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Abstract. This paper is devoted to a numerical and experimental study of the
3D flow in a cylindrical cavity of large radius-to-height aspect ratio whose top and
bottom lids are rotating in opposite directions. This counter rotation gives rise to a
new type of instability pattern, referred as negative spirals. Comparisons between
numerical and experimental results give evidence that a free shear layer instability
is responsible for this new pattern.

1 Introduction

The flows between rotating disks, or von Kdrmén swirling flows, occur in a
variety of situations, and have been studied since a long time. The stability of
these flows received considerable interest, mostly in the rotor-stator configu-
ration [5,6,2] (i.e. between one rotating disk and one stationary disk), and it
is only recently that 3D numerical simulations for moderate radius-to-height
aspect ratio I' = Rg/H became available [7]. These studies focused on the
boundary layer instabilities, leading to spiral or circular waves.

In this study, it is shown that in the case of counter—rotating disks, an-
other type of instability may also occur. The pattern associated to this new
instability received the name of negative spirals [3], since they roll up to
the center in the direction of the slower disk. Similar patterns have been
reported for smaller aspect ratio, I' = 2 [11], and were attributed to a free
shear layer instability. The influence of the aspect ratio have been recently
studied experimentally [4].

The configuration is defined in figure 1. The flow is characterized by three
non dimensional parameters:
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The set of parameters (Reg, s, ") may be also used for convenience, where
s = {2 /12 is the counter-rotation ratio (|s| < 1 in the present study).
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Fig. 1. Geometry of the flow between rotating disks. The lateral endwall rotates
with the upper disk.

2 The numerical method

The numerical method is described in [8] and has the following main ingre-
dients:

Time discretization: A second order time marching procedure is used with an
implicit discretization of the linear terms and an explicit Adams-Bashforth
type extrapolation of the non linear terms. In the resulting discrete problem
to be solved at each time step, the velocity—pressure coupling is handled by
means of an incremental projection method [10].

Spatial discretization: In the previously time discretized system, the different
unknowns are first expanded in truncated Fourier series over N modes in the
azimuthal direction. The coefficients of this expansion are discretized in the
(r, z) planes by means of mimetic finite difference operators [9]:

e A classical staggered uniform grid in cylindrical coordinates (r,8, z) is
used. Noteworthy is the fact that the only unknown located on the axis
r = 0, is the axial component ( of the vorticity.

e The space H of the discrete vectors and the space H of the discrete scalar
functions are equipped with inner products <, >4¢ and <, >y derived
from the I inner products of the continuum case,

e The first order differential operators divergence and curl, are discretized
by means of the Gauss and Stokes theorems written on elementary cells,

e The discrete gradient operator is defined as the negative adjoint of the
discrete divergence operator with respect to the discrete inner products.

e The second order differential operators are built as compounds of first
order discrete operators, therefore ensuring that the Laplace operators
are self adjoint. This fact, together with the use of a staggered grid,
ensures that the discrete problem to be solved at each time step is well
posed,

e The non linear terms are written as (V X v) x v and discretized in order
that < v, (V x v) x v >g9= 0, therefore ensuring kinetic energy con-
servation. As usual, they are computed in the physical space with the
classical 3/2 rule.
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3 Experimental results

The experimental set-up, described in detail in Ref. [3,4], consists in a rotating
cylinder of radius R = 140 mm, in which a disk of same radius rotates at a
different speed. In this paper we are only concerned with the counter-rotation
case, where the faster disk is the top one (|£2¢] > |£2|). The working fluid
is a mixture of water and glycerol of kinematic viscosity lying in the range
1.0 x 107¢ < v < 4 x 1075 m?/s at 20°C. Qualitative insight of the flow
structure is obtained from visualization of the light reflected by anisotropic
flakes seeding the flow (Kalliroscope). The flow is illuminated by a concentric
circular light source, and pictures are obtained using a CCD camera located
along the disks axis.

(a) (b)

Fig. 2. Examples of patterns observed between rotating disks. (a) m = 4, (b) m = 5.

At high enough Reynolds numbers, the counter-rotating flow gives rise
to instability patterns such as the ones shown in figure 2. They consist in a
circular chain of vortices surrounded by a set of spirals (negative spirals [3]).
Depending on the mode and the aspect ratio, only the circular chain of eddies
or the negative spirals may be observed. High aspect ratios R/h and/or low
mode essentially leads to eddies, while lower aspect ratios and/or higher
modes mostly show negative spirals. Intermediate modes, roughly between 4
and 7, usually shows a combination of the two aspects of the pattern.

