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Abstract
The spatial distribution of intense structures in isotropic turbulence is studied from numerical and experimental

data. Box-counting of the intense vorticity and strain rate sets gives evidence of a strong clustering at intermediate
scales, from which a possible fractal dimension can be defined. Algebraically distributed free intervals between
intense velocity derivative from experimental time series confirms this self-similar clustering at larger Reynolds
numbers, but without further specifying its dimensionality.
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1. Introduction
Regions of high levels of dissipation and of vorticity in turbulent flows, such as vortex sheets and tubes,

have been observed and characterized for a long time from numerical simulations. They result in highly
non-Gaussian statistics of the velocity increments, which may depend both on the geometry of the individual
structures, on their size distribution and on their spatial distribution at larger scales. Vortex tubes probably
arise from stretched vortex layers formed at earlier time (Passot et al. 1995), and it is in those layers, and in
the periphery of the vortex tubes, that high levels of energy dissipation are concentrated.

Intense objects are often treated as being randomly distributed in space. With this assumption, Hatakeyama
& Kambe (1997) obtained inertial range scaling from an assembly of random Burgers’ vortices. However,
evidence from numerics is inconsistent with a fully random distribution. Worms seem to accumulate in the
interface between largely empty large-scale eddies (Jiménez et al. 1993), leading to an apparent inertial-scale
clustering of intense vortices (Porter, Woodward & Pouquet 1997). Box-counting methods have been used
by Moisy & Jiménez (2004) to further characterize this clustering.

Experimentally, spatial distributions can be inferred from waiting times between intense events recorded
in one-point time series. The results of pressure measurements by Abry et al. (1994) showed algebraically-
distributed waiting times, for inertial separations, between pressure drops marking large coherent vortices,
suggesting self-similar clustering. Belin et al. (1996) and Mouri, Hori & Kawashima (2002) gave evidence,
from one-point velocity time series, of the clustering of intense velocity gradients, which was shown to be
self-similar by Camussi & Guj (1999) and Moisy (2000).
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(a)  |ω| > 3 ω' (b)  |ω| > 6 ω'

(c)  |s| > 2.8 s'

Figure 1. Structures of intense vorticity (a, b) and intense strain rate (c).

2. Box-counting of intense sets from numerical data
Examples of structures of intense vorticity and intense strain rates are shown in figure 1 (Moisy & Jiménez

2004). Here, a structure simply refers to a connected volume satisfying a thresholding criterion, |ω| ≥ τω ′

or |s| ≥ τs′, where the primes denote the rms values, with ω ′2 = 2s′2 = ε/ν (ε is the energy dissipation rate
and ν the kinematic viscosity). These structures have been extracted from numerical simulations of forced
isotropic turbulence at Reλ = 168 (Jiménez et al. 1993). The resolution is 5123 collocation points, with
periodic boundary conditions. The box size is 760η and the integral scale L0 is around 1/4 of the box size,
providing a scale separation of L0/η ' 200.

The vorticity structures essentially show ribbons for moderate thresholds, and long filamentary tubes
(figure 1b) for higher ones. The biggest structures associated to a moderate vorticity threshold show patterns
resulting from the interaction of an intense vortex tube with surrounding weaker tubes, as in figure 1a. Very
large thresholds only show smaller tubes, probably parts of the larger ones observed at lower thresholds, but
no sheets or ribbons. The situation is different for the strain rate structures, for which both moderate and
large thresholds show essentially sheets or ribbons. For low thresholds, the selected objects show intricate
sponge-like patterns (figure 1c), or assemblies of sheets and ribbons. Increasing the threshold results in
structures more like isolated sheets or ribbons.

In order to characterize the distribution of these structures in space, we begin by applying the classical
method of box-counting to the sets of points of intense vorticity and strain rate magnitude. The computational
domain is divided into cubical boxes of side r, and the number N(r) of boxes containing some point of the
set is counted. In the case of a pure fractal set of dimension D, the number of boxes would follow a power
law N(r) ∼ r−D. In real systems this relation only holds in a restricted range of scales between a large- and
a small-scale cutoff.

