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The energy decay of grid-generated turbulence in a rotating tank is experimentally investigated by
means of particle image velocimetry. For times smaller than the Ekman time scale, a range of
approximate self-similar decay is found, in the form u2�t�� t−n, with the exponent n decreasing from
2 to values close to 1 as the rotation rate is increased. Even at very weak rotation rates, rotation is
shown to have a strong indirect influence on the decay law, by making the integral length scale to
quickly saturate to the experiment size through the propagation of inertial waves. The experimental
decay exponents are found in good agreement with the predicted values from a phenomenological
model based on the exponent of the energy spectrum, in which both the effects of the rotation and
the confinement are taken into account. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2212990�
I. INTRODUCTION

The energy decay of high Reynolds number homoge-
neous and isotropic turbulence is usually well described by a
power law,

u2 = a�t − t*�−n, �1�

where u2 is the velocity variance, n is the decay exponent,
and t* is a virtual origin.1–6 Turbulence generated by a grid in
wind tunnels has been extensively used to test this law, pro-
viding an initial state which is close to homogeneity and
isotropy, with the use of Taylor’s hypothesis to convert the
spatial decay into a temporal decay. The power law starts
after a certain time t0, of order of a few tens of M /V,4 where
M is the grid mesh size and V the fluid velocity. The value of
the exponent n depends on whether the size of the energy-
containing eddies is free to grow �n=6/5� or is bounded by
the domain size �n=2�, with a possible changeover between
these two regimes.6 A self-similar decay can hold as long as
the instantaneous Reynolds number remains large enough for
the turbulence to remain fully developed. Exponents n in the
range 1–1.4 are encountered in the literature for wind-tunnel
experiments,4 a range which is consistent with the value n
=6/5 predicted by Saffman3 for unbounded turbulence. This
large experimental uncertainty is partly due to the freedom in
choosing the virtual origin t* for determining the exponent n
from fit of experimental data.6

In the presence of rotation, in addition to the instanta-
neous turnover time � /u �where � is the characteristic size of
the energy-containing eddies�, two other time scales are
present in the problem, which have opposite effects on the
turbulence decay: the rotation time scale, �−1, and, for
bounded systems, the Ekman time scale, tE=h����−1/2,
where h is the characteristic size along the rotation axis. The
rotation time scale �−1 is associated to the propagation of
inertial waves,7 which modify the nonlinear energy transfers
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and reduce the energy dissipation,8 an effect which may re-
sult in a lower value of the exponent n. On the other hand,
the Ekman time scale tE governs the dissipation of those
inertial waves from multiple reflections in the Ekman layers,9

thus enhancing the energy decay at large time, and shorten-
ing the range for a possible self-similar decay even at large
Reynolds numbers.

In the experiment of Ibbetson and Tritton,10 where two
grids were suddenly translated in an air-filled rotating annu-
lus, the reduction of the energy decay was hidden by the
extra dissipation in the Ekman layers, and could not be ob-
served. On the other hand, in the wind tunnel experiments
with a rotating honeycomb of Jacquin et al.,8 a significant
range such that �−1� t� tE could be achieved, and the ex-
pected inhibition of the energy decay has been indeed ob-
served. However, the long-time behavior could not be ex-
plored due to the limited extent of the wind tunnel
�measurements were restricted to x /M �110, i.e., t
�110M /V�, and the issue of a possible scaling of the energy
decay in the presence of rotation could not be addressed by
these authors.

Two candidates for the asymptotic scaling of the energy
decay of unbounded rapidly rotating turbulence have been
proposed �see, e.g., Ref. 11�, which cannot at the moment be
discriminated by available experimental or numerical data.
First, it may be assumed that the energy transfers are totally
inhibited by the rotation, leading to an exponent n=0 and a
purely viscous decay. This regime may be associated to a k−3

spectrum, analogous to the Kraichnan spectrum in the enstro-
phy cascade regime of strictly two-dimensional �2D� turbu-
lence and, by extension, to the quasigeostrophic spectrum for
rotating stratified turbulence.12,13 On the other hand, based
on the assumption that �−1 is the only relevant time scale for
the nonlinear interactions, Squires et al.14 obtained from di-
mensional analysis a self-similar energy decay with an expo-
nent reduced by a factor of 2 relative to its value in the

nonrotating case, i.e., n=3/5 according to the Saffman ex-
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ponent. Results from large eddy simulations were shown by
these authors to compare well with this prediction. This
value n=3/5 has been also obtained from a k−� model by
Park and Chung,15 and is also consistent with the eddy-
viscosity model from Thangam et al.16 These models are
both based on the k−2 spectrum proposed by Zhou17 for ro-
tating turbulence, which relies on the same assumption of
nonlinear interactions governed by �−1 �see also Ref. 18�.
Bellet et al.,19 from numerical integration of an asymptotic
quasinormal Markovian closure model, recently obtained a
trend consistent with this asymptotic value, with an exponent
n�0.86 at the end of the computation.

