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3Centre for Turbulence Research, Stanford University, CA 94305 USA

(Received 6 June 2003 and in revised form 6 April 2004)

The regions associated with high levels of vorticity and energy dissipation are studied
in numerically simulated isotropic turbulence at Reλ = 168. Their geometry and spatial
distribution are characterized by means of box-counting methods. No clear scaling is
observed for the box counts of intense strain rate and vorticity sets, presumably due
to the limited inertial range, but it is shown that, even in that case, the box-counting
method can be refined to characterize the shape of the intense structures themselves,
as well as their spatial distribution. The fractal dimension of the individual vorticity
structures, Dω → 1.1 ± 0.1, suggests that they tend to form filamentary vortices in the
limit of high vorticity threshold. On the other hand, the intense dissipation structures
have dimensions Ds � 1.7 ± 0.1, with no noticeable dependence on the threshold,
suggesting structures in the form of sheets or ribbons. Statistics of the associated
aspect ratios for different thresholds support these observations. Finally box counting
is used to characterize the spatial distribution of the baricentres of the structures.
It is found that the intense structures are not randomly distributed in space, but
rather form clusters of inertial-range extent, implying a large-scale organization of
the small-scale intermittent structures.

1. Introduction
The spatial structure of the velocity field is the key feature of intermittency in

turbulent flows. Structures of high levels of dissipation and of vorticity magnitude,
such as vortex sheets and tubes, result in highly non-Gaussian statistics of the velocity
increments. Intermittency may be characterized in two ways: from the geometry of
those remarkable structures, or from the statistics of turbulent fluctuations at different
scales. Connecting these two approaches is a difficult task, since statistical quantities
may depend both on the geometry of the individual structures and on their spatial
distribution at larger scales. The interplay between those two geometric aspects has
not received much attention, to our knowledge, and is addressed in this paper.

Intense vortical structures in turbulent flows, in the form of sheets and tubes (the so-
called ‘worms’), have for a long time been observed and characterized from numerical
simulations (Siggia 1981; Vincent & Meneguzzi 1990; She, Jackson & Orszag 1991;
Jiménez et al. 1993; Jiménez & Wray 1998). As noted by Passot et al. (1995), vortex
tubes probably arise from stretched vortex layers formed earlier, and it is in those
layers, and in the periphery of the vortex tubes, that high levels of energy dissipation
are concentrated. The geometry of these highly dissipative regions has not received



112 F. Moisy and J. Jiménez

as much attention as in the case of the vorticity, probably because they are not
associated with shapes as dramatic as those of the latter.

The shape of the intense structures is difficult to infer from experimental mea-
surements, which are often restricted to one or two velocity components in one or
two dimensions. Particularly difficult is to distinguish between vorticity and strain-
rate structures, and most experimental results refer to ‘active’ high-gradient regions,
without specifying whether they correspond to the former or to the latter. A first
attempt by Kuo & Corrsin (1972), using one-point velocity measurements, identified
the ‘active regions’ as being mainly ribbon-like or rod-like.

Strong correlations have to be expected between the intense vorticity and strain-
rate regions. When intermediate vorticity levels are considered, vorticity and strain
rate of comparable magnitudes overlap (Jiménez et al. 1993; Pumir 1994), indicating
the presence of intense shear layers near the vortex tubes, either as their precursors
or surrounding them. Pressure criteria have often been used to distinguish between
vorticity- and strain-dominated regions. Since vorticity and strain act as the source
and sink terms in the Poisson equation for the pressure, ∇2p/ρ = Q = 1

2
ω2 − SijSij ,

where ω is the vorticity magnitude and Sij is the rate-of-strain tensor, regions in which
the vorticity is high compared to the strain are likely to correspond to local pressure
minima; near a stationary isolated vortex core, a pressure drop has to balance
the centrifugal acceleration. This has been used for example for the visualization
of vorticity filaments by the gas bubbles which migrate into them against the
pressure gradient (Douady, Couder & Brachet 1991; Cadot, Douady & Couder
1995; Villermaux, Sixou & Gagne 1995). The main drawback of this method is that
the pressure has a global component which depends on the surrounding parts of the
flow, so that the low-pressure regions only detect strong isolated coherent vortices
(La Porta et al. 2000).

More refined schemes, based on the eigenvalues of the velocity gradient tensor,
have been proposed to detect small-scale vortices. Two popular options have been
to define vortices as the regions in which Q is positive (Hunt, Wray & Moin 1988),
or as those with a negative intermediate eigenvalue λ2 of the symmetric tensor,
SikSkj + ΩikΩkj , where Ωij is the antisymmetric component of the velocity gradient
tensor (Jeong & Hussain 1995). However, Dubief & Delcayre (2000) showed that
the results from these two criteria are indistinguishable in the particular case of
homogeneous turbulence, and that they agree well for strong vortices with a simple
thresholding of the vorticity field. Similar results have recently been obtained for shear
flows by Chakraborty, Balachandar & Adrian (2003). We will therefore limit ourselves
to simple thresholding of the intensity, without worrying too much about whether the
structures that we define agree in all cases with the vortices defined by other criteria.

Concerning the spatial distribution of the intense objects, and of their possible
clustering, references are scarce. Worms are often treated as being randomly
distributed in space. With this assumption, Hatakeyama & Kambe (1997) obtained
inertial-range scaling from an assembly of random Burgers’ vortices. More detailed
descriptions of the inertial range have been developed by Lundgren (1982) and by
Pullin & Saffman (1993) using more complicated randomly distributed elementary
structures. On the other hand the evidence from numerics is inconsistent with a fully
random distribution. Jiménez et al. (1993) observed that worms seem to accumulate
in the interface between largely empty large-scale eddies, and Porter, Woodward
& Pouquet (1997) confirmed this observation by insisting on the apparent inertial-
scale clustering of intense vortices in their numerical simulations. Hosokawa, Oide &
Yamamoto (1997) used a simple vorticity thresholding criterion to describe their fields
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in terms of ‘hard worms’, at dissipative scales, embedded within inertial-range ‘soft
worms’. All these observation were however qualitative, and none of them provides a
statistical analysis of the phenomenon.

