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We present in this Letter experimental results on the bidimensional flow field around a cylinder

penetrating into dense granular matter, together with drag force measurements. A hydrodynamic model

based on extended kinetic theory for dense granular flow reproduces well the flow localization close to the

cylinder and the corresponding scalings of the drag force, which is found to not depend on velocity, but

linearly on the pressure and on the cylinder diameter and weakly on the grain size. Such a regime is found

to be valid at a low enough ‘‘granular’’ Reynolds number.
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Introduction.—Describing the motion of an obstacle
through granular material is the subject of recent and
intensive research with applications to industrial configu-
rations but also to biological and earth science, including
animal locomotion in sand [1] and impact cratering [2].
While the motion of an object in a simple fluid has been
known for a long time, especially in the viscous regime at a
low Reynolds number where the fluid flow and the drag
force are analytically known due to Stokes’s calculation,
the motion of an object in granular matter is still an open
question. Such a problem is of fundamental interest, along
with numerous open questions of statistical physics con-
cerning (for instance) the solid-liquid or jamming transi-
tion [3]. Numerous studies have been done concerning the
drag force on an object in vertical or horizontal motion in
granular matter [4–11]. All these studies find that the drag
force does not depend on the velocity at low velocities, and
is proportional to the size of the object and to its depth. As
in hydrodynamics, the drag force has been shown to de-
pend on the exact shape of the object [8], and also vertical
lift forces can develop during horizontal motion [12]. Flow
observations of grains have also been reported in chute
flow around a fixed cylinder [13,14] and in the two-
dimensional situation of a disk pulled at a constant force
in a horizontal assembly of disks on a vibrated plate [3].
Fluctuations have been observed in the force or in the
velocity with some ‘‘stick-slip’’ behavior in some cases
[3,6], and the force may depend crucially on the packing
volume fraction [3–5]. In this Letter, we investigate, by
particle image velocimetry (PIV) measurements, the flow
around a cylinder penetrating into a dense granular packing
together with force measurements. By a continuum hydro-
dynamic model based on the kinetic theory extended to
dense granular systems, we recover the experimental re-
sults of the shear localization close to the cylinder with
the view of a ‘‘hot’’ cylinder in motion in a viscosity-
dependent temperature fluid, together with a good scaling
for the drag force.

Experiments.—The experiments consist of a horizontal
steel cylinder of diameter 10 mm � d � 40 mm and length
b ¼ 40 mm penetrating a rectangular box (0.1 m in height,
0.2 m in width, and 40 mm in thickness) filled with mono-
disperse millimetric glass beads of diameter 0:5 mm �
dg � 4 mm and density �g ¼ 2:5� 103 kgm�3. The

granular medium is prepared by gently stirring the grains
with a thin rod and the surface is then flattened using a
straightedge. This preparation leads to reproducible results
with only small variations. The solid volume fraction is� ’
0:62, characteristic of a dense granular packing, and the
density of the granular medium is thus � ¼ �g� ’ 1:5�
103 kgm�3. The cylinder which is fixed and related to a
force transducer by a vertical thin rod, is first above the grain
surface and penetrates gradually into the granular packing as
the box is raised up by a stepper motor along a vertical
translation guide at a constant velocity V0 ranging from
0.1 to 100 mm s�1. Very careful alignment is used to prevent
any blockage of the cylinder during themotion, and the force
at the glass walls without grains is totally negligible. The
front and rear walls of the box are in glass, allowing visual-
ization of the granular flow around the cylinder. The images
taken froma fast videocamera (up to1000 images per second
in the full resolution 1024� 1024 pixels) are analyzed
by PIV software to get the velocity field of the grains. As
the camera is fixed in the laboratory frame together with the
cylinder, the obtained velocity field shown in Fig. 1 is the
velocity of thegrains in the frameof referenceof the cylinder.
The measured drag force on the cylinder is observed to

increase with the depth zb during its penetration [Fig. 2(a)]
with a ratio F=zb constant to �10% over the range d=2 �
zb � 70 mm [Fig. 2(b)]. The force is found proportional
to the cylinder diameter [Fig. 2(b)] and roughly indepen-
dent of the velocity [Fig. 2(c)]. We find also a nonlinear
dependence of the force on the grain diameter: The force
is about constant at a large enough grain size (dg * 1 mm)

but increases with decreasing grain size (dg & 1 mm)

