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Viscous fingering of miscible slices
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Viscous fingering of a miscible high viscosity slice of fluid displaced by a lower viscosity fluid is
studied in porous media by direct numerical simulations of Darcy’s law coupled to the evolution
equation for the concentration of a solute controlling the viscosity of miscible solutions. In contrast
with fingering between two semi-infinite regions, fingering of finite slices is a transient phenomenon
due to the decrease in time of the viscosity ratio across the interface induced by fingering and
dispersion processes. We show that fingering contributes transiently to the broadening of the peak
in time by increasing its variance. A quantitative analysis of the asymptotic contribution of fingering
to this variance is conducted as a function of the four relevant parameters of the problem, i.e., the
log-mobility ratioR, the length of the slicel, the Péclet number Pe, and the ratio between transverse
and axial dispersion coefficients«. Relevance of the results is discussed in relation with transport of
viscous samples in chromatographic columns and propagation of contaminants in porous media.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1909188g
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I. INTRODUCTION

Viscous fingering is an ubiquitous hydrodynamic in
bility that occurs as soon as a fluid of given viscosity
places another more viscous one in a porous medium1 As
such, the typical example usually presented for this inst
ity is that of oil recovery for which viscous fingering tak
place when an aqueous solution displaces more viscous
underground reservoirs. This explains why numerous pa
devoted to the theoretical and experimental analysis o
gering phenomena have appeared in the petroleum eng
ing community.1 For what concerns the geometry, theoret
works typically focus on analyzing the stability proper
and nonlinear dynamics of an interface between twosemi-
infinite domains of different viscosity. In the same spirit,
perimental works done either in real porous media or
model Hele–Shaw systemstwo parallel plates separated b
thin gap widthd consist in injectingcontinuouslya low vis-
cous fluid into the medium initially filled with the more v
cous one. The attention is then focused on the dynami
the interface between the two regions. The instability de
ops and the fingers grow continuously in time until the
placing fluid has invaded the whole experimental system
long as the experiment runssi.e., until the displacing flui
reaches the outletd, the instability develops. Dispersion
one fluid into the other may lead to a slight stabilization
time nevertheless this stabilization is usually negligible
the time scale of the experiment and for high injection ra

The situation is drastically different in other import

applications in which viscous fingering is observed, such as
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in liquid chromatography or groundwater contaminat
Liquid chromatography is used to separate the chem
components of a given sample by passing it through a po
medium. In some cases, typically in preparative or size
clusion chromatography, the viscosity of the sample is
nificantly different than that of the displacing fluidsthe elu-
entd. Displacement of the sample by the eluent of diffe
viscosity leads then to viscous fingering of either the fron
the rear interface of the sample slice, leading to deform
of the initial planar interface. This fingering is dramatic
the performance of the separation technique as it contri
to peak broadening and distortions. Such conclusions
been drawn by several authors that have shown e
experimentally2–8 or numerically7,8 the influence of viscou
fingering on peak deformations.

In groundwater contamination and more generally
contamination, it is not rare that the spill’s extent is finite
to a contamination localized in space and/or time. If
spill’s fluid properties are different than that of water, an
particular, if they have different viscosity and/or density9,10

fingering phenomena may influence the spreading char
istics of the contaminated zone. For ecological reasons
important then to quantify to what extent fingering will
large the broadening in time of this polluted area.

Nonlinear simulations of fingering of finite samples h
been performed in the past by Tucker Norton
co-workers7,8 in the context of chromatographic applicatio
by Christieet al. in relation to “water-alternate gas” oil r

11 12
covery techniques as well as by Zimmerman and have
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shown the influence of fingering on the deformation of
sample without, however, investigating the asymptotic
namics. Manickam and Homsy, in their theoretical ana
of the stability and nonlinear dynamics of viscous finge
of miscible displacements with nonmonotonic viscosity p
files have further stressed the importance of reverse fing
in the deformation of finite extent samples.13,14 Their para
metric study has focused on analyzing the influence o
end point and maximum viscosities on the growth rate o
mixing zone.