Experimentally, spatial distributions can be inferred from waiting times between
intense events recorded in one-point time series. The results of pressure measurements
by Abry et al. (1994) showed algebraically distributed waiting times, for inertial
separations, between pressure drops marking large coherent vortices, suggesting self-
similar clustering. Belin et al. (1996) and Mouri, Hori & Kawashima (2002) gave
evidence, from one-point velocity time series, of the clustering of intense velocity
gradients, which was shown to be self-similar by Camussi & Guj (1999) and Moisy
(2000). Similar observations were reported by Moisy et al. (2000) for the turbulent
mixing of a passive scalar, which yields a power-law distribution of free intervals
between strong passive scalar fronts.

This self-similar character of the empty spaces between intense regions suggests
a description of the intense sets in terms of fractals. Since Mandelbrot (1974),
such descriptions have been numerous (see e.g. Sreenivasan 1991) but, because of
experimental difficulties and numerical limitations, contradictory conclusions are also
numerous. Since it is generally difficult to measure experimentally three-dimensional
fields, fractal properties are usually investigated through lower-dimensional subspaces,
which require that the dimension should be high enough for the resulting set to be
non-empty. Most of these attempts focus on fractal surfaces in turbulence, such
as turbulent/non-turbulent interfaces, iso-scalar or iso-velocity surfaces (Sreenivasan
& Meneveau 1986; Catrakis & Dimotakis 1999; San Gil 2001). Actually, fractality
of the velocity and passive scalar fields is implicitly present in the original non-
intermittent theories of Kolmogorov (1941), Obukhov (1949), and Corrsin (1951). Orey
(1970) rigorously established the fractal character of the iso-value sets obtained from
Gaussian processes with power-law spectra. Although turbulent velocity fluctuations
are not Gaussian, the experimental results of Praskovsky et al. (1993) and Scotti,
Meneveau & Saddoughi (1995) showed that the fractal dimension of level sets from
velocity time series is indeed in agreement with Orey’s (1970) theorem. However, it
must be noted that a fractal velocity field does not imply that the derivative fields
are also fractal, and thus provides no insight into the spatial distribution of intense
structures. For instance, a Gaussian process with power-law spectrum and random
phase has sets of iso-gradients that are randomly distributed, i.e. clustering of intense
structures is not a trivial consequence of the Kolmogorov spectrum.

Fractality of the derivative fields (vorticity, energy dissipation and scalar dissipation)
can be inferred indirectly from inertial-range statistics, such as the scaling of the
structure functions, as well as from dissipative-range statistics, such as the scaling
of the dissipation correlations, or the Reynolds number dependence of statistical
moments based on dissipation. The compilation of flatness factors of the velocity
derivative by Sreenivasan & Antonia (1997) suggests a fractal dimension D � 2.7
for the set where energy dissipation takes place. A similar dimension of about 2.7
has been reported for the sets of iso-scalar and velocity in numerical simulations by
Brandenburg et al. (1992). It is worth pointing out that these dimensions describe the
distribution of typical fluctuations of the energy dissipation, of order 〈ε2〉1/2, but give
no information on the possible dimension of stronger dissipative events. A fractal
dimension of 2.7 would suggest that regions where energy dissipation takes place are
wrinkled sheets, which is consistent with the observations of intense shear layers in
numerical simulations. On the other hand, this dimension does not seem to be related
to the observation of filamentary structures in the vorticity field. This raises the issue
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of whether the fractal dimension of the derivative field describes the shape of the
intense structures, or rather their distribution in space.

The multifractal formalism provides a useful framework, taking into account
the non-uniformity of the derivative fields on their fractal support. Models of
intermittency based on a self-similar multiplicative process (see e.g. Frisch 1995) result
in a multifractal distribution of the energy dissipation. However, it must be noted
that while fractality of the velocity field is a consequence of even the non-intermittent
Kolmogorov theory, intermittency does not necessarily imply fractal or multifractal
properties. Moreover, although some idea of the dimensionality of the most intense
structures can be inferred from the properties of the multifractal component with
the highest singularity exponent, this provides no insight into their detailed geometry.
These exponents, moreover, are only accessible through the behaviour of the high-
order structure functions, which are known to be difficult to measure experimentally
(Nelkin 1995).

The purpose of this paper is to investigate some of the links between the fractal and
structural descriptions of turbulence. The data generation is first briefly described in
§ 2. Results of classical box-counting of the most intense sets, defined by thresholding
the vorticity and the strain rate fields, are presented in § 3 and compared to those from
Poisson sets. We observe that these statistics are difficult to interpret, because they mix
contributions from the geometry of the individual structures with those from their
spatial distribution. In order to distinguish those two aspects, we focus on the intense
structures themselves in § 4, studying their contribution to the box-counting. We next
give evidence in § 5 that their spatial distribution is not homogeneous, and that intense
structures are organized into clusters. We finally discuss these observations in § 6 in
the framework of the fractal descriptions of turbulence.

2. Data generation
The numerical simulations analysed in this paper are those of Jiménez et al. (1993).

Details concerning the pseudospectral numerical scheme and the definitions used
for the different quantities can be found in that paper. Two instantaneous velocity
fields of three-dimensional forced turbulence constitute our data base. They do not
include the single field mentioned in Jiménez & Wray (1998) as having unusual
intermittency properties. The resolution is 5123 collocation points, with periodic
boundary conditions. The two fields are separated by 0.3 turnover times, and have
been obtained after 6 turnover times of run at lower resolution, in order to achieve
statistical equilibrium. Forcing is applied by introducing a negative viscosity coefficient
in Fourier space for low wavenumbers, |k| � 2.5 (Rogallo 1981), which is adjusted
to achieve a statistically stationary state with a fixed value of kmaxη � 2, where
η = (ν3/〈ε〉)1/4 is the Kolmogorov scale. The resulting resolution in the physical space
is π/kmax � 1.57η, which corresponds to the first data point in the figures of this
paper. The box size is 760η and the integral scale L0 is around 1/4 of the box
size, providing a scale separation of L0/η � 200 and a microscale Reynolds number
Reλ = 168. Although the Reynolds number is moderate, an inertial-like range is
present over about one decade.