The aim of the present article is to investigate the com-
bined effects of the background rotation and the confinement
in the decay of turbulent kinetic energy in a rotating tank,
starting from an approximately homogeneous and isotropic
state. The experimental setup, described in detail in Ref. 20,
is similar to the one originally proposed by Ibbetson and
Tritton.10 A grid is initially towed through the depth of a
rotating water tank, and the turbulence is allowed to decay
freely, so that the background rotation gradually affects the
entire flow in an homogeneous way. The much larger Rey-
nolds numbers reached in the present experiment compared
to that of Ibbetson and Tritton,10 due to the use of water as
the working fluid and larger grid velocities, allow us to give
clear evidence of the reduction of the energy decay by the
rotation before the dissipation in the Ekman layers becomes
dominant. In particular, both a significant self-similar decay
regime at early time and an Ekman layer dominated regime
at larger times are obtained, these two regimes being only
separately observed in the experiments of Jacquin et al.8 and
Ibbetson and Tritton.10

The article is organized as follows: After a brief presen-
tation of the experimental setup in Sec. II, the measurements
of the energy decay, with and without rotation, are described
in Sec. III. In Sec. IV a phenomenological model is pre-
sented, in which the effects of the rotation and the confine-
ment are taken into account. The exponent of the decay is
derived under the assumption of isotropy, large Reynolds
number, and a stationary spectrum, and is compared to the
experimental results. Finally, some concluding remarks are
offered in Sec. V.

II. EXPERIMENTAL SETUP

The experimental setup is the same as the one in Morize
et al.,20 and is only briefly described here. It consists of a
water filled glass tank of square section, L=35 cm in side,
mounted on a rotating turntable, whose angular velocity �
has been varied between 0.13 and 4.34 rad s−1. A cover is
placed below the free surface at a distance h=44 cm from
the bottom, so that the volume of working fluid is hL2

=54 l. After the fluid is set in solid body rotation, turbulence
is generated by rapidly towing a co-rotating square grid, that
consists of square bars of 1 cm with a mesh size of M
=39 mm and a solidity ratio �solid to total area� of 0.45, at a
constant velocity Vg=0.65 m s−1 from the bottom to the top
of the tank. During the decay of turbulence, the grid is kept

fixed at the top of the tank. The grid Reynolds number is
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Reg=MVg /�=2.5�104, a value larger than that of most con-
ventional wind-tunnel experiments, insuring a fully devel-
oped turbulence initial state. The grid Rossby number, Rog

=Vg /2�M, is relatively large even for high rotation rate,
between 2 and 65, in order to minimize the effect of the
rotation on the turbulence production in the wake of the grid.

Instantaneous velocity fields in the horizontal plane at
midheight of the tank are obtained from particle image ve-
locimetry �PIV�. The flow is illuminated by a horizontal laser
sheet, and imaged through the transparent bottom of the tank
with a high resolution co-rotating camera. As the root mean
square �rms� velocity decreases in time, the delay between
the two successive images of a pair is made to gradually
increase during the acquisition sequence, from approxi-
mately 1 to 100 ms. Interrogation windows of size 16
�16 pixels, with an overlap of 8 pixels, were used for the
PIV computations. The final velocity fields are defined on a
160�128 grid, with a resulting spatial resolution of 1 mm.

Each realization of the decay being highly fluctuating,
convergence of the statistics is achieved by computing en-
semble averages for the same time delay after the grid trans-
lation over several independent realizations of the decay. Ap-
proximately 50 decays are recorded for each rotating rate �,
and typically 100 image pairs are acquired during each de-
cay. The horizontal contribution of the turbulent kinetic en-
ergy in the plane at midheight,21

u2�t� = ��ux − �ux��2� + ��uy − �uy��2�

�where � � denotes ensemble and spatial average� is measured
as a function of time, with a resolution of 5%. The origin,
t=0, is taken as the time at which the grid passes through the
measurement plane.

III. EXPERIMENTAL MEASUREMENTS OF THE
ENERGY DECAY

A. Decay without rotation

For the sake of comparison with the rotating case, the
energy decay is shown first for �=0 in Fig. 1. An approxi-
mate power law is present for 40� tVg /M �1000, with an

FIG. 1. Energy as a function of time in the absence of rotation. ts is the time
of saturation of the energy-containing length scale.
exponent n�1.1±0.1. Although the Reynolds number is
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large, the quality of the power law is modest, with slow
oscillations superimposed on the overall decay. Such oscilla-
tions probably originate from a large-scale flow favored by
the confinement, and are even more visible when plotting the
total kinetic energy instead of the turbulent kinetic energy.
This large-scale flow is a frequent feature of closed flows
�e.g., oscillating grids experiments in confined geometry22�
but is shown to disappear in the presence of the background
rotation.