In this framework, the objectives of this paper are t
fold: first, we analyze the nonlinear dynamics of viscous
gering of miscible slices in typical analytical chroma
graphic and groundwater contamination conditions in o
to underline its specificities and, second, we quantify
asymptotic contribution of viscous fingering to the broad
ing of the output peaks as a function of the important pa
eters of the problem. From a numerical point of view,
only difference with regard to most of the previous wo
devoted to viscous fingering15–17 is the initial condition
which is now a sample of finite extent instead of the tr
tional interface between two semi-infinite domains. As
show, this has an important consequence: if the longitu
extent of the slice is small enough with regard to the le
of the migration zone, dispersion becomes of crucial im
tance as it leads to such a dilution of the displaced sa
into the bulk fluid before reaching the measurement loca
that fingering just dies out. As a consequence fingerin
then only a transient phenomenon and the output peak o
diluted sample may look Gaussian even if its varianc
larger than that of a pure diffusive dynamics because of
sient fingering. This explains why the importance of fing
ing phenomena in chromatography and soil contamina
has been largely underestimated or ignored in the litera
We perform here numerical simulations to compute the
ous moments of the sample distribution as a function of
when fingering takes place. This allows us to extract
contribution of viscous fingering to the variance of the a
aged concentration profile and to understand how this
tribution varies with the important parameters of the prob
which are the log-mobility ratioR between the viscosity o
the sample and that of the bulk fluid, the Péclet numbe
the dimensionless longitudinal extentl of the slice and th
ratio « between the transverse and longitudinal disper
coefficients. The outline of the paper is the following. In S
II, we introduce the model equations of the problem. Typ
experimental parameters for liquid chromatography
groundwater contamination applications are discusse
Sec. III. The characteristics of the fingering of a misc
slice are outlined in Sec. IV, while a discussion on the
ments of transversely averaged profiles is done in Se
Eventually, a parametric study is conducted in Sec. VI be
a discussion is made.

II. MODEL SYSTEM

Our model system is a two-dimensional porous med
of lengthLx and widthLy sFig. 1d. A slice of fluid 2 of length

W is injected in the porous medium initially filled with car-
g

-

l

e

e

-

.

-

,

.

rier fluid 1. This fluid 2, which is a solution of a given sol
of concentrationc2 in the carrier, will be referred in the fo
lowing as thesample. This sample is displaced by the car
fluid 1 in which the solute concentrationc is equal toc1=0.
Assuming that the viscosity of the medium is a function
the concentrationc and that the flow is governed by Darc
law, the evolution equations for the system are then

¹I ·uI = 0, s1d

¹I p = −
mscd

K
uI , s2d

]c

]t
+ uI ·¹I c = Dx

]2c

]x2 + Dy
]2c

]y2 , s3d

wherem is the viscosity of the fluid,K is the permeability o
the medium,p is the pressure anduI =su,vd is the two-
dimensional velocity field. The displacing fluid is injected
a uniform manner with a mean velocityU along thex direc-
tion. Dx, Dy are the dispersion coefficients along the fl
direction and perpendicular to it, respectively. The chara
istic speedU is used to define a characteristic lengthLc

=Dx/U and timetc=Dx/U2. We nondimensionalize spa
speed, and time byLc, U, andtc, respectively. Pressure, v
cosity, and concentration are scaled bym1Dx/K, m1, andc2,
wherem1 is the viscosity of the displacing fluid andc2 the
initial concentration of the sample. The dimensionless e
tions of the system become

¹I ·uI = 0, s4d

¹I p = − mscduI , s5d

]c

]t
+ uI ·¹I c =

]2c

]x2 + «
]2c

]y2 , s6d

where«=Dy/Dx. If «=1, dispersion is isotropic while«Þ1
characterizes anisotropic dispersion. Switching to a co
nate system moving with speedU, i.e., making the change
variablesx8=x− t, y8=y, uI8=uI − iIx with iIx being the unit vec
tor alongx, we get, after dropping the primes,

¹I ·uI = 0, s7d

¹I p = − mscdsuI + iIxd, s8d

]c

]t
+ uI ·¹I c =

]2c

]x2 + «
]2c

]y2 . s9d

We suppose here that the viscosity is an exponential fun

FIG. 1. Sketch of the system.
of c such as
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mscd = eRc, s10d

whereR is the log-mobility ratio defined byR=lnsm2/m1d,
wherem2 is the viscosity of the sample and, as said bef
m1 is the viscosity of the displacing fluidsFig. 1d. If R.0,
then we have a low viscosity fluid displacing a high visco
sample and the rear interface of the sample will be uns
with regard to viscous fingering. IfR,0, then the sample
the less viscous fluid and the front interface of the slice
then develop fingering. In our simulations, we consider
R.0 situation.

