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ABSTRACT

The energy decay of grid-generated turbulence in a rotating tank is experimentally investigated by means of
particle image velocimetry. For times smaller than the Ekman timescale, a range of approximate self-similar
decay is found, in the form u2(t) ∝ t−n, with the exponent n decreasing from 2 to values close to 1 as the
rotation rate is increased. This observation is interpreted in the frame of a phenomenological model based
on the exponent of the energy spectrum, in which both the effects of the rotation and the confinement are
taken into account.

INTRODUCTION

Assuming self-similarity, the decay of high
Reynolds number homogeneous and isotropic
turbulence is usually described by a power
law [1–4],

u2 ∝ (t− t∗)−n, (1)

where u is the velocity variance, n is the decay
exponent and t∗ is a virtual origin. The value
of the exponent n depends on whether the size
of the energy-containing eddies is free to grow
(n = 6/5) or is is bounded by the experiment
size (n = 2), with a possible changeover between
these two regimes [4].

In the presence of rotation, in addition to the
turnover time `/u (where ` is the size of the
energy-containing eddies), two other timescales
are present in the problem, which have oppo-
site effects on the turbulence decay: the rotation
timescale, Ω−1, and, for bounded systems, the

Ekman timescale, tE = h(νΩ)−1/2 (where h is
the size of the experiment along the rotation axis).
The ratio of the turbulent time scale and the ro-
tation rate is the Rossby number, Ro = u/2Ω`.
While the primary effect of the rotation is to re-
duce the energy dissipation [5], the effect of the
Ekman friction is to accelerate the decay at large
times, shortening the temporal range for the tur-
bulent decay even at large Reynolds numbers.
Based on the assumption that the energy transfers
time scale is governed by Ω−1, Squires et al. [6]
have proposed a self-similar decay with an expo-
nent half of that without rotation, u2 ∝ t−3/5, in
the limit of zero Rossby number.

In experiments, where both confinement and fi-
nite Rossby numbers are to be considered, the
situation is more complex. In small experiments
in which h ' O((ν/Ω)1/2) (e.g. Ibbetson & Trit-
ton [7]), the inhibition of the energy decay is hid-
den by the extra dissipation in the Ekman lay-
ers, and is not observed. Larger experiments (e.g.
Jacquin et al. [5]), in which a significant range
Ω−1 ¿ t ¿ tE exists, have indeed confirmed



the expected inhibition of the energy decay, but
without further characterizing the decay law at
large time, due to the limited extent of the ex-
periment. The aim of the present experiment is
to investigate the combined effects of the back-
ground rotation and the confinement on the decay
law of energy in a rotating tank, starting from an
approximately homogeneous and isotropic state.

EFFECTS OF THE ROTATION AND THE CON-
FINEMENT ON THE DECAY LAW

Decay without rotation

In the absence of rotation, the decay law of an
unbounded homogeneous turbulence can be de-
rived assuming a two-range model for the energy
spectrum [1,2]: A “permanent” part E(k) ' Ak2

for small k, followed by the Kolmogorov spec-
trum E(k) ' Cε2/3k−5/3 at larger k. Solving
for ε = −d(u2)/dt, where u2 =

∫∞
0 E(k)dk

is (twice) the total kinetic energy, yields u2 ∝
(t + t̃)−6/5, i.e. a decay exponent n = 6/5. In
this expression, the crossover time t̃ > 0 does
not necessarily correspond to the virtual origin t∗

introduced in Eq. (1), even though their order of
magnitude should be both given by the timescale
of the initial large eddies. During the decay, the
energy-containing scale ke(t)

−1 (where ke is the
the crossover between the two spectral ranges)
grows without bound. In a real experiment, a
bounding size L is present, defining a minimum
wavenumber k0 ' L−1 towards which ke(t) sat-
urates after a given time ts. Setting E(k) = 0
for k < k0 to account for the confinement yields,
for t À ts, a sharper decay, with an exponent
n = 2 (Skrbek & Stalp [4]) (see Table 1).

Decay with rotation

A very crude way to account for the effect of
rotation is to modify the scaling of the high-

wavenumber part of the spectrum, but without in-
cluding the anisotropy. Assuming that E(k) de-
pends on ε, Ω and k, dimensional analysis yields

E(k) = Cp Ω(3p−5)/2 ε(t)(3−p)/2 k−p. (2)

where the exponent p can take any value between
1 and 3, and Cp is a non dimensional constant .
For Ω = 0, the Kolmogorov exponent p = 5/3
is recovered. For ε = 0, the Kraichnan spectrum
in the enstrophy cascade regime (p = 3) is re-
covered. Finally, the intermediate case p = 2 is
the spectrum proposed by Zhou [9], on the as-
sumption of an energy transfer timescale given
by Ω−1. Solving for ε = −d(u2)/dt, and assum-
ing that the spectral exponent p in (2) remains
constant during the decay, the decay exponent for
unbounded rotating turbulence is found,

n =
3

5

(
3− p

p− 1

)
. (3)

The value n = 6/5 is recovered for the Kol-
mogorov spectrum p = 5/3, and the limiting case
p = 3 of the enstrophy cascade regime yields
n = 0 (i.e. conservation of energy). The expo-
nent p = 2 of Ref. [9] yields n = 3/5, which is
twice smaller than the exponent without rotation,
as first noticed by Squires et al. [6] on dimen-
sional grounds.