The lower cutoff for the self-similar decay, t0Vg /M
�40, is usually interpreted as the time necessary for the grid
wakes to merge. The relatively large value observed here
compared to that from conventional wind tunnel experiments
is probably due to the larger Reynolds number of the present
experiment �Reg�2.5�104�. It is however lower than the
extrapolated trend deduced from the data reported by Mo-
hamed and LaRue,4 which gives Re dependence as t0Vg /M
�0.004Reg, yielding t0Vg /M �100 in our experiment.

The decay exponent n�1.1 is close to the value n
=6/5 derived by Saffman3 for unbounded turbulence, indi-
cating that for tVg /M �1000 the integral scale remains
smaller than the experiment size. This exponent is also con-
sistent with the range 1–1.4 reported by Mohamed and
LaRue,4 from the compilation of a large number of wind
tunnel experiments under different flow configurations, with
various data fitting techniques. Plotting the data as a function
of t− t*, introducing a virtual origin t* �see Eq. �1��, does not
significantly alter the power law when choosing �t*Vg /M�
�40, with a variation of n less than 20%. The value for t*

being much smaller than the typical decay duration, in the
following t*=0 is taken for simplicity.

Beyond the large time cutoff, tsVg /M �1000, a much
sharper decay is observed. The Reynolds number being still
large at this crossover, u�ts�M /��430, this second regime is
not associated to the final period of decay, but rather to the
saturation of the characteristic size of the largest eddies to
the experiment size,6 beyond which a law t−2 is expected �see
Sec. IV A�. Although the range of time is not large enough
for an accurate measurement of the exponent beyond this
saturation time, the decay in this second regime is indeed
compatible with a t−2 law for t� ts.

B. Decay with rotation

We now turn to Fig. 2, where the energy decay is shown
in the presence of rotation, for rotation rates between 0.13
and 4.34 rad s−1. At the lowest rotation rate, the energy decay
strongly differs from the nonrotating case. After a first cross-
over, at ts�Vg /M �150 �further discussed in Sec. III C�, a well
defined power law is found, over more than one decade, with
an exponent n�2.03±0.05 which is significantly larger than
the value 1.1±0.1 at �=0. This power law is surprisingly
much better defined than that for the nonrotating case. In
particular, it has been observed that the curves for the total
and the turbulent kinetic energy are very close, within 10%,
suggesting that the suspected important large scale flow for
�=0, presumably an eddy of diameter comparable to the
box size with an horizontal rotation axis, is strongly inhibited

when rotation about the vertical axis is present.
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As the rotation rate is increased, the rate of energy decay
becomes weaker, a clear signature of the reduction of the
energy transfer by the background rotation. However, the
range of self-similar decay becomes much smaller, and the
quality of the power law becomes questionable for � larger
than 1 rad s−1. Moreover, small oscillations of period
TVg /M =2	Rog �i.e., T=	 /�� superimpose to the decay,
originating from inertial waves excited by the grid transla-
tion. It is remarkable that these oscillations do not cancel out
in the ensemble average, indicating that the phase origin for
these waves is indeed fixed by the grid translation.

The rapid falloff of the curves at large time, indicated by
the arrows in Fig. 2, is best appreciated when plotted with a
linear temporal scale �see Fig. 3�. A well defined exponential
decay can be seen, a clear signature of the viscous dissipa-
tion from the Ekman boundary layers.7 The characteristic
time tc, obtained by fitting an exponential decay exp�−t / tc� at
large time, follows the expected scaling for the Ekman time
scale tE=h����−1/2 over the whole range of � �see Fig. 4�,

tc � �0.07 ± 0.02�tE. �2�

The independence of this time with respect to the grid veloc-
ity Vg has been checked for a particular rotation rate �see the

FIG. 2. Energy decay in the presence of rotation for different rotation rates
�, between 0.13 and 4.34 rad s−1. The upper curve is plotted in the true
coordinates, and the following curves are divided by a factor of 10 for
visibility. The vertical arrows indicate the rotation-induced saturation time ts�
�Eq. �5��, visible only for the lowest �, and the crossover to the Ekman
friction dominated regime �not visible for �=0.13 rad s−1 due to the limited
acquisition time�.
filled circles in Fig. 4�.
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This characteristic time tc is associated to the dissipation
of the inertial waves after multiple reflections over the Ek-
man layers.9 It may also be interpreted as the time for the
Ekman pumping to damp the vorticity in the eddies, that
become preferentially aligned at right angle to the top and
bottom walls under the influence of the background
rotation.20,23 In a previous study with the same experiment

FIG. 3. Same data as in Fig. 2, plotted in linear-logarithmic coordinates. The
lines are exponential fits 	exp�−t / tc�.