Introducing the stream functionc such thatu=]c /]y
and v=−]c /]x, taking the curl of Eq.s8d, we get our fina
equations:18

¹2c = RS ]c

]x

]c

]x
+

]c

]y

]c

]y
+

]c

]y
D , s11d

]c

]t
+

]c

]y

]c

]x
−

]c

]x

]c

]y
=

]2c

]x2 + «
]2c

]y2 . s12d

This model is numerically integrated using a ps
dospectral code introduced by Tan and Homsy15 and success
fully implemented for various numerical studies
fingering.19,20The two-dimensional domain of integration
in dimensionless units, of size Pe3L where Pe=ULy/Dx is
the dimensionless width which is nothing else than the P
number of the problem, whileL=ULx/Dx. The dimension
less length of the sample isl =UW/Dx. The initial condition
corresponds to a convectionless fluidsc=0 everywhered em-
bedding a rectangular sample of concentrationc=1 and of
size Pe3 l in a c=0 background. The middle of the sample
initially located atx=2L /3. In practice, for the simulation
the initial condition corresponds to two back to back s
functions betweenc=0 andc=1 with an intermediate poin
wherec=1/2+Ar, r being a random number between 0
1 andA the amplitude of the noisestypically of the order o
10−3d. This noise is necessary to trigger the fingering in
bility on reasonable computing time. IfA=0, numerica
noise will ultimately seed the fingering instability but on
much longer time scale. The boundary conditions are
odic in both directions. This is quite standard along the tr
versal directiony. This does not make any problem along
x axis asc=0 at bothx=0 andx=L. The problem is con
trolled by four dimensionless parameters: the log-mob
ratio R, the Péclet number Pe, the initial length of the
jected samplel, and the ratio between transverse and lo
tudinal dispersion coefficients«.

III. EXPERIMENTAL VALUES OF PARAMETERS
FOR TWO APPLICATIONS

In order to perform numerical simulations, let us co
pute the order of magnitude of the main parameterssPécle
number Pe, length of the sampleld for both a liquid chroma
tography experiment and for the propagation of contamin

in a porous mediumsgroundwater contaminationd.
e

t

-
-

s

A. Chromatographic applications

First of all, let us note that in most chromatograp
applications, heterogeneous chemistrysparticularly adsorp
tion and desorption phenomenad is crucial to the separatio
process and will undoubtedly affect possible fingering
cesses. We neglect such physicochemical interactions i
first approach focusing on the effect of viscous fingering
an unretained compound. A typical chromatographic col
has a diameterd=4.6 mm, a lengthLx=150 mm, and con
sists of a porous medium packed with porous particles
total sintraparticle and interparticled porosity being equal t
0.7. The volume of the sample introduced in the column
the order of 20ml, injected at a flow rateQ.1 ml min−1.
The extent of the injected sample is thenW.1.7310−3 m
and the speed of the flowU.1.4310−3 m s−1. The longitu-
dinal and transverse dispersion coefficients are typicallDx

=1.43310−8 m2 s−1 sRef. 21d andDy=5.65310−10 m2 s−1.22

These parameters allow one to define a characteristic l
Lc=Dx/U and a characteristic timetc=Dx/U2. As a result
the Péclet number Pe=Ud/Dx is here nothing else than t
dimensionless diameter, i.e., Pe=d/Lc.460, while the di
mensionless longitudinal extent of the sample becoml
=W/Lc.170. The dispersion ratio is equal to«=Dy/Dx

.0.04. As a typical transit time from inlet to outlet tak
roughly t=100 s, the dimensionless time of a simula
should be of the order ofT=t /tc.15 000 to account for
realistic time to characterize the properties of the ou
peaks.

B. Soil contamination

The effects of fluid viscosity and fluid density may
important in controlling groundwater flow and solute tra
port processes. Recently, a series of column experim
were conducted and analyzed by Woodet al.10 to provide
some insight into these questions. The experiments wer
formed in fully saturated, homogeneous, and isotropic
columns sporosity equals to 0.34 and«=1d by injecting a
250 ml pulse of a known concentration solution at a flow
Q=0.015 m3/day. Their experimental setup consists o
vertical pipe Lx=0.91 m in length with a diameter ofd
=0.15 m. Assuming the medium to be homogeneous an
dispersion coefficientD as isotropic, a typical value for th
aquifer dispersion coefficient isD=0.1 m2/month, i.e.,D
.3.86310−8 m2 s−1.23 In the same spirit as above, we co
pute the Péclet number to be of the order of Pe.110, while
the dimensionless length of the sample isl .30.