Figure 2 shows box counts for the sets of points of high vorticity, Nω (r), for different values of the threshold.
Similar results are obtained for the box count of the strain rate sets. The curves approach Nω(r) ∼ r−3 as
r → L, in which case both the high-dissipation and the high-enstrophy sets look as a single solid object.
At the small-scale end, r ≈ η, the slopes also increase, reflecting the compactness of the objects at scales
which are small enough for viscous effects to be important. For r � η both sets should look as collections
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Figure 2. Symbols: Number of boxes of size r covering the vorticity sets, for the
thresholds |ω| ≥ 4, 8 and 12 ω′. —, Box counts for sets of Poisson-distributed balls
of the same total volume (data from the numerical simulation).

of small solid volumes, and one should expect the box counts to behave as N(r) ' r−3. For intermediate
scales, η � r � L, the box counts show a continuous evolution with the threshold, and none of the curves
displays a real power-law range.

In order to interpret these box counts, it is of interest to compare them with box counts of sets with no
clustering. If we consider a set of Poisson-distributed balls of radius δ, the expected number of covering
boxes is

N0(r) =

(

L

r

)3
(

1 − exp[−(r + δ)3/r3

0]
)

, (1)

where r0 is the mean distance between the balls. Together with the box-counts of figure 1 are plotted the best
fits given by equation (1), using the constraint that the actual sets and the Poisson sets have the same volume,
i.e. N0(r) ' Nω(r) for r → η. Clearly the actual box counts are not described well by the assumption of
Poisson-distributed balls. The actual number of covering boxes Nω(r) is found to be significantly smaller
than N0(r) for the central range 10η < r < 200η, implying that the regions of high vorticity are concentrated
on a smaller fraction of space than the random balls.

The clustering of the intense vorticity and strain rate sets for intermediate scales can be further characterized
by introducing a local scaling exponent, defined as the logarithmic slope D(r) = − lnN(r)/dr. Since one
must recover the trivial exponent D = 3 at both large and small scales, one may expect the minimum slope,
D∗, to provide a useful measure of the dimensionality of the clustering. In the ideal case of objects distributed
in space with a fractal dimension D, we should expect D∗ → D in the limit of very large scale separation
η � r � L. For finite scale separation, both the large- and the small-scale contamination tend to increase the
observed minimum D∗, which therefore only represents an upper bound for the possible fractal dimension.

This minimum slope D∗ is plotted in figure 3 as a function of the threshold for the vorticity and the
strain rate sets. Both D∗

ω and D∗

s decrease as the threshold increases, and none of them shows a plateau on
which to define a threshold-independent dimension. The sets associated to typical fluctuations, |ω| ' ω ′ and
|s| ' s′, have dimensions of about 2.5, suggesting that regions of typical dissipation and enstrophy levels
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Figure 3. Minimum of the local slope of box counts as a func-
tion of the threshold, for the vorticity (�) and the strain rate (◦)
fields. The intersections of these curves with D = 2 (horizon-
tal dashed line) indicate the thresholds above which sets of neg-
ative dimension are expected from experimental one-point mea-
surements (see § 3).
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Figure 4. Symbols: Number of boxes of size r covering the set
of baricenters of the vorticity structures, for the thresholds |ω| ≥ 6
and 12 ω′. —, Box counts for sets of Poisson-distributed points.

are wrinkled sheets, in qualitative agreement with other indirect estimates (Sreenivasan 1991; Sreenivasan
& Antonia 1997).

Since the vorticity and strain rate sets considered here are a collection of structures as those shown in
figure 1, two contributions are expected for the box counts. For scales smaller or of the order of the structures
size, the box counts essentially describe the geometry and the size distribution of the structures, while for
larger scales the box counts is more sensitive to their spatial distribution. Since we are interested in the
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clustering of the intense structures, one may separate the latter contribution from the global box-counting,
by replacing each structure by a single point located at its baricenter, and applying the box-counting method
to the resulting point sets. This procedure is only valid in the limit of very large threshold, for which the
mean distance between structures is expected to be much larger than the structure size.