FIG. 4. Time scale of the exponential decay, tc, as a function of the rotation
rate �. The grid velocity is Vg=0.65 m s−1 ���, except for �=2.26 rad s−1

���, where additional data at different velocities are shown, Vg�0.16, 0.34,
and 0.91 m s−1. The line shows a best fit with the Ekman time �2�, tc

−1/2
�0.07h���� .
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�Ref. 20�, it has been shown that the skewness factor of the
vorticity fluctuations was actually governed by this time
scale.24

The decay exponent n, obtained by fitting the data in
Fig. 2 with two free parameters, a and n �see Eq. �1�� and a
virtual origin t* fixed to 0, is shown in Fig. 5 as a function of
the rotation rate. Here again, allowing the virtual origin to be
an additional free parameter leads to a variation of n less
than 20%, which is comparable to the error bars in Fig. 5 for
moderate �. The decay exponent decreases continuously
from n�2, at �=0.13 rad s−1, to values close to or slightly
smaller than 1 for the largest �. The large uncertainty for
��1 rad s−1 follows from the poor quality of the power
laws at large rotation rates, due to the restricted scaling range
as � is increased. The exponents for such high rotation rates
being probably biased by crossover effects, an estimate for n
could only be obtained for �
2.26 rad s−1, and it is not
possible to decide from our data whether a saturation toward
n=1 �half the value of the weak rotation case� is present or
not.

C. Saturation time

The most surprising result of Fig. 5 is that the decay
exponent n for the lowest rotation rate, n�2, does not coin-
cide with that for the nonrotating decay, for which n
�1.1±0.1 was observed �see Fig. 1�. As shown in the fol-
lowing, this seeming contradiction originates from confine-
ment effects along the rotation axis, which plays a dominant
role in the presence of rotation, even for very weak rotation
rate.

In the absence of rotation, the energy decay appears to
be affected by the confinement after the saturation time
tsVg /M �1000 �Fig. 1�, beyond which the decay was found
to be compatible with a t−2 law. Assuming an integral scale

FIG. 5. Decay exponent n as a function of the rotation rate � �lower scale�
and the grid Rossby number Rog �upper scale�. The arrow indicates the
rotation rate �c2�1.3 rad s−1, above which the rotation-induced saturation
time ts� reaches the time t0 of the beginning of the power law decay �see Eq.
�7��.
growing as
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��t�
M

� �
 tVg

M
�2/5

, �3�

which is a direct consequence of the t−6/5 law for the un-
bounded energy decay �see Refs. 2, 3, and 6 and Sec. IV A�,
with � a nondimensional factor of the order of unity, this
saturation time is given by ��ts�=L, i.e.,

tsVg

M
� 
 L

�M
�5/2

, �4�

where L is the horizontal size of the tank. The vertical size,
h, being slightly larger than L, it will be reached later, pro-
viding the turbulence remains isotropic. Using L /M =9 al-
lows us to determine the prefactor, ��0.6.

In the presence of weak rotation, the t−2 law begins
much earlier �Fig. 2�, for tVg /M �150 instead of 1000, sug-
gesting a much smaller saturation time. This is physically
acceptable, as in the presence of rotation the growth of the
vertical integral scale is now expected to be governed by
inertial waves. Taking cg�2���t� as the group velocity for
the fastest inertial waves, with ��t� being now the horizontal
integral scale, the rotation-induced saturation time is now
defined such that

�
0

ts�
2���t�dt = h .

The growth law for the horizontal integral scale is modified
by the rotation, but remains slow, changing from ��t�� t2/5 at
Ro�1 to ��t�� t1/5 at Ro�1 �see Refs. 14 and 18 and Sec.
IV B�. Keeping the weak rotation law �3�, and assuming that
��t� remains lower than L �no horizontal saturation at short
time�, the time for vertical saturation can now be written as25

ts�Vg

M
� 
7

5

h

�M
Rog�5/7

. �5�

FIG. 6. Sketch of the energy decay in the presence of rotation and axial
confinement. The first crossover, t0, is the time for the grid wakes to merge
and produce an approximately isotropic initial state �t0 is assumed to be
independent of �, provided that the grid Rossby number Rog is large
enough�. The second crossover, ts� �Eq. �5��, is the time of saturation of the
vertical integral scale induced by the rotation, shown here for ts�� t0, i.e., for
Rog�Rog,c2 �see Eq. �7��, whereas one has ts�� t0 in the present experiment.
The third crossover, tc, is approximately located at the Ekman time scale
�Eq. �2��. The exponents n and n�=5/3n corresponds to the nonconfined
�see Eq. �13�� and confined �Eq. �15�� regimes, respectively.
This time is sketched in Fig. 6. With h /M =11.3, and keeping
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the value ��0.6 from the nonrotating case, we obtain
ts�Vg /M �200 for the lowest rotation rate �Rog=65�, a value
indeed much smaller than the saturation time with no rota-
tion, and which is moreover in very good agreement with the
Fig. 2 �upper curve�. Although this value is larger than the
time t0Vg /M �40 for the merging of the grid wakes in the
absence of rotation �see Fig. 1�, above which the turbulence
can be considered as approximately homogeneous and iso-
tropic, the range between t0 and ts� is probably too small to
observe the unbounded decay regime as for the nonrotating
case.