Based on these two examples, let us now investigat
properties of fingering of finite slices for typical values
parameters in the range computed above, i.e.,
,100–500,«,0.04–1,l ,0–500, whileR is supposed t
be of order 1.

IV. FINGERING OF A FINITE WIDTH SAMPLE

Figure 2 shows in a frame moving with the inject
velocity U the typical viscous fingering of the rear interfa
of a sample displaced from left to right by a less visc

fluid. The system is shown at successive times using density
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plots of concentration with blacksrespectively, whited corre-
sponding toc=1 srespectively,c=0d. While the front inter
face is stable, the back interface develops fingers such
the center of gravity of the sample is displaced in the co
of time towards the back with regard to its initial positi
This dynamics results from the fact that the stable zone
as a barrier to finger propagation in the flow direction le
ing therefore to reverse fingering. Such a reverse fing
has been well characterized by Manickam and Homs
their numerical analysis of fingering of nonmonotonic
cosity profiles.14 After a while, dispersion comes into pl
and dilutes the more viscous fluid into the bulk of the
placing fluid. As the sample becomes more and more dil
the effective viscosity ratio decreases in time weakening
source of the instability. Ultimately, dispersion becom
dominant and the sample goes on diluting in the bulk with
witnessing any further fingering phenomenon. These su
sive steps can clearly be observed on the transverse ave
profiles of concentration defined as

c̄sx,td =
1

Pe
E

0

Pe

csx,y,tddy. s13d

As seen on Fig. 3, we first start with two back to back
functions defining an initial sample of extentl. During the
first stages of the injection, there is a first diffusive reg
quickly followed by the fingering of the rear interface cor

FIG. 2. Density plots of concentration at successive times in the f
moving at the velocityU. From top to bottom:t=0, 500, 700, 1000, 150
2000, 5000, 15 000, and 60 000sPe=512,l =128,R=2, «=1d.
sponding here to the left front. While the rightsi.e., frontald
t

s

,

-
ed

interface features the standard error function characteris
simple dispersion, the left one shows bumps signaling
presence of fingering. Because the extent of the samp
finite, dispersion and fingering contribute to the fact tha
maximum concentration becomes smaller than one, e
tively leading to a viscosity ratio between the sample and
bulk that decreases in time. As a consequence, fingering
out and the transverse profile starts to follow a disto
Gaussian shape. If one waits long enough, the asymme
the bell shape diminishes which explains that output pea
chromatographic columns may look Gaussian even if fin
ing has occurred during the first stages of the travel o
sample in the column. As computed in the preceding sec
a typical dimensionless time of transit in a real chrom
graphic setup corresponds to 15 000 units of time. Figu
and 3 show that, after 15 000 units of time, fingering is
appearing for this specific set of typical values of parame
and that dispersion becomes again the dominant mod
chromatographic columns are generally opaque porous
dia, it is therefore not astonishing that the presence of
cous fingering has long been totally ignored until recen
perimental works which have visualized fingering
magnetic resonance or optical imaging.2–8 Similarly, tracing
of the spatial extent of a contaminant plume at a distanc
from the pollution site may lead to measurements
Gaussian-type spreading even if fingering has occurre
early times. The only influence of such fingering appea
the larger variance of the sample than in the case of
dispersion as we show it next.

V. MOMENTS OF THE TRANSVERSE AVERAGED
PROFILE

The averaged profiles of concentrationc̄sx,td allow to
compute the first three moments of the distribution: the

FIG. 3. Transverse average profiles of concentration at successive tt
=0, 500, 700, 1000, 1500, 2000, 5000, and 15 000. Inset: transverse a
profile of concentration att=60 000sPe=512,l =128,R=2, «=1d.
momentm,
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mstd =

E
0

L

c̄sx,tdxdx

E
0

L

c̄sx,tddx

, s14d

is the position of the center of mass of the distribution
function of time. The second moment is the variances2,

s2std =

E
0

L

c̄sx,tdfx − mstdg2dx

E
0

L

c̄sx,tddx

, s15d

giving information on the width of the distribution. Even
ally, we compute also the third moment, i.e., the skewn

astd =

E
0

L

c̄sx,tdfx − mstdg3dx

E
0

L

c̄sx,tddx

s16d

that gives information concerning the asymmetry of the p
with regard to its mean position.