[Fig. 2(d)].
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We observe that the grain flow field around the totally
immersed cylinder is stationary during the penetration
process, meaning that it depends neither on the depth nor
on the increasing granular pressure. The velocity field
vðx; zÞ can thus be averaged during each penetration run
to extract at each point the mean local velocity �vðx; zÞ
whose time fluctuations can be related to the local granular
temperature T, by T ¼ hðv� �vÞ2i. We have used cylindri-
cal coordinates (r, �) where r is the radial distance from the
cylinder center and � is the angle relative to the downward
z axis of motion (with thus � ¼ 0 down): vðr; �Þ ¼
vrðr; �Þer þ v�ðr; �Þe�, with the radial and azimuthal

components of the velocity vr and v�. As in the classical
hydrodynamics situation of a Newtonian fluid, we have
checked that vr and v� can be decomposed into cosine and
sine functions of � and radial functions ArðrÞ and A�ðrÞ:
vr ¼ �V0ArðrÞ cos� and v� ¼ V0A�ðrÞ sin�. The radial
functions ArðrÞ and A�ðrÞ extracted from measurements
in the azimuthal range ��=2< �< �=2 are displayed in
Fig. 3 and show a strong shear localization when compared
to the classical viscous Newtonian case, with exponential
variations scaled by the cylinder diameter. At a distance
from the cylinder surface larger than about one cylinder
diameter (r * 40 mm in Fig. 3), the grain velocity van-
ishes. The overshoot of A�ðrÞ expected from mass conser-
vation in the bidimensional configuration is localized close
to the cylinder and relaxes to the asymptotic value 1 (no
grain flow) with an inflexion point in the present case in
contrast with the long-range decay of the Newtonian case
at Re ¼ 0 (Couette-Poiseuille form).
A typical radial profile of the granular temperature TðrÞ

along the vertical downward line (� ¼ 0) is displayed in
Fig. 4: A domain of roughly constant temperature can be
seen around the cylinder with the plateau value T0 followed
by an exponential decrease. The temperature profile is
roughly the same for different values of � and the plateau
value T0 is found to vary with the penetration velocity as
T0 � V2

0 (see inset of Fig. 4).

Hydrodynamic model.—The granular mean velocity and
its fluctuation show important spatial variations. The
strong localization of the granular flow that we observe is
a rather usual feature of disordered matter where shear
bands are commonly observed (see [15] for a recent
review). We show here that the observed shear bands
may be understood using a hydrodynamic description.
The starting points are that local momentum and energy
balance equations, written as [16]
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FIG. 2. (a) Drag force F on the cylinder as a function of the
penetration depth zb for different cylinder diameters from
d ¼ 10 mm to d ¼ 40 mm (dg ¼ 1 mm, V0 ¼ 5 mms�1).

(b) F=zb for the same data as (a). (c) hF=zbi as a function of
V0 (d ¼ 20 mm, dg ¼ 1 mm) and (d) as a function of dg
(d ¼ 40 mm, V0 ¼ 5 mms�1). hF=zbi is the average of F=zb
over the range d=2 � zb � 70 mm.
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FIG. 3. Radial velocity functions Ar and A� as a function of
the distance r from the cylinder. Experimental data (circles) Ar

and (triangles) A� from PIV measurements, (solid lines) profiles
obtained by using granular kinetic theory, and (dashed
lines) classical Newtonian profiles.
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FIG. 1 (color online). Typical instantaneous velocity field ob-
tained by PIV measurements for a cylinder of diameter d ¼
20 mm penetrating into glass beads of diameter dg ¼ 1 mm, at

the velocity V0 ¼ 5 mm s�1, and at the depth zb ¼ 65 mm.
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�
dv

dt
¼ r � �; (1)