It is interesting to note that the Rossby number at which
the decay law in the rotating case would actually coincide
with that in the nonrotating case may be obtained by equat-
ing Eqs. �4� and �5�, which yields

Rog,c1 =
5

7

L

h

 L

�M
�5/2

� 500. �6�

This corresponds to a very low rotation rate, �c1

�0.017 rad s−1 �rotation period of approximately 6 min�, a
value well below what can be achieved under controlled situ-
ation with our rotating turntable. In other words, even for the
weakest rotation rate achieved here, the axial confinement
plays a significant role from the early time due to the quick
saturation of the vertical length scale, and the system quickly
enters into a decay regime dominated by the confinement.

At higher rotation rates �Rog down to 2�, according to
Eq. �5�, the rotation-induced saturation should occur even
faster, with ts�Vg /M decreasing down to 17, i.e., to values
smaller than t0Vg /M. As a consequence, the system would
directly proceed from the initially anisotropic turbulence pro-
duced in the wake of the grid to the rotating bounded decay
regime, with no intermediate regime of rotating unbounded
decay. This picture is however certainly incorrect, as for such
large rotation rate the grid turbulence production itself be-
comes probably affected by the rotation too. From Eq. �5�,
the minimum Rossby number for which the condition ts�
� t0 remains satisfied is given by

Rog,c2 =
5

7

�M

h

 t0Vg

M
�7/5

� 7, �7�

using t0Vg /M �40 as for the nonrotating case. This criterion
implies ���c2�1.3 rad s−1, which is indeed satisfied for
the present experiment, except for the highest rotation rates
�see the two lower curves of Fig. 2�. As a consequence, al-
though the grid Rossby number Rog is kept larger than unity
for all �, the highest rotation rates certainly escape from the
idealized situation of an homogeneous and isotropic initial
state, and the corresponding decay exponents �the last two
points of Fig. 5� should be considered with caution.

IV. A PHENOMENOLOGICAL MODEL FOR THE DECAY
EXPONENT

In the following, a phenomenological model is intro-
duced to derive the exponent for the decay law in the pres-
ence of rotation and confinement, following the approach
first used by Comte-Bellot and Corrsin2 and modified by

3
Saffman for homogeneous turbulence. The procedure con-
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sists in linking the decay exponent n to the exponent p of the
one-dimensional spectrum, E�k�	k−p. This approach is mo-
tivated by the experimental observation of a steeper spec-
trum in the presence of rotation,20 with a spectral exponent p
increasing to values slightly larger than 2 at small Rossby
number. Both the rotation, by changing the spectral exponent
p at large wave number, and the confinement, by introducing
a low wave number cutoff, are considered here. However, the
anisotropy is not explicitly taken into account at the level of
the energy spectrum.

In the following, Sec. IV A briefly recalls the derivation
of the decay exponent for nonrotating turbulence, and Sec.
IV B extends the procedure using the spectrum modified by
the rotation.

A. Decay without rotation

In the absence of rotation, a classical two-range model
for the one-dimensional energy spectrum E�k� may be as-
sumed. At small wave number, a “permanent” part

E�k� = Aks �8�

holds, where A �of units ms+3 s−2� is invariant during the
decay. In the absence of an external time scale, the decay law
is governed by this permanent part,26 with a decay exponent
dimensionally constrained by the value of s, n=2�s+1� / �s
+3�. The exponent s=2, proposed by Saffman3 on the basis
of momentum conservation, has been found to be consistent
with most wind-tunnels experiments,4,6 and is used in the
following. At larger wave number, the Kolmogorov law is
used,

E�k� = C�2/3k−5/3, �9�

where C is the Kolmogorov constant and � is the instanta-
neous dissipation rate. The crossover between Eqs. �8� and
�9� defines the wave number of the energy-containing eddies,
ke�t�, which is a decreasing function of time.

A differential equation for u2�t� is obtained by equating
the energy dissipation rate −d�u2� /dt, where u2�t�
=0

E�k�dk is �twice� the total kinetic energy, and ��t� in the
Kolmogorov spectrum �the Reynolds number is assumed to
remain very large during the decay, so that the effect of the
viscous cutoff at large wave number can be neglected�. If no
lower bound for ke exists �infinite domain�, solving for u2�t�
yields the decay law3

u2�t� � �t + t̃�−6/5, �10�

i.e., the decay exponent n=6/5, and the growth law for the
integral scale ��t��ke�t�−1,

��t� � �t + t̃�2/5.

In these expressions, the crossover time t̃�0 does not nec-
essarily correspond to the virtual origin t* introduced in Eq.
�1�, even though their order of magnitude should be both
given by the time scale of the initial large eddies,
�ke�0�u�0��−1 �with ke�0� of order of M−1 for grid turbu-
lence�.