Figure 4 shows the box counts Nb(r) for the set of baricentres of the intense vorticity structures for two
values of the threshold. As before, the scaling Nb(r) ∼ r−3 for large scales indicates the homogenous
covering at large scales. At small scales, Nb(r) saturates at the total number of structures, as expected for
a set of points. The cross-over between the small-scale plateau and the large-scale decrease occurs at the
typical distance r0 between structures, which depends on the threshold.

These box-counts may be compared to that of Poisson-distributed points, by taking δ = 0 in equation (1).
As for the global box-counting, the actual curves are well below the Poisson law, indicating that the points
are concentrated in a smaller fraction of space than for the random set. This clustering fraction is maximum
for scales in the inertial range, and takes values around 0.5. Similar results are obtained for the clustering of
intense strain rate structures. One may conclude that the clustering effect shown in figure 2 is not only an
effect of the intense vorticity field being concentrated into structures, but also that the structures themselves
are concentrated into clusters.

3. Clustering of intense events from experimental data
An issue raised by the previous observations in the low Reynolds number numerical simulations is whether

the clustering of intense regions is still present at higher Reynolds number, and whether a range of scales
exists for which this clustering is self-similar.

The decrease of the dimension D∗

α as the threshold is increased in figure 3 has important consequences for
experiments for which only one-point measurements are available. From those measurements, the clustering
of intense regions may be characterized from the distribution of the free intervals between successive intense
events (Belin et al. 1996; Moisy 2000; Mouri, Hori & Kawashima 2002). For a fractal set of points of
dimension 0 < d < 1 with self-similar clustering, the distribution of the free intervals ∆x decays as ∆x−1−d

(Feder 1988). However, for large enough thresholds, figure 3 shows that both the vorticity and the dissipation
fields concentrate into sets of dimension D < 2. As a consequence, the corresponding sets defined from
one-dimensional cuts, as obtained from one-point time series with the use of the Taylor’s hypothesis, should
have a dimension d = D− 2 < 0, and are therefore almost surely empty. Only the presence of a small-scale
cutoff, imposed by the Kolmogorov length scale or by the probe resolution, ensures that the one-dimensional
sections are not empty.

Distributions of the free intervals ∆x between successive intense velocity derivatives have been computed
from experimental time series. The data are from a low temperature helium experiment, in which a large
range of microscale Reynolds numbers can be spanned in very controlled conditions, Reλ from 150 up to
2000 (Zocchi et al. 1994; Moisy, Tabeling & Willaime 1999). The flow takes place in a cylinder and is
driven by two rotating disks equipped with blades, 20 cm in diameter and spaced 13 cm apart. Velocity
measurements were carried out using a hot wire anemometer, and the Taylor hypothesis has been used to
convert temporal fluctuations into spatial ones.

Figure 5 shows the probability density function p(∆x/η) of the free intervals between intense longitudinal
velocity derivative, |∂xu| ≥ τ(∂xu)′, for 3 different values of the threshold τ , for Reλ = 1300. As before,
the prime denotes the rms value, which is related to the mean energy dissipation rate using the assumption of
isotropy, (∂xu)′2 = 2s′2/15 = ε/15ν. Note that, since only the longitudinal component of the velocity can
be measured in the experiment, the intense longitudinal velocity derivatives are expected to trace essentially
the intense strain rate regions rather than the intense vorticity regions. With this approximation, the quantity
(∂xu)2 has been extensively used as a one-dimensional surrogate for the local energy dissipation rate ε(x)
(Sreenivasan 1991).
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Figure 5. Probability density functions of the free intervals between intense velocity
derivative |∂xu| from the experimental time series, for Reλ = 1300. They have been
computed using logarithmic bins to ensure an acceptable number of events in the bins
corresponding to the highest intervals. Thresholds: −−, 2(∂xu)′; . . . , 5(∂xu)′; —,
8(∂xu)′.

For sufficiently large threshold, the pdfs show a clear power law decay over a significant range of scales,
starting from the dissipative range, ∆x ' 3η, up to a large scale cutoff, of order of 103 − 104η, that depends
on the threshold. This algebraic decay confirms that the intense events do not appear randomly in space, but
tend to form self-similar clusters with no characteristic scale. Beyond the large scale cutoff, the pdfs decay
approximately exponentially, indicating statistically uncorrelated events at large scales. The poorly defined
scaling law for moderate threshold probably originates from the increasing contribution from the exponential
decay, that may contaminate intermediate scales.