The variances2 is the sum of three contributions:

s2std = si
2 + sd

2 + s f
2, s17d

wheresi
2= l2/12 is the variance due to the initial length

the sample,sd
2=2t is the contribution of dispersion in dime

sionless units ands f
2 is the contribution due to the fingeri

phenomenon. IfR=0, the displacing fluid and the sam
have the same viscosity and no fingering takes place. H
in that case,s2=si

2+sd
2= l2/12+2t. We have checked th

this result is recovered by numerical simulations forR=0.
The integrals in the computation of the momentss14d–s16d
are evaluated numerically by using Simpson’s rule. The
merical result is very good if the spatial discretization stedx
is small. Typically, we get the exact result fordx=1. Unfor-
tunately,dx=1 is a resolution too high for fingering simu
tions especially if one wants to look at the dynamics at
long times. As an example, previous simulations on vis
fingering phenomena15,19were done with largerdx as typica
dimensionless fingering wavelengths are around 100 fR
=3 for instance. Using typicallydx=4 gives roughly 25
points per wavelength which is numerically reasonable.
what concerns the variance, simulations withR=0 anddx
=4 give the correctsi

2 at t=0 but a constant shift appears
thats2std− l2/12−2t=C, with C being a constant of the ord
of 0.1% of l2/12. As we are mostly interested in the rate
variation ofs f, wheres f is defined as

s fstd = Îs f
2std = Îs2std − si

2 − sd
2, s18d

all simulations are done here withdx=4. The slightC shift
does not affect the value ofs f as we have checked it f
decreasing values ofdx.

Figure 4 shows the temporal evolution of the first th
moments, i.e., the deviationmstd−mst=0d of the center o
mass in comparison to its initial location att=0, the tota

2
variances std and the skewnessastd for the typical example
e,

-

r

of Figs. 2 and 3. As fingering occurs quicker than dispers
the center of gravity of the samplemstd is displaced toward
the backssmallerx valuesd because of reverse fingering
the rear interface of the samplefFig. 4sadg. Fingering con
tributes to the widening of the peak and thuss2std increase
fFig. 4sbdg while the skewnessastd becomes nonzero due
the asymmetry of the fingering instability with regard to
middle of the samplefFig. 4scdg. After a while, fingering die
out and the first momentmstd saturates to a constant indic
ing that dispersion becomes again the only important
namical transport mechanism. Note that the skewnessa is
observed to revert back towards 0 at very long times.

Onset of fingering is also witnessed in the growth of
mixing zoneLd defined here as the interval in whichc̄sx,td
.0.01 sFig. 5d. An important thing to note is that, after
diffusive transient, fingering appears on a characteristic
scalet* , defined as the time for which the mixing zone te
poral dependence departs from the pure diffusive regim

As has already been discussed before,16,20 the characte
istics of the fingering onset timet* and of the details of th

FIG. 4. First three moments of the distribution:sad mean positionm of the
center of mass,sbd variances2, scd skewnessa sPe=512,l =128, R=2, «
=1d.
nonlinear fingering regime are dependent on the noise ampli-
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tude A. The higher the noise intensityA, the quicker the
onset of the instabilitysinset in Fig. 5d. To get insight into th
influence of the relevant physical parameters of the prob
it is therefore necessary to fix the amplitude of the nois
an arbitrary constant as this is not a variable that is stra
forwardly experimentally available. In that respect, our
sults have here typically been obtained for a noise of fi
A=0.001. The number of fingers appearing at early time
related to the most unstable wavenumber of the band o
stable modes, nevertheless the location and subsequen
linear interaction of the fingers depend on the specific
ization of the random numbers series. As a consequence
necessary to compute a set of realizations to get stati
information ons f, the main quantity of interest here. Figu
6 shows the temporal evolution ofs f for 15 different noise
realizations of identical amplitude for fixed values of

FIG. 5. Mixing zoneLd as a function of time realized with the same par
eterssPe=512,l =128,R=2, «=1d and three different values of the amp
tudeA of the noise seeding the initial condition:s¯d A=0.1, s--d A=0.01,
s—d A=0.001; s–·–d theoretical curve of a pure diffusive behaviorLd~Ît.
Inset: zoom on the first stages of the injection. The onset timet* , corre-
sponding to the time at which the mixing zone departs from the pure
sive initial transient, is a decreasing function ofA.

