (25 frames per secohdis not negligible 20

compared to the rotation timescale) {2) =400 ms.
On frames where the ellipse is nearly in profile, as in Figs.
4(c) and 4d), the pitch angled can be easily measured to
within 1°.

The measured pitch anglés shown in Fig. 5, are in ex-
cellent agreement with the exact solution Ed), except for
low rotation rate, where nonzero angles are measured below
the expected transition. The experimental frequency thresh-
old, obtained by extrapolating the curve down ae-0, is b
QO f27=(2.30=0.03) Hz, which agrees within 5% with the
theoretical value. The discrepancy at low rotation rate is typif9: 6. Spatio-temporal diagram of the light intensity recorded on a hori-
cal of an imperfect bifurcation, where a small asymmetry iniznocrlteegsi':jef’r;ﬁog‘”tgglstgeHjt””g oscillation, when the frequesbig is
the apparatussuch as the position of the knatlightly an- o
ticipates the destabilization of the basic state.

An interesting observation is that, f6=2.6(); (see the quency so that the apparent growth rate is essentially con-
dashed line in Fig. b the bifurcated state is not stable any trolled by the string torsion more than by the intrinsic dy-

more: a secondary instability appears, in the form of a slowhamics of the instabilitfat least far from the transition
precession of the center of mass, with a period of about ten

rotation periods. This new behavior is probably an effect OfIV DISCUSSION

the nonzero mass of the string, and clearly can not be de-"

scribed in our calculation, where the hoop center of mass is This simple experiment provides an interesting alternative

constrained to remain on the vertical axis. to the bead-on-a-ho8p’ experiment as a mechanical analog
Transient phenomena may also be investigated by means bifurcation and second-order phase transition in physics.

of the usual video processing. An illustration is given in Fig. Close attention does not need to be paid to the choice of the

6, showing a spatio-temporal diagram obtained by collectingnaterial and the experimental conditions, making this ex-

the light intensity recorded on a horizontal line passingperiment one that is easy to perform by undergraduate stu-

through the string. In this example, the imposed frequencylents. Further experiments can be carried out, e.g., studying

Q27 has been suddenly increased from 0 to 5.5Hz

=2.4 Q.27 (first arrow). One can see that, after a transient

30

time of around 7 gsecond arrowduring which the string s ——————— 10
rotation propagates down to the hoop, the amplitude in- : ]
creases and saturates to a finite value. 18
From this diagram, the instantaneous pitch angle as well b ]
as the instantaneous oscillation frequer@27 may be ex- 16
tracted, as shown in Fig. 7. The frequency is obtained from . S 14
averaging over six successive oscillations. Due to the pro- 05 [ ¢ /2r (Hz)
gressive torsion of the string, this frequency slowly ap- 15
proaches its imposed value 5.5 Hz. As a consequence, the ]
increase of the pitch angle towards its stationary valyg N A I
=1.40 rad is rather slow. 0 5 10 15 20 25

It is interesting to note that, when plotting the instanta- t-t,(s)
neous pitch angle as a function of the instantaneous fre-
quency (see F'Q_- 8 the bifurcation dlagra_m of Fig. 5 is Fig. 7. Instantaneous pitch angiéleft) and rotation frequencg/2 (right)
rgcovered to a high degr_ee Of accuracy. _Th|5 suggests that the measured from Fig. 6. The origin timgcorresponds to the second arrow
pitch angle follows “adiabatically” the instantaneous fre- in that figure.
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is maintained by a parametric oscillation mechant8iasso
roping is another example, where the rigid hoop is replaced
by a deformable loop. Here again the motion is maintained
by the precession of the rope rather than rotation. As a con-
sequence, the knot on the loop makes the rope rotate as well,
so that it has to be continuously untwisted at its other end.

Note that this experiment can be carried out with any rigid
body, not necessarily axisymmetric. In this case, the angle of
the equilibrium staté7) remains unchanged, and the angular
velocity threshold just becomés.= ymga/(I;—14), where
a=|GP] is the distance between the center of mass and the
knot. Note, however, that for bodies with three different mo-
Fig. 8. Instantaneous pitch angleas a function of the instantaneous rota- men_ts O_f 'nert'_a;'_ in addition to the bifurcation delscrlbe.q hgre,
tion frequency{;S/QC (same data as in Fig).7The solid line is the calculated inertial instabilities may also occur. Such_an mStab”'ty n-
solution (7), as in Fig. 5. The cross indicates the stationary soluign ~ Volves the roll angle aboug, as an additional degree of
=1.40 rad forQ=2.4 Q.. freedom, and is not described by our calculation.

15|

0 (rad)

0.5 |
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