Quantities of interest in this paper are the vorticity magnitude |ω| =(ωiωi)
1/2 and

the strain-rate magnitude |s| =(SijSij )
1/2. The local energy dissipation rate is given

by the strain-rate magnitude, ε(x) = 2ν|s(x)|2, where ν is the kinematic viscosity. On
average, vorticity and strain rate balance, ω′2 = 2s ′2 = 〈ε〉/ν, where the primes denote
the root-mean-square of the fluctuations and 〈ε〉 is the mean dissipation rate.
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Figure 1. Probability density functions of the normalized vorticity |ω|/ω′( ), and of the
strain rate |s|/s ′( ).

Probability density functions (p.d.f.s) for the normalized vorticity and strain rate
fields are shown in figure 1. In the following, thresholds are applied to these fields,
and the statistical and geometrical properties of the resulting sets are studied. For
the thresholds |ω| � ω′ and |s| � s ′, the resulting sets of typical fluctuations represent
25% to 30% of the whole field. Thresholds up to 13ω′ for the vorticity field, and 8s ′

for the strain field, have been applied, selecting volume fractions larger than about
2 × 10−5 (about 103 points per field).

3. Global box counting of the intense regions
We begin by applying the classical method of box counting to the sets of points of

intense vorticity and strain-rate magnitude. Each set is defined by

α(x) � τ, (3.1)

where τ is a dimensionless threshold, and α stands for either one of the normalized
fields |ω|/ω′ or |s|/s ′. The computational domain is divided into cubical boxes of side
r , and the number Nα(r; τ ) of boxes containing some point of the set is counted.
For convenience, the box sizes r are chosen as 2−nL, where L =512 is the number
of collocation points along each direction of the numerical fields, and the integer n

ranges from 0 to 9.
In the case of a pure fractal set of dimension Dα the number of boxes would follow

a power law Nα(r) ∼ r−Dα . In real systems this relation only holds in a restricted range
of scales between a large- and a small-scale cutoff. If we define a local dimensional
exponent as the logarithmic slope

Dα(r) = −d lnNα(r)

d ln r
, (3.2)

the fractal range can be defined as those scales over which this slope is approximately
constant.

Figure 2 shows box counts for the sets of points of high vorticity and of high
strain, Nω(r) and Ns(r), for different values of the threshold τ . The curves in the
figure are averages over the two fields. The results obtained for the two fields were
found to be consistent, except for the highest values of the threshold (|ω| � 12ω′ and
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Figure 2. Number of boxes of size r covering the sets: (a) |ω|/ω′ � τ , with 	, τ = 1; �, τ =2;
�, τ = 4; �, τ = 8; �, τ = 12; (b) |s|/s ′ � τ , with 	, τ = 1.4; �, τ = 2.8; �, τ =4.2; �, τ =5.7;
�, τ = 7.1. The resolution limit of the simulation corresponds to the first data point, r/η � π/2.
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Figure 3. Local exponent Dω(r) of the box counts plotted in figure 2(a). Symbols
are as in that figure.

|s| � 7s ′), where noticeable deviations were observed. For such very high thresholds,
these deviations are found to be of the order of, or even larger than, the expected
standard deviation

√
Nα for each field, reflecting the important temporal variability

of the small-scale intermittency. The deviations remained smaller than the symbol
size used in figure 2 however, and are not shown.

The behaviour of the two sets of curves Nω(r) and Ns(r) is qualitatively the same.
There is in both cases a continuous evolution with the threshold, and none of the
curves displays a real power-law range, except for the trivial scaling Nα(r) ∼ r−3 at
large box sizes. This can be seen more clearly in figure 3, where the local exponent
Dω(r) is plotted in the case of the vorticity field. The error bars in this figure are
determined as the difference between the two flow fields used in the analysis. The
highest threshold (τ = 12), for which the scatter of the local exponent is comparable to
the exponent itself, is not included in the figure. For all the other thresholds the slopes
approach Dω(r) = 3 as r → L, in which case both the high-dissipation and the high-
enstrophy sets look like a single solid object. At the small-scale end, r ≈ η, the curves
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Figure 4. Minimum of the local slope of Nα(r), as a function of the threshold τ .
�, |ω|/ω′; �, |s|/s ′.

for Dω(r) also increase, reflecting the compactness of the objects at scales which are
small enough for viscous effects to be important. For r � η both sets should look like
collections of small solid volumes, and one should expect Dω(r) to tend towards 3.
For intermediate scales, Dω(r) has a minimum, which we will denote D∗

ω, and which
is more pronounced for high values of the threshold τ . Similar results are obtained
for the strain rate.

In the ideal case of objects distributed in space with a fractal dimension D, we
should expect D∗

α → D in the limit of very large scale separation (η � r � L). For
finite scale separation, both the large- and the small-scale contamination tend to
increase the observed minimum D∗

α , which therefore only represents an upper bound
for the possible fractal dimension. This minimum slope is plotted in figure 4 as a
function of the threshold τ for the two fields α = |ω|/ω′ and |s|/s ′. It can be accurately
measured for thresholds up to τ � 11 in the case of the vorticity, and τ � 8 for the
strain, beyond which the number of points in each field falls below approximately
103 (see figure 1).

Figure 4 shows that the sets with τ � 1, which are associated with typical
fluctuations, have dimensions between 2 and 3. Estimates of these dimensions may be
obtained by computing the average of the dimensions D∗

α weighted by the probability
density functions p(τ ) of the vorticity and strain-rate fields,

〈D∗
α〉 =

∫ ∞

0

p(τ ) D∗
α dτ, (3.3)

yielding 〈D∗
s 〉 � 2.6 and 〈D∗

ω〉 � 2.5. These numbers may be interpreted as global fractal
dimensions of the strain-rate and vorticity fields, and are in qualitative agreement
with the estimates of the fractal dimension of the dissipation field mentioned in
the introduction. Both D∗

ω and D∗
s decrease in a similar way as the threshold

increases, and neither of them shows a plateau on which to define a threshold-
independent dimension. At the highest measurable thresholds the two exponents are
D∗

ω � 0.22 ± 0.16 and D∗
s � 0.20 ± 0.20, and it is not clear from the figure whether they

would eventually vanish, or whether they would saturate at some non-zero value. This
is a delicate issue, since very high thresholds only select a few scattered points, which
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Figure 5. (a) Comparison of the box counts: �, Nω(r) for the set |ω| � 7ω′; , N0(r) for
a Poisson set of balls of same volume. (b) Corresponding local slopes Dω(r) and D0(r).

can lead to a spurious zero dimension. It is crucial to determine D∗
α only from sets

for which we have enough statistics to avoid this artifact.