The stability curve of these patterns is shown in figure 3 for different as-
pect ratios. These curves are obtained by slowly increasing the bottom disk
angular velocity (2 at fixed value of (2. No hysteresis is observed within
our experimental uncertainty, around 3%. When plotted as functions of the
Reynolds numbers (I'Re;, 'Rep), the different curves appear to collapse into
a single master curve. The fact that the chain of vortices and negative spi-
rals share the same onset curve indicate that they both arise from the same
instability mechanism, although the nonlinear saturation leads to very dif-
ferent morphology. We note that at high Reynolds number, the onset is well
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described by a single non dimensional parameter, the counter-rotation ratio

s= T o 0135+ 0.010.
Ret

However, at lower Reynolds numbers, this linear curve appears to saturate
towards a finite bottom Reynolds number,

I'Rep ~ —230 + 20.
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Fig. 3. Stability curve of negative spirals for aspect ratios I' = R/h = 6.1 (V), 7.0
(0), 10.8 (), 14.0 (x) and 20.9 (+).

The collapse of the curves for different aspect ratios gives indication for the
mechanism responsible of the instability, because the shear and the boundary
layers behave differently when R/h is varied. Assuming that the growth rate
is controlled by the shear S ~ 2R/h, damped by viscous diffusion on a time
scale 7, ~ h? /v, this leads to the natural control parameter S7, = 2Rh/v =
I'Re. So the master curve obtained in figure 3 suggests that a shear layer
instability is responsible for the different patterns observed in figure 2.

4 Numerical results

The numerical results reported here have been obtained for I' =7, s = —0.14
and Re; = 250 on a 400x 100 grid in the (r, z) variables and 32 Fourier modes
in the azimuthal direction. The time step was taken equal to 1/500 revolu-
tion time. In figure 4, contours in the plane z = H/2 of the axial velocity
component are shown for I" = 7; I'Re; = 1750; I'Rep, = 260. The essential
features of the experiments are recovered: existence of a mode m = 4 with
surrounding negative spirals. Other calculations for a slightly different Rey
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Fig. 4. Contours of the axial velocity Fig. 5. Isosurface w = 0.0354 of the
component in the plane z = 0.2H ; axial velocity ; I' = 7 ; Re; = 250 ;
I'=7; Re; =250 ; Rep = 37 Rep, = 41

have been performed, showing the existence of a dominant m = 5 mode (see
figure 5). Additional calculations ( not reported here) have shown that for
a further decrease of Rep down to 252, the flow reverts to a steady axisym-
metric regime, in excellent agreement with the experimental stability curve
in figure 3.

Further insight into the mechanism of this instability can be achieved from
these computations. As first noted by [1], at high enough counter-rotation
ratio (roughly |s| > 0.1), the meridional flow gets organized into a two-cell
recirculating flow. The competition between the centrifugal effects of each
disk leads to the formation of a stagnation ring on the slower disk. This
important property of the counter-rotation regime can be shown in figure 6:
the sign of the azimuthal vorticity over the slower disk (z = 0) changes at
r / R() ~ 0.36.

The presence of this stagnation ring as important consequence on the
azimuthal component of the flow, as shown in figure 7. For large radius, the
shear layer between the positive velocity (associated to the faster disk) and
the negative velocity (slower disk) remains within the inward boundary layer
over the slower disk. At smaller radius, r < 0.25Ry, this shear layer gets
detached because of the stagnation ring, leading to a free shear layer in the
bulk of the flow. This phenomenon can be further seen in figure 6, where
the location of the stagnation ring appears to coincide with the maximum of
vertical vorticity. At high enough Reynolds number, this free shear layer may
become unstable, leading to the instability patterns shown above.

Conclusion

The existence and onset of negative spirals have been confirmed both exper-
imentally and numerically. Unlike other instabilities that are reported in the
literature for this flow configuration, this new pattern is not associated to a
boundary layer instability. Evidence is given that a free shear layer instability
is responsible for this new pattern, in agreement with Ref. [11]. Additional
experiments and computations (to be shown at the conference) show that
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Fig. 6. Azimuthal vorticity along the slower disk z = 0 (dashed line) and vertical
vorticity at mid-height z = H/2 (solid line).
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Fig. 7. Contours of the azimuthal velocity in the steady axisymmetric state.

modes with increasing wave number appear as the radius-to-height ratio is
increased.
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