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Abstract.

We investigate experimentally the anisotropic energy transfers in freely decaying turbulence
subjected to a background rotation. The energy distribution E(r, t) = 〈(δu)2〉 and the
anisotropic energy flux density F(r) = 〈δu (δu)2〉, where δu is the vector velocity increment over
separation r, are determined from large data sets of Particle Image Velocimetry measurements.
Surprisingly, although E(r) is strongly anisotropic at all scales, F(r) remains almost radial,
except in the near-dissipative range. The anisotropy growth of decaying rotating turbulence is
therefore proved to be essentially driven by a nearly radial, but orientation-dependent, energy
flux density F(r).

1. Introduction

The description of the energy transfers from large to small scales by the Kolmogorov 4/5th law
is often considered as the most fundamental result of homogeneous and isotropic turbulence
theory (1; 2). In the presence of a background rotation, a situation which is relevant for
most geophysical and astrophysical flows, the addition of the Coriolis force makes these
energy transfers anisotropic, resulting in a gradual columnar structuring of the turbulence
along the rotation axis (3; 4; 5). In the limit of large rotation rates, turbulence even tends
to become two-dimensional —but still three-component (2D-3C)—, in agreement with the
Taylor-Proudman theorem. Although the resulting anisotropic energy distribution has been
characterized numerically and experimentally (6; 7), direct evidence of the anisotropy of the
physical-space energy transfers accounting for this non-trivial flow organization under rotation
is still lacking.
For homogeneous but not necessarily isotropic turbulence, the energy distribution and energy

flux density in the space of separations r are described by the fields

E(r, t) = 〈(δu)2〉 and F(r, t) = 〈δu (δu)2〉, (1)

where u(x, t) is the turbulent velocity field, δu = u(x+ r, t) − u(x, t) the velocity vector
increment over r (see Fig. 1), and where 〈·〉 denotes spatial and ensemble averages. The temporal
evolution of the energy distribution in the physical space is governed by the Kármán-Howarth-
Monin (KHM) equation (1; 8),
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where R(r, t) = 〈u(x, t) ·u(x+ r, t)〉 = 〈u2〉− E(r, t)/2 is the two-point velocity correlation and
ν the kinematic viscosity. Importantly, this equation is still valid for homogeneous anisotropic
turbulence (9), and in particular for axisymmetric turbulence in a rotating frame.
For stationary (forced) turbulence, this equation reduces to ∇ · F = −4 ε in the inertial

range, where ε stands for the rates of injected and dissipated energy. In the isotropic case, this
constant-flux relation can be integrated, yielding a purely radial flux density, F(r) = −(4/3) ε r,
that describes the usual energy cascade from large to small scales. This result is actually
identical to the celebrated Kolmogorov’s 4/5th law, classically expressed in terms of the 3rd
order longitudinal structure function, 〈δu3

L〉 = −(4/5) ε r, where δuL = δu·r/r is the longitudinal
velocity increment.
In decaying rotating homogeneous turbulence, Eq. (2) shows that, starting from an isotropic

initial energy distribution E(r, 0), an anisotropy growth in E(r, t) is expected if an anisotropic
energy flux ∇ · F is induced by the Coriolis force. However, the flux density F(r) itself has
never been measured, and its precise form, which reveals the fundamental action of rotation
on turbulence, is so far unknown. To date, the only experimental attempts to characterize
the energy transfers in rotating turbulence were restricted to measurements of 〈δu3

L〉 in the
plane normal to the rotation axis (10; 11), hence ignoring the anisotropic nature of those
transfers. Recent theoretical efforts have been made to generalize the 4/5th law, assuming weak
anisotropy (12), or considering the full anisotropic problem (2) but restricted to the stationary
case (9).
The aim of the present work is to provide direct experimental measurements, in the physical

space, of the energy distribution E(r, t) = 〈δu2〉 and of the energy transfer density F(r, t) in
homogenous decaying turbulence, with and without background rotation.