3.1. Comparison with Poisson sets

To help us interpret the statistics of figure 2 it is useful to compare them with those
of sets of known geometric properties. Consider first a set of N Poisson-distributed
points in a cube of volume L3. There is no clustering in such a set, and the mean
distance between points is given by r0 = L/N1/3. The probability of finding an empty
box of size r is given by the Poisson expectation exp[−(r/r0)

3] and, since the total
number of boxes is (L/r)3, the expected number of boxes needed to cover the set is

N0(r) =

(
L

r

)3

(1 − exp[−(r/r0)
3]). (3.4)

If instead of points we consider balls of radius δ, where δ is expected to be of the order
of the Kolmogorov scale, the probability of a box being empty has to be replaced by
exp[−(r + δ)3/r3

0 ], and the expected number of covering boxes becomes

N0(r) =

(
L

r

)3 (
1 − exp

[
−(r + δ)3/r3

0

])
. (3.5)

The logarithmic slope, D0(r) = −d lnN0/d ln r , is

D0(r) = 3

(
1 +

r(r + δ)2

r3
0

1

1 − exp
[
(r + δ)3/r3

0

]
)

. (3.6)

We recover the limit D0 = 3 both when r � δ, where the set looks like a set of
individual solid balls, and when r � r0, where it looks like a single solid object. The
local dimension decreases at intermediate scales and, in the case r0/δ � 1 of very large
scale separation, reaches D0(r) → 0, as expected for a set of independent points. If the
scale separation r0/δ is large but finite, this limit is never reached, and the crossover
effect of the inner and outer cutoffs leads to a non-zero minimum dimension, which
can easily be shown to be

Dmin ≈ 4.4 (δ/r0)
3/4 at r/δ ≈ 0.9 (r0/δ)

3/4, (3.7)

if r0/δ � 10.
Figure 5(a) compares the box counts Nω(r) for the high-vorticity set above τ =7,

with the box counts N0(r) of a Poisson set of the same volume. The corresponding
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local slopes are shown in figure 5(b). The parameter δ used in (3.5) for this figure
was determined using the constraint that the two sets have the same volume, i.e.
N0(r) � Nα(r) for r � η. We obtain in this case δ � 1.8η, which is physically reasonable
and of the order of the numerical resolution of the data.

Figure 5 shows that the experimental box counts are not described well by the
assumption of Poisson-distributed balls. The decrease of the local slope is much
steeper in the case of the Poisson set, and the minimum is more pronounced. The
number of covering boxes Nω(r) is found to be significantly smaller than N0(r) for
the central range 10η < r < 200η, implying that the regions of high vorticity are
concentrated in a smaller fraction of space than the random balls.

At this point, a naive conclusion could be that intense regions are more clustered
than Poisson sets. However, it is crucial to distinguish between two different aspects
of this apparent clustering. Firstly, the points in our sets belong to structures which
probably cannot be described as spherical balls and, secondly, those structures may
themselves be clustered in space. Thinking of tubes or sheets as collections of adjacent
balls leads to trivial clustering effects, but says nothing about the clustering of the
tubes or the sheets themselves, while fractally clustered point sets may give the same
box counts as sets of Poisson-distributed structures of a particular geometry, even if
no such structures exist. The classical box-counting method described above is unable
to distinguish between those two aspects, and we will next seek to refine it by dividing
it into two steps. In § 4 we study the geometry of individual structures, and in § 5 their
spatial distribution.

4. Individual structures
4.1. Definition and visualization

We define a structure as a connected volume such that α(x) � τ , i.e. a set of adjacent
points satisfying the thresholding criterion. The resulting set of structures obviously
depends on the value of the threshold. Decreasing τ merges previously disconnected
sets of points, and increasing τ breaks larger structures into disconnected smaller
parts.

For a given threshold we construct a list of individual structures using the following
scanning procedure. All the points satisfying α(x) � τ are successively visited, and
added to an already existing structure containing a neighbouring point, if any exists.
Neighbours are defined as the 26 ( = 33 − 1) points on the faces and corners of the
3 × 3 cube surrounding the point. During this procedure, when a point is found to
belong to two or more structures, those structures are merged. When all the points
have been visited, the structures are sorted by size, i.e. by the number of points they
contain.

Examples of structures of intense vorticity and of high strain rate are shown in
figures 6 and 7. For moderate vorticity thresholds, up to 4ω′, the largest selected
objects are mainly bundles of tubes, with frequent occurrence of patterns such as
the one shown in figure 6(a), consisting of a large tube surrounded by smaller ones
wrapped around it. Such a pattern probably results from the interaction of an intense
vortex tube with adjacent weaker tubes, but they are also visually similar to the twisted
secondary filaments resulting from the bursting of large-scale filaments (Douady et al.
1991; Cadot et al. 1995). However, distinguishing those two possible origins would
require following the structures in time, which is beyond the possibilities of the present
data set. The objects of smaller volume found at this moderate threshold, |ω| � 4ω′,
are individual tubes, sheets and ribbons, as in figure 6(b). Higher vorticity thresholds,
4ω′ − 8ω′, produce mainly individual tubes like the one shown in figure 6(c). Even
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(a)
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Figure 6. Structures of intense vorticity. (a) Big structure with |ω| � 3ω′. (b) Small structure
with |ω| � 3ω′. (c) Big structure with |ω| � 6ω′.

(a) (b)

Figure 7. Structures of intense strain. (a) |s| � 2.8s ′. (b) |s| � 4.2s ′.

higher thresholds only show smaller tubes, probably parts of the larger ones observed
at lower thresholds, but no sheets or ribbons.

