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1 Introduction

In the presence of a background rotation, a situation which is relevant for most geophysical and astrophysical
flows, the energy cascade from large to small scales is modified by the Coriolis force, resulting in a gradual colum-
nar structuring of the turbulence along the rotation axis. In the limit of large rotation rates, turbulence tends
to become two-dimensional —but still three-component (2D-3C)—, in agreement with the Taylor-Proudman
theorem.

The anisotropic energy transfers responsible for this non-trivial flow organization have been characterized
mainly in the spectral space [1, 2, 3]. On the other hand, direct evidence of the anisotropy of the energy transfers
in the physical space is still lacking.

If homogeneity (but not necessarily isotropy) holds, the energy transfers in the physical space are governed
by the Kármán-Howarth-Monin (KHM) equation [4, 5]
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where R(r, t) = 〈u(x, t) ·u(x+ r, t)〉 is the two-point velocity correlation, F(r, t) = 〈δu (δu)2〉 is the energy flux
density, and δu = u(x+ r, t)−u(x, t) is the velocity vector increment over separation r. Eq. (1) reduces to the
Kolmogorov’s 4/5th law in the inertial range if isotropy is assumed. Importantly, this equation is still valid for
homogeneous anisotropic turbulence, and in particular for axisymmetric turbulence in a rotating frame [6].

2 Experiment

Experiments of decaying grid turbulence mounted on the “Gyroflow” rotating platform have been performed [7,
8]. Turbulence is generated by rapidly towing a square grid at a velocity Vg = 1.0 m s−1 from the bottom to the
top of a tank filled with 240 liters of water. The grid consists in 8 mm thick bars with a mesh size M = 40 mm.
Runs for three rotation rates, Ω = 4, 8 and 16 rpm, as well as a reference run without rotation, have been
carried out. The Reynolds number based on the grid mesh is Reg = VgM/ν = 40 000, and the Rossby number
Rog = Vg/2ΩM ranges from 7.4 to 30, indicating that the flow in the wake of the grid is fully turbulent and
weakly affected by rotation.

Velocity measurements are performed in the rotating frame using a corotating PIV system. Two velocity
components (ux, uz) are measured, in a vertical 16 × 16 cm2 field of view, where z is the rotation axis. From
these 2D PIV fields, surrogates of the energy distribution and flux density are computed,

E(r) = 〈δu2
x + δu2

z〉x,z, F(r) = 〈δu(δu2
x + δu2

z)〉x,z. (2)

Statistics are averaged over 600 independent realizations of the turbulence decay, ensuring a convergence of
order of 20% for F(r), and better than 1% for E(r).

3 Results

Our main findings are summarized in figure 1. In the absence of rotation (Fig. 1a), the raw vector map of the
energy flux density F(r) is found nearly radial, pointing towards the origin, giving direct evidence of the isotropic
energy cascade in the physical space, from the large to the small scales. The map of the energy flux ∇ · F is
remarkably circular, showing a broad negative minimum in an annular region spanning over r � 5 − 20 mm,
providing an indication of the extent of the inertial range.

Surprisingly, the flux density F(r) in the rotating case (Fig. 1b) is also nearly radial, except at the smallest
scales, for r < 10 mm, where a marked deflection towards the rotation axis is observed. Such horizontally
tilted F is indeed consistent with an asymptotic 2D-3C flow, for which F must be a strictly horizontal vector,
function of the horizontal component of the separation only. The inertial range, where the energy flux ∇ · F is
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Figure 1: Maps of the energy flux density, in the separation space r. (a) without rotation; (b) with rotation,
at a time corresponding to 4.3 frame rotations. The vertical axis z corresponds to the rotation axis. Left: raw
vector field F(r), showing the direct energy cascade from large to small scales. Right: Energy flux −∇ · F(r).
The annular or vertically elongated region where the flux is approximately constant (red area) corresponds to
the inertial range. Adapted from Ref. [8].

negative and approximately constant (red area in figure 1), becomes vertically elongated in the rotating case
as time proceeds. This spatial structure is consistent with a growing anisotropy of the turbulence. Indeed,
neglecting the viscous term in the KHM equation (1), the vertically elongated region where ∇ · F < 0 induces
a stronger reduction of the velocity correlation R along x than along z, resulting in a relative growth of the
vertical correlation along z. The striking result here is that the strongly anisotropic energy flux ∇·F originates
from an almost purely radial, but angle-dependent, density flux F. In particular, setting the polar component
of F to zero yields an almost unchanged flux map ∇ ·F.

These first results of the energy transfers in the physical space are a useful alternative to the more classical
description in the spectral space [3], and shed new light on the anisotropy growth of decaying rotating turbulence.
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