�
dT

dt
¼ �:�� r � q� "T; (2)

where � is the effective fluid density, � the stress tensor, q
the heat flux, � the velocity-gradient tensor, and " the
temperature-loss coefficient. The stress and the heat flux
are related to the velocity, temperature, and pressure by
phenomenological equations. The choice of these phe-
nomenological equations to describe granular matter is
still a matter of debate. If momentum transfer and dissipa-
tion occur during binary collisions between grains, granu-
lar material may be treated using an inelastic gas theory
[17], leading to a Newtonian fluid with � ¼ �PIþ 2��,
and Fourier’s law q ¼ ��rT for the heat flux. Here P is
the pressure, � the viscosity, � the thermal conductivity,
and I the unit tensor. For simplicity, we neglect dissipation
and heat transport associated with compressibility and we
treat granular matter as an incompressible fluid as experi-
mentally observed. A priori, in a dense granular flow,
nonbinary collisions cannot be neglected and transport
coefficients from inelastic gas theory [17] are no longer
valid. By analogy with glassy materials, modification of
the viscosity divergence near jamming has been suggested
[18]. Numerical simulations of 2D granular materials
seem then to show viscosity divergence at packing frac-
tions lower than random close packing [16,19]. Since in
our experiment, most of the shear is located in a region
of high velocity fluctuations, we are not very close to
random close packing, and therefore we use the Enskog
expressions of the phenomenological coefficients [17]:

P ¼ �gTfPð�Þ; (3)

� ¼ �gdg
ffiffiffiffi

T
p

f�ð�Þ; (4)

� ¼ �gdg
ffiffiffiffi

T
p

f�ð�Þ; (5)

" ¼ ð1� e2Þ�g

ffiffiffiffi

T
p
dg

f"ð�Þ; (6)

where fP, f�, f�, and f" are nondimensional functions of

the solid volume fraction�, and e is the velocity restitution
coefficient. For � * 0:5, those functions vary with the

same dependence on � [17]. So we have �ðP; TÞ ’ �0 �
ðPdg=

ffiffiffiffi

T
p Þ, �ðP; TÞ ’ �0 � ðPdg=

ffiffiffiffi

T
p Þ, and "ðP; TÞ ’ "0 �

ðP=dg
ffiffiffiffi

T
p Þ, with �0 ’ 0:28, �0 ’ 1:06, and "0 ’ 0:34 [17]

with a standard value e ’ 0:9 for glass beads. Those
expressions of transport and dissipation coefficients
emphasize the fact that � is not fixed in our experiment
but may vary slightly from point to point in response to
pressure and granular temperature variations.
The momentum and heat equations (1) and (2) with

T � P dependent transport coefficients are solved numeri-
cally for the stationary flow around a cylinder located at the
center of a L� L square box. The momentum equation is
solved using a Lattice-Bolzmann solver (BGK based D2Q9
model) with nonslip velocity conditions on the cylinder,
constant pressure P0 at the top of the square box, and
constant upward velocity V0 on the other sides. The heat
equation is solved using a finite difference scheme with the
condition er � rT ¼ 0 on the cylinder and T ¼ 0 on the
sides of the square box in agreement with experimental
findings. The transport coefficients are taken initially
homogeneous in the box and the velocity field is first
computed by solving the momentum equation with these
initial values. From the obtained pressure and velocity
fields, the source of heat �: � is calculated and the heat
equation is then computed, leading to a new temperature
field. With the new corresponding fields of transport co-
efficients as inputs, the momentum equation and then heat
equation are solved again and so on. After a few iterations,
stationary temperature, pressure, and velocity fields which
verify (1) and (2) are obtained. In order to prevent numeri-
cal instabilities, viscosity is kept in a finite range. The
stationary solution is not sensitive to the initial guess of
temperature, or to the cutoff of viscosity. Other boundary
conditions at the cylinder (the partial velocity slip and
Robin condition dT=dr / T for the temperature) do not
change significantly the velocity and temperature fields.
Results.—Our hydrodynamic model reproduces quite

well the experimental features observed in the experi-
ments. The radial temperature profile shows the same
shape as in the experiments, with a plateau of high tem-
perature T0 close to the cylinder followed by an exponen-
tial decrease (Fig. 4). The temperature plateau is also
found to be proportional to V2