The exponent µ of the power law decay, p(∆x) ∼ ∆x−µ, is plotted as a function of the threshold τ in
figure 6a. It is found to slightly decrease from values larger than 1, and saturates toward approximately 1
for large threshold. This trend is consistent with the fractal dimension D∗ determined from the numerical
simulations, that takes values less than 2 for large enough threshold (see figure 3). As a consequence, the law
p(∆x) ∼ x−1−d with d = D − 2 does not hold any more for d < 0, and the distributions collapse towards
the single curve p(∆x) ∼ ∆x−1 for sufficiently large threshold. Similar observations have been reported
for the free intervals between intense scalar fronts in turbulent mixing (Moisy et al. 2000).

In figure 6b is plotted the exponent µ∞, obtained in the limit τ � 1, as a function of Reλ, indicating
that the power law p(∆x) ∼ ∆x−1 is robust for sufficiently large Reynolds numbers, Reλ > 400. This
asymptotic exponent µ∞ is found to increase from 0.5 to approximately 1 for Reλ < 400. It must be
noted that values of µ less than 1 for low Reynolds numbers can not be interpreted in the frame of the law
p(∆x) ∼ x−1−d for an exact fractal set of points of dimension d, and probably results from finite scaling
effects.

These experimental distributions confirm that the intense events appear within self-similar clusters, and
cannot be considered as randomly distributed. This is consistent with the clustering of the intense dissipation
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Figure 6a. Exponent µ of the power law from the distri-
bution of free intervals between intense velocity deriva-
tive, p(∆x) ∼ ∆x−µ, as a function the threshold (data
from the figure 5).
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Figure 6b. Exponent µ in the limit of large thresh-
old, τ � 1, as a function of Reλ.

events observed in the low Reynolds numbers simulations, but the one-dimensional cut in the experiment
does not allow to further characterize the dimensionality of this clustering.

4. Discussion and conclusion
Three-dimensional box-counting from numerical simulations, and pdf of free intervals from experiments,

gave evidence that the intense regions in isotropic turbulence, in the form of vortex sheets or tubes, tend
to form clusters of inertial range extent. The dynamics of formation of the small scale structures from the
instability of stretched shear layers at larger scales is probably the reason for this phenomenon. One may
speculate that, for large Reynolds numbers, this process may repeat at different scales, leading to the observed
self-similar clustering.

It is important to note that algebraic distributions for free intervals are not a trivial consequence of the
self-similarity of the velocity field itself. Orey (1970) rigorously established that level sets from a Gaussian
process with a power-law spectrum, E(k) ∼ k−n with 1 < n < 3, lead to fractal set of point of dimension
d = (3 − n)/2. In the case of the Kolmogorov spectrum, n = 5/3, this relation yields d = 2/3, and pdf of
free intervals between iso-values of the velocity should decay as p(∆x) ∼ ∆x−d−1 ∼ ∆x−5/3. Although
turbulent velocity fluctuations are not Gaussian, the experimental results of Praskovsky et al. (1993) and
Scotti, Meneveau & Saddoughi (1995) were in good agreement with Orey’s theorem. However, it is clear
that a fractal velocity field does not imply that the derivative fields are also fractal, and thus provides no
insight into the spatial distribution of intense structures. Orey’s theorem does not hold for the vorticity or
dissipation fields, which have a spectrum k2E(k) ∼ k1/3. For instance, a Gaussian process with power-law
spectrum and random phase has sets of iso-derivatives that are randomly distributed. One may conclude that
the clustering of intense structures with a distribution of free intervals as p(∆x) ∼ ∆x−1 is not a trivial
consequence of the Kolmogorov spectrum, but is a true intermittency effect, that reveals the hierarchical
organization of the small scale structures in turbulence.

The authors are indebted to P. Tabeling and H. Willaime for the use of the experimental data and for fruitful
discussions.
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