FIG. 6. s f as a function of time for 15 numerical simulations realized w
the same values of parameterssPe=512,l =128, R=2, «=1d but different
noiser realizations of identical amplitudeA=10−3. The dotted and dash

curves correspond to the simulations of Figs. 2 and 7, respectively.
,

-

-
n-

-
is
l

parametersR, Pe,l, and«. As can be seen, if fingering sta
always at the same onset timet* for fixed A, the contribution
to the variance due to fingering saturates to diffe
asymptotic valuess`. This corresponds to slightly differe
nonlinear interactions of the fingers as can be seen on F
and 7 which show the temporal evolution of the fingers
the, respectively, dotted and dashed curves of Fig. 6. I
patterns observed are very similar during the initial lin
phase of viscous fingering, the evolution of the finger
slightly different in the nonlinear regime, leading to differ
values ofs`. In particular, merging is observed in Fig
leading to the fast development of one finger and, t
spreading of the stripe of viscous fluid leading to a la
value ofs`.

As a consequence, to understand the influence of fi
ing on the broadening of finite slices, it is necessary to s
the parametric dependence ofks`l, the statistical ensemb
averaged asymptotic value of the fingering contributio
the variance.

VI. PARAMETER STUDY

The quantityks`l gives information on the influence
viscous fingering on the broadening of finite samples. In
plications such as chromatography and dispersion of
taminants in aquifers, such a broadening is undesirable
is therefore important to understand the optimal value
parameters for whichks`l is minimum given some con

FIG. 7. Density plots of concentration for the same values of paramete
same times as in Fig. 2, but a different noiser in the initial condition.
straints. In that respect, let us first consider a porous medium
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in which dispersion is isotropics«=1d and let us analyze th
subsequent influences ofl, R, and Pe. The anisotropic ca
s«Þ1d will eventually be tackled. The mean valueks`l is
plotted for various values of the parameters, the bar ar
this mean value spanning the range of asymptotic dat
tween the minimum and maximum observed.

A. Influence of the sample length l

The sample lengthl has been measured to have pra
cally no influence on the onset timet* of the instability.
Although Nayfeh has shown that the stability of fin
samples could be affected if the two interfaces are c
enough,24 we note that, for the smallest value of sam
length l considered heresl =32d, the rear interface featur
the same initial pattern as the one appearing on the inte
between two semi-infinite regions of different viscosities
a same random sequence in the seeding noise. Our sa
are thus here long enough for the onset timet* to depend
only on the amplitudeA of the noise seeding the initial co
dition and not feel the finite extent of the sample. The len
l influences nevertheless the broadening of the peak and
ks`l, in particular, for smalll. The points reported in Fig.
for two different Pe are obtained for one realization an
same seeding noiser in the initial condition, leading to
typical value ofs`. The smaller the extentl of the sample
the sooner the dilution of the more viscous solution into
bulk of the eluent and thus the less effective fingering. Ab
a given extentlc, s` is found to saturate. At first sight, th
might appear counterintuitive as one could expect that
longer samples, fingering is maintained for a longer t
thereby enhancing the fingering contribution to the varia
A closer inspection to the finger dynamics shows on the
trary that, after a transient where several fingers appea
interact, only one single finger remainsssee Figs. 2 and 7d. In
the absence of tip splitting, the stretching of the mixing z
becomes then exclusively diffusive as already discussed
viously by Zimmerman and Homsy.16,17 This is clearly see
in Fig. 5 which shows that the mixing length grows asÎt at
long times after a linear transient due to fingering. Once

FIG. 8. Influence of the sample lengthl on s` for s.d Pe=64 andsPd Pe
=128 sR=2, «=1d.
asymptotic diffusive regime is reached, the contribution of
d
-

e

les

s

r

.
-
d

-

fingering to the broadening of the peak dies out ands f satu-
rates tos`. Above a given critical lengthlc of the sample, th
same asymptotic single finger growing diffusively is reac
before the left and right interfaces interact. Hence the s
values` is obtained for anyl . lc. Let us note that the switc
from the fingering to the diffusive dynamics appears late
time when Pe is increased. Indeed larger Pe means
fingers that can interact for a longer time before the diffu
regime becomes dominant. As a consequence,lc is an in-
creasing function of Pe as can be seen in Fig. 8. Fu
studies need to be done to understand the role of« and of
possible tip splitting occurring for large Pe on the existe
and value of the critical lengthlc.