The previous analysis only holds when the energy-

containing wave number, ke�t�, remains unbounded during
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the decay, i.e., if the integral length ��t��ke�t�−1 is allowed
to grow without bound. In a physical experiment, where a
bounding size L is present, eddies of sizes larger than L
cannot exist. This confinement defines a minimum wave
number k0�L−1 toward which ke�t� will saturate at a given
time ts. A simple way to account for the confinement effect,
proposed by Skrbek and Stalp6 for the nonrotating case, is to
take a zero energy density for k�k0. With this description,
the energy first decays following approximately the noncon-
fined law �10� and, for t� ts, solving for −du2 /dt=��t� with
ke�t�=k0 now yields the faster decay law

u2�t� � �t + t̃�−2.

This exponent n=2 can be actually recovered in the physical
space, by simply assuming that the energy dissipation rate
−d�u2� /dt is u2 /�, with the dissipation time scale governed
by the largest scales, i.e., �=L /u�t�.

B. Decay with rotation

A crude way to account for the effect of rotation is to
modify the exponent p of the high-wave-number part of the
spectrum, but without explicitly including the anisotropy in
E�k�. Although nonphysical, this approach allows us to sim-
ply make use of the one-dimensional spectrum E�k�, and
should therefore apply for moderate Rossby numbers, for
which the anisotropy effects remain weak.

Assuming that E�k� depends now on �, �, and k, a
simple dimensional analysis yields

E�k� = Cp��3p−5�/2��t��3−p�/2k−p, �11�

where Cp is a nondimensional constant, that may depend on
p. The exponent p is not dimensionally constrained in this
expression, and can take any value between 1 and 3. How-
ever, the exponent for � is expected to be positive, so that p
should be restricted to the range 5/3 to 3.

Equation �11� generalizes a variety of situations, summa-
rized in Table I. The Kolmogorov exponent p=5/3 is recov-
ered when the limit �→0 is taken, in order to ensure a

TABLE I. Summary of the predicted values of the decay exponent n ac-
cording to the spectral exponent p, with and without confinement. Only the
case s=2 �Saffman invariant� is considered here for the nonconfined case.
Rotating �I� refers to the assumption of energy transfers time scale given by
�−1, and rotating �II� to the totally inhibited energy transfer regime.

Spectral
exponent

Decay exponent

Nonconfined
�Eq. �13��

Confined
�Eq. �15��

Nonrotating p=5/3a n=6/5b n=2c

Rotating �I� p=2d n=3/5e n=1f

Rotating �II� p=3g n=0 n=0

aKolmogorov.
bReference 3.
cReference 6.
dReference 17.
eReference 14.
fPresent model.
gKraichnan.
nonvanishing spectrum. Similarly, the limit �→0 yields
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E�k�=C3�2k−3, i.e., p=3, which corresponds to the Kraich-
nan spectrum in the enstrophy cascade regime of strictly 2D
turbulence �noted “rotating �II�” in the Table I�, with an en-
strophy transfer rate taken arbitrarily equal to �3. Finally, the
intermediate case p=2, E�k�=C2�1/2�1/2k−2, is the spectrum
proposed by Zhou17 for rapidly rotating turbulence �noted
“rotating �I�” in the Table I�, on the assumption of an energy
transfer time scale given by �−1.

The total kinetic energy u2�t�=0
E�k�dk can now be

computed, using Eq. �8� at small wave number and Eq. �11�
at large wave number, and still ignoring the viscous cutoff. A
differential equation for ��t� may be obtained by differenti-
ating u2�t�, but only under the assumption that the exponent
p remains constant during the decay. Although not physical
�the exponent p being related to the instantaneous micro-
Rossby number,20 which decreases during the decay�, this
strong assumption allows for a simple qualitative connection
between p and n. Within this assumption, we obtain, after
some algebra �see the Appendix�,

u2�t� � �t + t̃�−n, ��t� � �t + t̃�n/3, �12�

with

n =
3

5

3 − p

p − 1
� . �13�

The asymptotic laws u2�t�� t−6/5 and ��t�� t2/5 are recov-
ered for the Kolmogorov spectrum exponent p=5/3, but
shallower decay laws are obtained for steeper spectra �see
Table I�. The k−2 spectrum of Zhou17 yields u2�t�� t−3/5 and
��t�� t1/5, i.e., exponents which are twice smaller than the
exponents without rotation, as first noticed by Squires et al.14

The limiting case p=3 of the enstrophy cascade regime
yields n=0, which is consistent the conservation of energy.