The visual appearance of objects of high strain rate is quite different. For low
thresholds, 2s ′ − 3s ′, the selected objects do not show any simple geometry. They
look like intricate sponge-like objects, or as assemblies of sheets and ribbons like the
one in figure 7(a). Increasing the threshold up to 6s ′ results in structures more like
isolated sheets or ribbons, as in figure 7(b), somewhat similar to the ones observed in
the vorticity field at moderate thresholds (figure 6b).
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Figure 8. 	, Maximum volume and �, mean volume of the intense vorticity structures as a
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Figure 8 shows the mean volume V and the maximum volume Vmax of the
intense vorticity structures as a function of the threshold. The total volume of
the structures, given by the cumulative probability P {|ω| � τω′} is also plotted. For
the most intense structures, |ω| � 6ω′, the mean volume is approximately constant,
V � 100η3 (corresponding to a mean characteristic length scale ∼ 5η), while the largest
structure represents about 10–20% of the total volume above that threshold. At lower
thresholds, the small disconnected structures tend to merge, and the set consists of
a smaller number of larger objects. This trend becomes rather sharp for thresholds
around τ � 3, and almost all the vorticity concentrates into a single giant structure at
τ � 2. Its volume is around 4% of the whole field. This phenomenon is analogous to a
percolation transition, where an ‘infinite’ cluster appears above a critical density. The
percolation density observed here, 0.04, is rather lower than the critical density 0.245
for classical site percolation in three-dimensional body-centred cubic lattices (Stauffer
& Aharony 1990), although the non-spherical shape of the vorticity structures may
explain this discrepancy. The percolation density for sets of overlapping prolate
ellipsoids was studied by Garboczi et al. (1995), and that for hemispherically capped
cylinders by Néda, Florian & Brechet (1999). Both groups found that, for elongated
objects, the critical density varies approximately as the inverse of the aspect ratio,
and that the density observed above would correspond to aspect ratios of the order
of 10:1. This estimate is not too far from the vortex shapes found below, in § 4.3,
by purely geometric methods. In this section we concern ourselves with the study of
individual structures, and therefore only with thresholds above the percolation limit
τ > 2.

The distributions p(V ) of the volumes of individual structures are shown in
figure 9, normalized by the elementary Kolmogorov volume η3. They have been
computed using logarithmic bins to ensure an acceptable number of events in the
bins corresponding to the highest volumes. These volume distributions show little
dependence on the threshold, both for vorticity and for strain-rate structures. The
tails of these distributions are found to decay approximately as p(V ) ∼ V −2, suggesting
self-similarity in the structures’ shape. Similar behaviour has been noted by Sanada
(1991) from numerical simulations, for much smaller structure volumes. Since the
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Figure 9. Probability density functions of the volume of the structures. (a) Intense vorticity:
	, τ = 2; �, τ = 4; �, τ = 8; �, τ = 12. (b) Intense strain rate: 	, τ = 1.8; �, τ = 3.5; �, τ =5.3;
�, τ = 7.1.

intense structures are parts of the weaker ones, this similarity indicates that the large-
scale weak structures and their small-scale intense parts share similar geometrical
properties. This similarity breaks down for small volumes, V <Vmin � (5η)3 � 100η3,
where viscous effects become important. This means that the constant mean volume
V � 100η3, observed in figure 8 for τ > 6, is dominated by the small-scale cutoff of
the volume distribution, as expected for a power-law distribution.

4.2. Box counting for the individual structures

Before considering the spatial distribution of the structures and its contribution to
the global box-counting statistics, it is interesting to look at the contribution of the
individual structures. In order to define the individual box-count Nα,i(r) of the ith
structure, we extract it from the whole field, place it in the smallest embedding cube of
size 2−nL and apply the box-counting method following the same procedure described
above.

If the structures had simple geometrical properties, we would obtain power laws
for the individual box counts Nα,i(r). For instance, ideal tubes with radii of order
η and lengths 
 � η would give N(r) ∼ r−1 in the ‘inertial’ range η � r � 
, while
N(r) would behave as r−3 in the dissipative range r � η, and as N(r) ∼ r0 at larger
scales r � 
. Likewise, flat sheets of size 
 and thickness η would give N(r) ∼ r−2 for
η � r � 
. This picture is obviously oversimplified, since we should not expect such
ideal objects in a turbulent flow, nor such ideal scale separations at the moderate
Reynolds number considered here, but we will nevertheless use the mean logarithmic
slope of Nα,i(r) as a rough measure of the dimensionality of each structure.

Figure 10 shows the box counts Nω,i(r) for the four largest vorticity structures
at two different thresholds. They have reasonably well-defined slopes, which appear
to be slightly shallower for the higher thresholds, suggesting that stronger vorticity
structures are more elongated than weaker ones. To test this statistically we compute
p.d.f.s for the individual fractal dimensions, which are defined for each structure as the
mean logarithmic slope, Dα,i , obtained by fitting its box-count Nα,i(r) ∼ r−Dα,i in the
range 6η < r < rmax . The lower bound, 6η (see the vertical arrow in figure 10), is chosen
so that Dα,i is not affected too much by the small-scale trend towards Dα,i(r) = 3,
while the upper bound rmax is the largest scale before the statistics becomes noisy,
and is chosen so that Nα,i(rmax) � 10.
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Figure 11. (a) Probability density functions for the mean exponent Dω,i , defined from the box
counting of individual structures. �, τ = 2; �, τ = 5; �, τ = 8. (b) As (a) but for Ds . �, τ = 1.5;
�, τ = 3.5; �, τ = 5.

The probability density functions of Dω,i and Ds,i are shown in figure 11 for three
values of the threshold, while figure 12 displays the mean exponents

〈Dα〉 =
1

n

n∑
i=1

Dα,i (4.1)

where the summation is over all the structures defined for a given threshold. The
distributions have widths of the order of 0.5, reflecting the variability of the structures.

The mean exponent of the strain structures remains approximately constant,
〈Ds〉 ≈ 1.7 ± 0.1. On the other hand, the vorticity exponent 〈Dω〉 decreases roughly
linearly, from about 1.7 for the lowest thresholds to approximately 1.1 ± 0.1 for the
highest ones. There is little indication from this behaviour of a preferred fractal
dimension for the vorticity structures, but the p.d.f.s in figure 11(a) show that the
distributions crowd towards Dω = 1 as the threshold increases, in agreement with
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Figure 12. Mean value of Dω (�) and Ds (�) averaged over the structures set as a function
of the threshold. The lines are linear fits.

the visual observations of strong filamentary vortices. Note however that Dω = 1
is an algorithmic lower limit for our identification procedure, as well as for visual
observations. Structures which are more sparse than lines are not recognized as
connected, and are not counted as single objects.