Effects of the rotation and confinement — If the
confinement is now taken into account, the same
procedure as above may be used, by setting
E(k) = 0 for the low wavenumber range, which
gives the decay exponent

n =
3− p

p− 1
. (4)

As for the non rotating case, the exponent with
confinement is larger by a factor of 5/3 than that
without confinement. One now obtains n = 2 for
p = 5/3 and n = 1 for p = 2, with again the



factor 2 between the zero rotation and the fast
rotation regimes.

Table 1
Predictions for the decay exponent n.

not confined confined

no rotation 6/5 (Ref. [1]) 2 (Ref. [4])

rotation 3/5 (Ref. [6]) 1

EXPERIMENTAL RESULTS

In order to characterize the effects of the back-
ground rotation and the confinement, a series of
experiments of decaying grid-generated turbu-
lence have been carried out in a rotating tank.
The experimental set-up, described in Morize et
al. [10], consists of a water filled square tank,
L = 35 cm in side, mounted on a rotating
turntable, whose angular velocity Ω has been var-
ied between 0.13 and 4.34 rad s−1. Turbulence is
generated by rapidly towing a square grid of mesh
M = 39 mm at a mean velocity Vg = 0.65 m s−1

from the bottom to the top of the tank. The grid
Reynolds number is Reg = MVg/ν = 2.5× 104,
a value larger than that of most conventional
wind-tunnel experiments, and the grid Rossby
number Rog = Vg/2ΩM is kept sufficiently
large, in the range 2 − 65, in order to minimize
the effect of the rotation on the turbulence pro-
duction mechanism in the near wake of the grid.
Instantaneous velocity fields in the horizontal
plane at mid-height of the tank are measured
by particle image velocimetry (PIV), using a
corotating high resolution camera. Ensemble
averages over 50 realizations of the decay are
performed to achieve statistical convergence.

The energy decay is shown for three rotation rates
in Fig. 1. For low rotation rate (Ω = 0.12 rad s−1),
after a period of approximately constant energy,
a well defined power law with a decay exponent
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Fig. 1. Energy decay for (◦) Ω = 0.12 rad/s, (?)
Ω = 0.40 rad/s, and (M) Ω = 1.50 rad/s (2nd and 3rd
curves divided by 10 and 100 for visibility). The full
arrows indicate the Ekman time.

n ' 2.02 ± 0.10 is found. As the rotation rate
is increased, the friction from the Ekman layers
arises earlier (full arrows in Fig. 1), shortening
the range of power law. Although the quality of
the power law is poorer for large rotation rates,
a significant power law range is found, with an
exponent that decreases continuously from n ' 2
to values close to 1, as shown in Fig. 2. However
it is not clear from this figure whether a saturation
towards n = 1 is present or not.

Although the assumption of a constant spectral
exponent during the decay is not realistic [10],
the trend for n is found to be consistent with
the model presented above, when confinement
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Fig. 2. Semi-logarithmic plot of the decay exponent
n as a function of the rotation rates Ω.

effects are included (see Table 1). The fact that
the confinement plays an important role from the
early time of the decay originates from the rapid
growth of the vertical integral scale through the
propagation of inertial waves, which quickly sat-
urates to the tank height h [11]. In this aspect, de-
caying rotating turbulence in confined geometry
strongly differs from that in a wind tunnel with a
rotating honeycomb [5], which may have lateral
confinement effects but no confinement along the
rotation axis. In spite of this difference, it is re-
markable that the factor 2 between the exponents
at high and low rotation rates (Squires et al. [6])
is recovered here.

CONCLUSION

To summarize, a clear evidence of the reduc-
tion of the energy decay by the rotation has
been observed for times smaller than the Ekman
timescale. The most important result is that, in
addition to the dissipation in the Ekman layers,
the confinement plays a central role in the de-
cay law of rotating turbulence. By making the
growth of the integral scale along the rotation
axis to quickly saturate to the experiment size
even at very low rotation rate, the confinement
leads to a sharper decay than for unbounded tur-

bulence, although compatible with the reduced
dissipation induced by the rotation.

When the range between the rotation-induced sat-
uration time of the vertical lengthscale and the
Ekman timescale is large enough, a significant
self-similar energy decay is observed, character-
ized by a decay exponent n decreasing from 2 to
values close to 1 as the rotation rate is increased.
These exponents are found to be in qualitative
agreement with a phenomenological model based
on the exponent of the energy spectrum, in which
both the effects of the rotation and the confine-
ment are taken into account. These observations
may be of primary importance for the modelling
of turbulence in rotating containers, as the con-
finement is shown to significantly influence the
energy decay even for very weak rotation rate
and large experiment size.
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