Note that the decay exponent �13� may be generalized
for arbitrary values s of the low wave number spectrum �Eq.
�8��,

n =
s + 1

s + 3

3 − p

p − 1
� �14�

�and ��t�� tn/�s+1��. In addition to the Saffman exponent s
=2 already considered, the other physically relevant situation
is s=4, which is based on the so-called Loistanskii
quasi-invariant.2,5 This value yields slightly larger decay ex-
ponents, n=10/7 and 5/7 for p=5/3 and 2 respectively, with
again the factor of 2 between the zero rotation and the fast
rotation regimes.

If we finally consider the effect of the confinement, the
approach of Skrbek and Stalp6 may be straightforwardly gen-
eralized for the rotating case, taking Eqs. �8� and �11� for the
intermediate and large wave numbers and a zero energy den-
sity below k0�L−1. As before, two decay laws are obtained.
For t� ts� �where the saturation time ts� now depends on ��,
the unbounded decay law modified by the rotation is ob-
tained, with the same exponent �13� as before. For t� ts�, the

decay exponent in the rotating and confined regime is now
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n =
3 − p

p − 1
�15�

�which may be formally obtained by taking s→ in Eq.
�14��. As for the nonrotating case, the exponent with confine-
ment is larger by a factor of 5 /3 than that without confine-
ment �see Fig. 6�. One now obtains n=2 for p=5/3 and n
=1 for p=2, with again the factor of 2 between the zero
rotation and the fast rotation regimes. The enstrophy cascade
regime �p=3 and n=0� is not modified by the confinement.

C. Comparison with the experiment

The experimental decay exponents n �Fig. 5� are now
compared with the values predicted by the model �Table I�.
The exponents between 2 and 1 found in the experiment are
compatible with the possible range of n for 5 /3� p�2 when
confinement is taken into account �Eq. �15��, confirming the
suspected strong influence of the confinement. In Morize et
al.,20 the spectral exponent p has indeed been measured from
the energy spectrum in the horizontal plane during the decay
�see the Fig. 6 of Ref. 20�. �The measurement of the expo-
nent s of the low wave number part of the spectrum, Eq. �8�,
would have required an imaged area much larger than the
size of the energy-containing eddies, and has not been car-
ried out.� A gradually increasing exponent p was observed,
from p=5/3 for the instantaneous micro-Rossby number
Ro�=�� /2 � larger than 2±0.5 �where �� is the vertical
vorticity rms� up to values 2.3±0.1 for lower Ro�. It is re-
markable that, in spite of the unphysical assumption of a
spectral exponent p remaining constant during the decay,
which is not verified in the experiment, the limiting values at
high and low rotation rates compare well with the ones from
the model with confinement. In particular, the factor of 2
between these two limiting values predicted by Squires et
al.,14 although derived in the absence of confinement, is con-
sistent with the present findings.

The largest values of p reported experimentally, just be-
fore the dissipation in the Ekman layers becomes dominant,
is p�2.3±0.1. This value gives n�0.54±0.12 according to
Eq. �15�, which significantly underestimates the actual ones
�n�0.9±0.2 for ��1−2 rad s−1 in Fig. 5�. However, the
large uncertainty for n, and the fact that the rotation-induced
saturation time ts� is of the order of t0 �Eq. �7��, certainly
prevent from further comparison between the model and the
experiment for such large rotation rate.

It may be tempting to relate the instantaneous decay
exponent, defined as the local slope n�t�=−d ln�u2�t�� /d ln t,
to the instantaneous spectral exponent p�t�, which should
yield a relation similar to Eq. �13� or �15� for slowly varying
p�t�. However, this would lead to a decay exponent decreas-
ing in time, i.e., to a logarithmically convex curve for the
energy as a function of time, whereas an approximate power
law is obtained experimentally �see Fig. 2�. In contrast, such
a convex curve is indeed compatible with the rotating wind-
tunnel data of Jacquin et al.,8 although over a restricted tem-
poral range, and with numerical data �see, e.g., Ref. 27�. It is
not clear whether the approximately constant slope of the

energy decay in our experiments is a specific feature of the
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confinement, or an artifact due to the limited available scal-
ing range.

In spite of these uncertainties, more quantitative com-
parison between the experiment and the model may be pro-
vided by plotting the decay exponent n as a function of the
instantaneous spectral exponent p �Fig. 7�. As p evolves con-
tinuously during the decay, only the values at the beginning
and the end of the power law range are shown. It is interest-
ing to note that, for all �, the starting values for p are still
close to the Kolmogorov value, p�5/3, as for homogeneous
turbulence, whereas the ending values follow approximately
the trend for the decay law exponent with confinement �Eq.
�15��. Although the variation of the spectral exponent is
large, the comparison between the data and the two laws
�Eqs. �13�–�15�� is clearly in favor of the law with confine-
ment.