The link between global and individual box-counting statistics is complex. For
levels of dissipation and vorticity near the percolation limit, the typical distance r0

between the structures is of the order of, or even smaller than, their characteristic
size. These structures appear as inter-penetrating objects, and the issue of their spatial
distribution is not relevant. In this case, the global box-count reflects the overall
pattern, rather than the individual contributions Nα,i(r). On the other hand, in the
limit of high thresholds the structures are small and far from each other, and their
embedding cubes do not overlap. In that case, the global box-count for r � r0 is
simply the sum of the individual box-counts,

Nα(r) =
∑

i

Nα,i(r). (4.2)

Even in this limit the relation between the dimensional exponents of the individual
structures and that of the global set is not straightforward. Consider for example the
case of a fractal ‘dust’ in which each ‘particle’ is a short segment of an infinitesimally
thin filament. The dimension of the individual structures would in that case be Ds =1,
but the global exponent would be determined by the distribution and sizes of the
segments.

Consider in general a set of self-affine structures whose individual dimension is
Ds , each of which is characterized by a ‘size’ R, such as the linear dimension of its
embedding cube. Neglect for the moment the interactions between boxes belonging
to different structures, and denote by n(R) dR the number of structures whose sizes
are in (R, R + dR). The box count at resolution r has two parts. Those structures
with R > r contribute according to their individual exponents, with a box count

Ns(r) =

∫ ∞

r

(R/r)Ds n(R) dR, (4.3)
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Figure 13. (a) Local scaling exponents Dω(r) of the vorticity structures, for different intensity
thresholds. , Estimated from (4.5)–(4.7); , from actual box counts, as in figure 3.
(b) Fraction of the box count coming from the point component, Np in (4.7). Symbols as in
figure 2(a).

while those with R � r are counted as single points. The box count from those ‘point’
structures is

Np(r) =
NT − Ns

NT

∫ r

0

n(R) dR, (4.4)

where NT (r) = (L/r)3 is the total number of boxes of size r , and the factor in front
of the integral accounts for some of the points being contained in boxes already
associated with larger structures. The total box count would be

N(r) = Ns(r) + Np(r). (4.5)

A slightly better approximation, which assumes that boxes from different structures
overlap as if they belonged to a Poisson set, is

Ns(r)

NT

= 1 − exp

[
−N−1

T

∫ ∞

r

(R/r)Ds n(R) dR

]
, (4.6)

and
Np(r)

NT − Ns(r)
= 1 − exp

[
−N−1

T

∫ r

0

n(R) dR

]
. (4.7)

The exponents in the right-hand side of these equations are the volume fractions that
would be filled by all the independent covering sets for all the structures in each class,
and the effect of overlapping boxes is represented by the exponentials.

Depending on the distribution of the sizes of the structures, the ‘point’ term may
dominate the final box count. If for example n(R) ∼ R−α , with α � 1, the integral in
(4.7) diverges at R → 0, and N(r) = NT ∼ r3. The fractal dimension of the set is then
D = 3, independently of the characteristics of the individual structures. If on the other
hand there is a small-scale cutoff for the size of individual structures, so that the
integral vanishes as r → 0, the fractal dimension of the set tends asymptotically to
the mean value, 〈Ds〉, of the exponents of the individual structures. At intermediate
box sizes the relative magnitude of the contributions from structures larger or smaller
than r depends on the details of n(R), but the local exponent is in general different
from 〈Ds〉.

The result of applying this approximation to the vorticity structures in our data set
is shown in figure 13(a), where R is chosen as the outer scale r3 defined in the next
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section, and the integral in (4.6) is computed from the actual box counts. Considering
the crudeness of the Poisson assumption used to derive (4.6) and (4.7), the agreement
with the dimensions in figure 3 is reassuring. Figure 13(b) shows the fraction of the
total box count which is due to ‘point’ structures. Except for relatively low vorticity
thresholds, or for very small boxes, it is seen that the total box count reflects the
distribution of the sizes of the ‘point’ structures, rather than their individual shapes.
The conclusion is that the overall fractal dimensions of the vorticity and of the strain
fields are essentially independent of the properties of their individual structures, and
that those properties have to be studied by other means.

4.3. Geometry of the structures

The mean exponents defined above only provide a rough measure of the shape of
the structures, especially since, as noted above, the scale separation in our data is
not enough for such similarity methods to reliably characterize the geometry. Other
quantities, such as individual aspect ratios, further constrain the characterization.

For that purpose we use a set of three characteristic lengths for each structure,
r1 � r2 � r3, such that the structure volume is V = r1r2r3. The outer scale r3 is defined
as the size of the smallest embedding box, which characterizes the largest extent
of the structure. The inner scale r1 is related to the size of the largest cube that
is entirely embedded in the structure, and can be conveniently computed from the
inner coverage fraction (Catrakis & Dimotakis 1996, 1999). The exact procedure is
described in detail in the Appendix. Finally, the intermediate scale r2 is obtained as
V/(r1r3).

In the case of ideal objects the meaning of these three lengths is straightforward.
For ideal tubes, r1 � r2 give the tube diameter, whereas r3 corresponds to its length.
For sheets or ribbons, r1 gives the thickness, while r2 and r3 are the intermediate
and largest dimensions. For more complex objects, such as the ones observed at low
vorticities or strain rates in figures 6 and 7, the three scales do not have a clear
geometrical interpretation, but they still provide useful indications of the shape of the
objects.

Since the volume of the structures depends on the threshold (see figure 8), it is
convenient to characterize their geometry by the two dimensionless aspect ratios
(r1/r2, r2/r3). These parameters take extreme values in the case of ideal objects:
very long tubes give (r1/r2, r2/r3) � (1, 0), while thin sheets are associated with
(0, 1) and spherical blobs with (1, 1). As an example, the vortex tube shown in
figure 6(b) has r1 � 5.9η, r2 � 6.3η and r3 � 200η. The corresponding aspect ratios are
(r1/r2, r2/r3) � (0.94, 0.03), which are very close to the (1, 0) of an ideal tube. The
high-strain ribbon of figure 7(b) has r1 � 5.0η, r2 � 16η and r3 � 74η, corresponding to
aspect ratios (0.32, 0.21). As a comparison, one obtains (0.09, 0.24) for the bundle of
tubes in figure 6(a), and (0.19, 0.34) for the moderate-strain structure in figure 7(a).

Figure 14 shows the aspect ratios for vorticity and strain-rate structures with
different thresholds. Each point is the average of the set of aspect ratios
(〈r1/r2〉, 〈r2/r3〉) of the structures defined with a given threshold, weighted by the
structure volumes. The arrows indicate increasing thresholds in the same range as in
figure 12.