0 as in the experiments (see

inset of Fig. 4). The computed velocity field is found close
to the experimental one as shown in Fig. 3 with a shear
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localization near the cylinder, and is far from the classical
Newtonian case. This shear localization may then be in-
terpreted as a consequence of the strong coupling between
viscosity and temperature. At a given pressure the viscosity

varies as �� 1=
ffiffiffiffi

T
p

. So, at a given viscous shear stress �v,

the production of heat is proportional to �2
v=�� ffiffiffiffi

T
p

. This
mechanism creates a self-lubricating layer of low viscosity
near the cylinder.

The drag force on the cylinder is calculated by integrat-
ing the stresses on the disk, taking into account both the
‘‘pressure’’ term (from normal stresses) and ‘‘viscosity’’
term (from shear stresses). If these two terms are equal in
the Newtonian case, the pressure term is here about twice
the viscosity term. The total calculated drag force is found
to be independent of the velocity, proportional to the
cylinder diameter and to the pressure, in agreement with
the experimental observations by considering that pressure
is proportional to depth. That dependence may be under-
stood in the hydrodynamical model by considering a
‘‘granular’’ Reynolds number Re ¼ �V0d=�w based on
the viscosity �w near the cylinder. We have checked that
all these previous findings correspond to a low Reynolds
number regime (Re & 1). In low Re hydrodynamics, one
expects that the force scales as �w � V0, and then varies
here linearly with the pressure, and independently of the

velocity as �w is proportional to the pressure and to T�1=2
0

thus to V�1
0 . We also found numerically the same nonlinear

variation of the drag force with the grain size as in the
experiments. Note that this variation is hard to infer simply
from the set of equations. When Re * 1, the velocity field
no longer exhibits up- or downstream symmetry, and the
pressure and temperature profiles are also different from
the Re & 1 case.

Concluding remarks.—We have investigated experimen-
tally the penetration of a cylinder at a constant velocity
inside a dense granular packing with both force and veloc-
ity field measurements, and we have modeled this problem
by a continuum hydrodynamic approach. The finding of a
strong shear localization close to the cylinder can be
viewed by the coupling between viscosity and temperature
in the problem of a self-heated cylinder. The localization of
the flow near a sedimenting hot sphere has indeed already
been reported in classical fluids with temperature depen-
dent viscosity [20]. Such a shear localization has been seen
also for a sphere sedimenting in a non-Newtonian fluid
with shear thinning behavior [21]. The experimental
findings of a force regime independent of velocity and
proportional to the depth and to the cylinder diameter are
recovered by our model based on kinetic theory adapted
for dense granular systems, and have been shown to cor-
respond to a hydrodynamic regime of a low granular
Reynolds number. Other models exist for dense granular
flows such as the one based on a local rheology with a
friction coefficient �ðIÞ depending on a nondimensional
shear rate I [22]. Such models may also lead to the ob-
served flow localization since it corresponds to viscoplastic

or shear thinning behavior. Another issue to explore would
be the different force values measured in the plunging and
the withdrawal situations [4,10], and what role is played by
gravity and the boundary conditions (bottom wall vs free
surface). In addition, the force scaling is expected to
change in a higher Reynolds regime from a ‘‘viscous’’
scaling to an ‘‘inertial’’ scaling which may explain the
complex force terms measured in impact situations
[2,23,24] where the ‘‘granular hydrodynamic’’ regime
changes certainly from high to low Re during the penetra-
tion process. Applications to nonstationary granular flows
may also be considered.
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