V. CONCLUSION

To summarize, clear evidence of the reduction of the
energy decay by the rotation has been observed for times
smaller than the Ekman time scale. Both a significant self-
similar decay at early time and an Ekman layer dominated
regime at larger times are obtained, these two regimes being
only separately observed in the experiments of Jacquin et al.8

and Ibbetson and Tritton.10 The most important result is that,
in addition to the dissipation in the Ekman layers, the axial
confinement plays a central role in the decay law of rotating
turbulence. By making the growth of the integral scale along
the rotation axis to quickly saturate to the experiment size
even at very low rotation rate, the confinement leads to a
sharper decay than for unbounded turbulence, although com-
patible with the reduced dissipation induced by the rotation.
In this second aspect, decaying rotating turbulence in con-
fined geometry strongly differs from that in a wind tunnel
with a rotating honeycomb,8 which may have lateral confine-

FIG. 7. Decay exponent n as a function of the instantaneous spectral expo-
nent p, for �=0.13–2.26 rad s−−1 �upper to lower arrows�. Note that the last
two values have ���c2 �see Fig. 5�. p measured at the beginning of the
power law decay, for t�max�t0 , ts�� ��� and p at the end of the power law
decay, for t� tc ���. The uncertainty on n, not shown here, is given by the
error bars in Fig. 5. The curves show the predicted decay exponents: without
confinement �13� �– – –� and with confinement �15� �—�.
ment effects but no confinement along the rotation axis.

Downloaded 23 Jun 2006 to 129.175.97.14. Redistribution subject to 
When the range between the rotation-induced saturation
time of the vertical length scale and the Ekman time scale is
large enough, a significant self-similar energy decay is ob-
served, characterized by a decay exponent n decreasing from
2 to values close to 1 as the rotation rate is increased. These
exponents are found to be in qualitative agreement with a
phenomenological model based on the exponent of the en-
ergy spectrum, in which both the effects of the rotation and
the confinement are taken into account. The main drawback
of this approach is the assumption that the spectral exponent
p remains constant during the decay, which is in contradic-
tion with previous experimental observations �Ref. 20�.
However, it is found that the correlation between the decay
exponent and the spectral exponent at large times is in quali-
tative agreement with model �15� in which the confinement
is taken into account. This observation may be of primary
importance for the modelling of turbulence in rotating con-
tainers, in which the effect of the confinement cannot be
neglected even for weak rotation rate and large experiment
size.

It is interesting to note that, although the confinement is
shown to have a deep influence on the decay of the overall
kinetic energy from the early time, other quantities seem to
be much less affected by the large scales of the flow. In
particular, the spectral exponent and the velocity derivative
skewness were shown by Morize et al.20 to keep their clas-
sical �nonrotating� values, p�5/3 and S�−0.4, as long that
the instantaneous micro-Rossby number Ro� remains large
enough. The confinement thus appears to act essentially
through the saturation of the integral scale, an effect which is
enhanced by the propagation of inertial waves, without much
affecting smaller scale quantities, at least for intermediate
times. The complex interplay between global quantities, like
the grid Rossby number or the Ekman time scale, and more
local quantities, like the micro-Rossby number, makes the
detailed description of the decay of confined rotating turbu-
lence a rather delicate issue.
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APPENDIX: DERIVATION OF EQ. „13…

In the presence of rotation, �twice� the total kinetic en-
ergy is obtained by integrating the model spectrum given by
Eqs. �8� and �11�,

u2�t� = �
0

ke�t�

Ak2dk + �
ke�t�



Cp��3p−5�/2��t��3−p�/2k−pdk .

The wave number of the energy-containing eddies follows

from the continuity of the two laws at k=ke,
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ke�t� = 
Cp

A
�1/�p+2�

��3p−5�3−p�1/�2p+4�, �A1�

which gives

u2�t� = �p��3p−5��t�3−p�3/�2p+4�, �A2�

introducing the �dimensional� constant

�p =
1

3

 p + 2

p − 1
�A
Cp

A
�3/�p+2�

.

The differential equation for ��t� is obtained by differenti-
ating Eq. �A2�. Assuming a stationary spectral exponent p
�and hence constant Cp and �p�, one obtains

� = −
3�3 − p�
2p + 4

�p��3�3p−5��/�2p+4��−�5�p−1��/�2p+4�d�

dt

yielding

d�

dt
= − �p

−1 2p + 4

3�3 − p�
�−�3�3p−5��/�2p+4���7p−1�/�2p+4�.

This differential equation can be readily integrated for
p�1,

��t� = �0
1 +
t

t̃
�−�2p+4�/�5�p−1��

, �A3�

where �0=��0�, and introducing the characteristic time

t̃ = �p
3

5

3 − p

p − 1
���0

5�1−p��−3�3p−5��1/�2p+4�.

Integrating �A3� between 0 and t finally yields

u2�t� = u2�0�
1 +
t

t̃
�−�3/5���3−p�/�p−1��

,

which gives the decay exponent n of Eq. �13�. Finally, the
growth law for the �horizontal� integral scale is obtained by
replacing �A3� in Eq. �A1�,

��t� = ��0�
1 +
t

t̃
��1/5���3−p�/�p−1��

.
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