Even at low thresholds, the aspect ratios of both the strain-rate and vorticity
structures take values far from the spherical blob case (1, 1). They evolve towards
larger 〈r1/r2〉 and smaller 〈r2/r3〉 as the threshold increases, indicating that intense
structures are flatter and more elongated than weaker ones. In terms of the aspect
ratios, the strain structures evolve from 1:5:8 (flat sheets) at low threshold towards
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Figure 14. Mean aspect ratios r1/r2 and r2/r3 for the vorticity (�) and strain-rate (�)
structures. The arrows indicate increasing threshold, in the same range as in figure 12. The
sketches in the corners illustrate the extreme cases: sphere (1, 1), tube (1, 0), ribbon (0, 0) and
square sheet (0, 1).

1:2:8 (ribbons) at high threshold. Weak vorticity structures have aspect ratios 1:2:8,
comparable to intense strain structures, while stronger vorticity structures evolve
towards long tubes with 1:1:10.

These observations are consistent with the trends obtained for the mean slopes of
the box countings of individual structures (figure 12). Weak and intense dissipative
structures share the same mean exponent 〈Ds〉 � 1.7 ± 0.1, which is a reasonable
dimension for short ribbons or elongated sheets. Similarly, the decrease of the mean
exponent of the vorticity structures, from 〈Dω〉 � 1.7 down to 1.1 ± 0.1, is consistent
with the evolution of the shapes from ribbons towards long tubes.

5. Clustering of intense structures
We have shown in the previous section that the global box-counting statistics of

intense vorticity and strain-rate levels may be partially described by the geometry
of the individual structures. In this section we focus on the contribution due to the
spatial distribution of the structures themselves. For this, we replace each structure
by a single point located at its baricentre, and apply the box-counting method to the
resulting point sets.

Figure 15 shows the box counts for the set of baricentres of the intense vorticity
and strain structures, Nα,b(r), for two values of the threshold. As usual, the scaling
Nb(r) ∼ r−3 for r → L denotes the homogenous covering of space at large scales. At
small scales, Nb(r) saturates at the total number of structures, and the corresponding
local exponent vanishes, as expected for a set of points. The cross-over between the
small-scale plateau and the large-scale behaviour occurs at the typical distance r0

between structures.
Since we are dealing now with point sets, it is natural to compare their box counts

with those for Poisson sets, as given by (3.4). Here again, the mean distance r0
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Figure 16. Clustering fraction (5.1), computed from the box counts of figure 15. (a) Vorticity
baricentres, (b) strain-rate baricentres. Symbols are as in figure 15.

between points is fixed by the constraint N0(r) = Nb(r) for r → 0, i.e. the two sets must
contain the same number of points. The corresponding Poisson curves are included
in figure 15. For intermediate scales around 100η the baricentre box counting Nb(r)
is well below the Poisson law, both for the vorticity and for the strain structures,
indicating that the points are concentrated in a smaller fraction of space than in the
random set. This departure can be characterized by the clustering fraction,

cα(r) =
N0(r) − Nα,b(r)

N0(r)
, (5.1)

defined as the relative fraction of space left empty by the boxes covering the set
of baricentres. According to this definition, a Poisson set of points has a clustering
fraction of 0, i.e. no clustering. A Poisson set of points confined to a smaller volume
δ3 would have cα(r) = 0 for r � δ/N1/3 (no clustering) and cα(r) � 1 − (δ/L)3 for r � δ

(strong clustering). In the case of points sets in a finite box, there is a third range as
r → L, in which both counts tend to N =1, and c vanishes again.

The clustering fractions of the intense vorticity and strain-rate structures are plotted
in figure 16 for the same values of the threshold as in figure 15. The error bars are
determined from those of Nα,b. The clustering fractions are of the same order in both
cases, and peak around 50% for r � 100η–200η: at this scale, the embedding boxes of
the baricentres fill a volume half that for random points. The clustering of the strain
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structures appears slightly more pronounced than that of the vorticity structures, but
the discrepancy is small and falls almost within the error bars.

It is clear from these plots that neither the vorticity nor the strain-rate structures
are distributed randomly. They concentrate into clusters in the range of scales
20η–400η, corresponding roughly to the inertial range. Furthermore, the scale where
maximum clustering occurs appears to shift slightly towards larger values as the
threshold increases, suggesting a hierarchical organization of the intense structures.
Note however that there is little evidence in figure 15 of an intermediate power-law
range which would signal a fractal distribution of the baricentres.

6. Concluding remarks
Different box-counting methods have been applied to the set of points of high

vorticity and of high strain rate in isotropic turbulence at Reλ � 168. No clear fractal
behaviour could be isolated from the global box-counting statistics in the inertial
range, probably due to the moderate range of scales available at such a Reynolds
number, but we have argued that the minimum of the logarithmic slope, D∗

α , of the
box counts provides an upper bound for a possible fractal dimension. For typical
fluctuations, |ω| � ω′ and |s| � s ′, one obtains local exponents, D∗

ω � 2.5 and D∗
s � 2.6,

which provide estimates of the fractal dimension of the vorticity and dissipation field.
Note that such a threshold-dependent fractal dimension is only indirectly related to
the multifractal formalism described, for example, by Sreenivasan (1991) or Frisch
(1995). While the latter describes how the velocity increments tend to gradients, the
former describes the coherence of the gradients themselves.

The issue of whether a possible fractal dimension of the intense sets should be
attributed to the geometry of the individual structures, or to some other property
of their spatial organization, has been addressed. For high enough thresholds,
corresponding to volume fractions less than about 4%, the sets of points of intense
vorticity or strain rate split into disconnected individual structures. We have found
that the overall fractal properties of the set depend on contributions from the shape
of the structures, from their size distribution, and from the geometric arrangement
of their baricenters. We have used a variety of techniques to distinguish between the
three contributions, and found that, except for relatively low thresholds or for scales
which are quite close to the Kolmogorov viscous length, the box counts for the full set
are dominated by the size and by the distribution of the structures. The high-threshold
sets behave like fractal dusts. The geometry of the structures themselves cannot be
characterized by global measures and has to be addressed by studying structures
individually.