2. Experiments

The experimental setup (Fig. 1(a)) is described in details in Ref. (13). Turbulence is generated
by rapidly towing a grid (velocity Vg = 1.0 m.s

−1, mesh sizeM = 40 mm) in a square water tank
mounted on a rotating platform. Velocity fields are measured in a vertical plane (12 × 12 cm2

field of view) in the rotating frame using a corotating Particle Image Velocimetry system. Runs
for three rotation rates, Ω = 0.42, 0.84 and 1.68 rad s−1 (4, 8 and 16 rpm respectively), as well
as a reference run without rotation, have been carried out. The Reynolds number based on the
grid mesh is Reg = VgM/ν = 40000, and the Rossby number Rog = Vg/2ΩM ranges from 7.4
to 30, indicating that the flow in the close wake of the grid is fully turbulent and weakly affected
by rotation. An important concern about grid turbulence experiments in a confined rotating
volume is the excitation of reproducible inertial modes (14). Here, we use the modified grid
configuration introduced in Ref. (13), which was shown to significantly reduce the generation of
these inertial modes.
During the decay of turbulence, 60 image pairs are acquired by a double-frame 20482 pixels

camera, at a rate of 1 image pair per second. The PIV resolution, Δx = 1.3 mm, is sufficient
to resolve the inertial range but fails to resolve the dissipative scale (the Kolmogorov scale is of
the order of 0.2 mm right after the grid translation (11)).
From the measured 2D velocity fields, only surrogates of the energy distribution and flux

density (1) can be computed, namely

Ẽ(r) = 〈δu2

x + δu2

z〉x,z, F̃(r) = 〈δu(δu2

x + δu2

z)〉x,z, (3)

where the spatial average is restricted to the measurement plane, and r = rxex + rzez. For
each time after the grid translation, these quantities are computed for all separations r lying in
the PIV field of view, and are ensemble-averaged over 600 realizations of the turbulence decay.
The fields Ẽ(r) and F̃(r) are remapped on a spherical coordinate system (r, θ, φ), where r = |r|,
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Figure 1. (a) Experimental setup:
(60 cm)3 tank filled with 52 cm of
water and rotating at 0 ≤ Ω ≤
1.68 rad s−1. The grid is towed
from the bottom to the top, and
PIV measurements are performed
in the vertical plane (x, z) in
the rotating frame during the
turbulence decay. (b) Definition of
the vector velocity increment δu =
u(x+ r)− u(x).

and θ is the polar angle between ez and r; the invariance with respect to the (non-measured)
azimuthal angle φ is assumed by axisymmetry. Although relations between the surrogates (3)
and the exact 3-components quantities (1) can be derived for isotropic turbulence, no general
relation holds in the anisotropic case. Therefore, we do not apply any correction weight when
computing Ẽ and F̃, and we drop the tildes ·̃ in the following.

3. Statistics convergence

The convergence of the statistics from experimental measurements is very delicate to achieve,
in particular for the computation of the energy flux density F(r), which is a 3rd order moment
of a zero-mean velocity increment. To evaluate the level of convergence of a measured quantity
X(r) (with X(r) = E(r) or X(r) = |F(r)|), we split our sample of 600 realizations at a given
time into eight independant sub-samples of equal size, and compute for each sub-sample the
corresponding average Xi(r) for all separations r. The standard deviation σ{Xi(r)} around
the mean X(r) of these eight sub-samples provides an estimate of the absolute error on X(r)
when computed over 75 independant realizations. We define the relative error εX(r) for a given
quantity X(r) as the ratio of σ{Xi(r)}, averaged over θ, to the maximum value obtained over
all separations r of X(r) :

εX(r) =
〈σ{Xi(r)}〉θ

max
r

(
X(r)

) (4)

Normalizing the absolute error by max
r

(
X(r)

)
instead of X(r) is a convenient way to ensure

that the relative error will not artificially increase with r when considering a quantity tending
towards zero at small or large scales. Since the maximum value of X(r) is calculated over all
separations r, the relative error depends a priori on the choice of the largest separation rmax

when computing εX(r). In order to reduce this bias, rmax is chosen sufficiently large so that
E(r) and |F(r)| reach their maxima at scales smaller than rmax.
In Fig. 2, we plot the relative errors εE and ε|F | as functions of the separation r. As expected,

the relative error on |F| (3rd order moment of the velocity increment) is larger than the one on
the energy (2nd order moment). The uncertainty on |F(r)| is better than 10% at small scales but
reaches about 20% at scales r � M while an uncertainty better than 4% can be achieved at all
scales for the energy. Furthermore, Fig. 2 shows an increase of the relative error with r for both
quantities. Indeed, because of the finite size of the velocity field, the number of velocity vectors
separated by r which can be considered when computing moment decreases with r, resulting in
a larger noise level on E(r) and |F(r)|.
We can conclude that using a set of 600 independent realizations of the turbulence decay

(which represents 24 hours of continuous run for each value of Ω) provides well-converged
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Figure 2. Evolution of the
relative error on the energy and on
the energy flux density with the
separation r at time t Vg/M = 400
(t = 16 s) for Ω = 1.68 rad s−1 (16
rpm).

calculations of the energy and of its density flux at small scales, but statistics at scales larger
than the mesh size must be considered with caution. However, being additionally more sensitive
to remaining inhomogeneities of the flow, those scales larger than M are not considered in the
following.

4. Energy distribution
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Figure 3. Map of the energy dis-
tribution E(r) at a time t Vg/M =
400 after the grid translation, for
(a) Ω = 0, and (b) Ω = 1.68 rad s−1

(16 rpm).

Soon after the grid translation, the energy, as measured by the variance of the velocity
increments E(r), shows a nearly isotropic distribution with respect to the separation vector
r, both in the rotating and non-rotating cases. Fig. 3 (a) shows that, at dimensionless time
t Vg/M = 400 after the grid translation, the iso-E curves remain nearly circular for Ω = 0,
reflecting the persistance of isotropy in this case. On the other hand, for Ω = 16 rpm and at
the same time after the grid translation, E has developed a strong anisotropy, with a marked
depletion along the vertical axis z. The depletion of E(r) corresponds to an enhanced velocity
correlation R(r) along the rotation axis, showing a trend towards an invariant 2D-3C flow along
the rotation axis, in agreement with the Taylor-Proudman theorem.

5. Energy transfers

We now turn to the energy flux density, and we first present in Fig. 4(a) measurements of F(r)
for Ω = 0, at the same dimensionless time tVg/M = 400. This vector field is found remarkably
radial, pointing towards the origin, giving direct evidence of the isotropic energy cascade in the
physical space, from the large to the small scales, in the non-rotating case. The isotropy of the
flux density magnitude is not as good: the iso-|F| curves (Fig. 4(b)) are nearly circular up to
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r � 30 mm, but shows slight departure from isotropy at larger r, suggesting that this quantity
is very sensitive to a residual anisotropy of the large-scale flow.
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Figure 4. (a) Map of the vector
field F(r) at a time t Vg/M = 400
after the grid translation, for Ω = 0
rpm. (b) Map of |F(r)|.

We consider now the energy transfers in the rotating case, shown in Fig. 5 (a) at the same
time t Vg/M = 400. Surprisingly, the flux density F is found to remain nearly radial for all
separations, except at the smallest scales, for r < 10 mm, where a marked deflection towards the
rotation axis is observed. Such horizontally tilted F is indeed consistent with an asymptotic 2D-
3C flow, for which F must be a strictly horizontal vector, function of the horizontal component
of the separation only. If we focus on the flux density magnitude |F|, a clear anisotropy is now
found at all scales. The maximum of |F| is systematically encountered near the rotation axis, at
rather large scales, centered around 50-80 mm (outside the range shown in Fig. 5b). The local
maximum of |F| on the horizontal axis is encountered at smaller scales, as evidenced by the
crest line of |F| in Fig. 5(b). This proves that the anisotropy of the energy transfers is mostly
driven by the θ-dependence of the radial component Fr, and not by the growth of a nonzero
polar component Fθ = F · eθ.
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Figure 5. (a) Map of the vector
field F(r) at a time t Vg/M = 400
after the grid translation, for Ω =
16 rpm. (b) Map of |F(r)|.

6. Conclusion

We report the first direct measurements of the energy flux density F in the physical space in
a decaying rotating turbulence experiment. Although the alternative description of the energy
transfers in the spectral space is more natural for theory or numerics (2; 3; 4; 6), the direct use of
the KHM equation (2) in the physical space, which is better suited for experiments, reveals here
new and unexpected behaviors. Surprisingly, the anisotropy growth of the energy distribution is
primarily driven by an almost radial, but orientation-dependent, flux density F, except at small
scales where F shows a horizontal tilt, compatible with a trend towards a 2D state. The reported
results should motivate new theoretical efforts to describe the rotation-induced structuring of
the physical-space energy flux density.
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