Moderate and intense strain-rate structures are associated with an individual
dimension Ds � 1.7 ± 0.1, suggesting flat sheets or ribbons. Independently computed
aspect ratios, in the range from 1:5:8 to 1:2:8, are in good agreement with this
dimension. Vorticity structures have a mean individual dimension Dω decreasing
from 1.7 ± 0.1 to 1.1 ± 0.1 as the threshold is increased, indicating moderately strong
structures in the form of ribbons and intense ones in the form of tubes. Here again,
the trend is supported by the observed aspect ratios, which vary from 1:2:8 to 1:1:10.
These findings confirm previous qualitative observations of the shape of the intense
structures in turbulence (e.g. Passot et al. 1995), and quantify the difference between
regions of intense vorticity and of intense dissipation.

Box counts of the structures baricentres give good evidence that the intense
structures are not uniformly distributed in space, but instead concentrated into
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clusters of inertial size. At those scales the baricentres are found to cluster into a
volume half of that if they were randomly distributed. This finding confirms and
quantifies earlier observations from numerical simulations (e.g. Jiménez et al. 1993;
Porter et al. 1997; Hosokawa et al. 1997) or from one-point measurements (Belin
et al. 1996; Camussi & Guj 1999; Mouri et al. 2002).

It is interesting to note that this organization could lead, at higher Reynolds
numbers, to a scale-independent nesting of the intense structures. Ideal self-similar
clustering would lead to power laws in the baricentre box counts and in the clustering
fractions, and the fractal dimension of individual structures at moderate thresholds
should correspond to the fractal dimension of clusters at higher ones. The overall
dimension D∗

α from the global box counting would then describe both the geometry
of the intense structures and the geometry of the embedding regions. The moderate
inertial range present at Reλ � 168 does not allow us to settle this issue, and no fractal
dimension can be isolated from the set of baricentres, but it is to be hoped that the
much higher Reynolds numbers of the recent simulations by Kaneda et al. (2003)
would be able to do so.

The decrease of the global dimension D∗
α as the threshold is increased has important

consequences concerning one-point measurements. For moderate thresholds, τ < 1.7,
both the vorticity and the dissipation fields concentrate into sets of dimension D < 2
(we recall here that, due to cross-over effects, D∗

α only provides an upper bound of
the fractal dimension). The corresponding sets defined from one-dimensional cuts, as
would be obtained from one-point time series with the use of Taylor’s hypothesis,
have negative dimension, and are therefore almost certainly empty. Similarly, sets
obtained from two-dimensional cuts are essentially empty for thresholds τ > 5. Only
the presence of a small-scale cutoff, imposed by the Kolmogorov length scale or
by the probe resolution, ensures that the one-dimensional sections are not empty.
Since the distribution of the lengths of the free intervals δr in such sets only decays as
δr−1−D if their dimension is 0 < D < 1 (Feder 1988), such distributions are not able to
probe the statistics of the sets of reasonably high dissipation or vorticity magnitude.
This observation agrees with the findings of Moisy (2000), where distributions of
free intervals p(δr) ∼ δr−1 between intense velocity derivative are reported for high
enough thresholds (see also similar results by Moisy et al. (2000) concerning the
free intervals between intense scalar fronts). Such a hyperbolic distribution signals
the clustering of intense dissipative objects, without further specifying the possible
associated dimension.

For the highest thresholds, the dimensions D∗
α defined by the minimum local slope

decrease to very low values, around 0.2, with no detectable trend towards a non-zero
limit. However, we cannot conclude from our statistics whether the exponents finally
vanish or saturate to a non-zero value. The situation is the same here for the dissipation
and for the vorticity fields. The issue of possible finite fractal dimension of the highest
levels of dissipation and vorticity is related to saturation of the scaling exponents
for the high-order structure functions of the velocity increments. The observed ever-
increasing behaviour of the measured exponents (Sreenivasan & Antonia 1997) tends
to favour a vanishing fractal dimension for the strongest sets, compatible with our
findings, suggesting that the highest levels are nothing more than isolated objects of
dissipative size. We note here that the situation seems to be different in the case of
the passive scalar, where both finite fractal dimension of the strongest scalar cliffs
(Celani et al. 2000) and saturation of the high-order structure function exponents
(Moisy et al. 2001) are observed. This remarkable difference between dynamical and
passive fields, if confirmed, would be relevant for the understanding of intermittency.
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Appendix. Computation of the inner structure scale
The inner scale r1 of the vorticity and strain structures (§ 4.3) is defined from the

size of the largest box that can be entirely contained within the structure. In order to
compute it, we introduce the inner coverage fraction F (r), defined as

F (r) =
δ3
b − r3N (r)

V
, (A 1)

where V is the volume of the structure, and δb the size of an embedding cube that
fully contains it. N (r) is the box count of the complementary set α < τ , so that
(δb/r)3 − N (r) is the number of boxes of size r that entirely fit into the structure. The
inner coverage fraction then represents the fraction of volume filled by the boxes of
size r that fit into the structure. By construction, F (r) is a decreasing function, with
F (r) → 1 for r → 0, and F (r) = 0 for r � r1. The inner scale may then be defined as
the maximum scale beyond which the inner coverage fraction is strictly zero.

The discretization of the scale as r =2−nL, inherent in the box-counting method,
significantly alters the value of the inner scale towards smaller values. We use here
a somewhat more robust definition which takes into account the way in which F (r)
decreases towards zero as r approaches the size of the largest embedded box. The
new scale r∗ is defined by F (r∗) = 0.1 and computed by linear interpolation of F (r)
between the points before F (r) vanishes (i.e. the set of boxes of size r∗ fills 10% of
the structure volume). This method still introduces a bias which can be estimated
empirically by computing r∗ from a set of ellipsoids of random axes r1 � r2 � r3 (twice
the semiaxes). A best linear fit between the measurement of r∗ and the imposed
smallest axis r1 gives

r∗ � 0.7r1, (A 2)

in the range of r1 between 1 and 10 mesh points. Although the scatter is found to
be important (the linear correlation coefficient is R � 0.9), almost no correlation with
the other axes r2 and r3 is observed, indicating that r∗ is essentially controlled by the
smallest extent r1 of the structure, as expected. Inverting (A 2), we finally define the
inner scale r1 as 1.4 times the scale r∗ for which F (r∗) = 0.1.
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