The fact that the contribution of fingering to the bro
ening of the peak saturates beyond a critical length o
sample has important practical consequences for chrom
raphy: if fingering is unavoidable, one might as well lo
samples of long extent as the contribution of fingerin
saturating beyond a givenlc. For long samples, the efficien
of the process depends then on the competition betwees`

2

and l2/12, the respective fingering and initial length con
butions to the peak’s variance. We can thus predict tha
lc, l ,s` /Î12, the contribution of fingering is constant a
dominates the broadening while forl .s` /Î12, the initia
sample length becomes the key factor.

B. Influence of the log-mobility ratio R

It is easy to foreseen that the largerR, the more impor
tant the viscous fingering effect.8 First of all, linear stability
analysis of viscous fingering at the interface between
semi-infinite domains18 predicts that the characteris
growth time of the instability decreases asR−2. Although
already influenced by the nonlinearities and dependent o
amplitude of the noise, the onset timet* measured in ou
simulations shows the same trendsFig. 9d. Note that, for ver
small values ofR, the onset time becomes very large wh
explains why, for samples of low viscosity, fingering mi
not be observed during the transit time across small c
matographic columns or on small scale contamination z

FIG. 9. Onset timet* of the instability for increasing values ofR sPe
=256, l =128,«=1d. s—d Best fit of the experimental points:t* ~R−2.
When R is increased, the viscous fingering contribution to
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peak broadeningks`l is more importantsFig. 10d with a
linear dependence suggesting a power law increase for
R.

C. Influence of the Péclet number Pe

The Péclet number Pe is typically experimentally
creased for a given geometry by increasing the injection
rateU. As can be seen in Fig. 11,ks`l is found to increas
linearly with Pe. Fingering induced broadening can thu
minimized by small carrier velocityU as expected. Howeve
the exact influence of the carrier velocityU is difficult to
trace because practically, a change inU also modifies th
dispersion coefficients and hence the value of«. In our di-
mensionless variables,U also enters into the characteris
time and length corresponding, respectively, toDx/U2 and
Dx/U. The concrete influence of the carrier velocity is t
more complicated to trace in reality. For a fixed inject
speed, the Péclet number can also be varied by changin
width Ly of the system. The linear dependence ofks`l on Pe
is then related to the fact that in a wider domain, more
gers can remain in competition for a longer time so th
more active fingering is maintained. This also implies thlc

FIG. 10. Influence of the log-mobility ratioR on ks`l for ssd Pe=128,l
=128; sPd Pe=128,l =512; snd Pe=256,l =128; smd Pe=256,l =512 s«
=1d.
FIG. 11. Influence of the Péclet number Pe onks`l sl =128,R=2, «=1d.
r

e

is an increasing function of Pe. In chromatographic app
tions, increasing the diameter of the columnsi.e., increasin
Ly here in our modeld is thus expected to dramatically
crease the influence of fingering in broadening. This exp
why fingering really becomes an issue for wide contam
tion zones and in preparative chromatography where
umns of very large diametersup to one meterd are sometime
constructed.

D. Influence of the ratio of dispersion coefficients «

Figure 12 shows the influence of the ratio of disper
coefficients«=Dy/Dx on the onset time of the instability. A
expected from linear stability analysis,18 decreasing« has a
destabilizing effect as fingering appears then quicker. Th
due to the fact that small transverse dispersion inhibits
mixing of the solutions and favors longitudinal growth of
fingers allowing them to survive for a longer time. As
consequence, the less viscous solution instead of being
versely homogeneous invades the more viscous fluid p
ably in the longitudinal direction leading to larger mix
zones and hence largerks`l. Figure 13 illustrates that d
creasing« has a dramatic effect on the broadening of
peak. The inset shows the same graphics in logarithmic
for «. ks`l seems to vary as lns«d at least for small values
«. Peak broadening due to fingering is therefore expect
be particularly dramatic for chromatographic applicat
where«,0.04.

VII. CONCLUSION

Viscous fingering leads to a mixing between misc
fluids of different viscosity. In the case of viscous slice
finite extent, fingering is a transient phenomenon becaus
mixing of the two fluids leads to an effective decrease o
log-mobility ratio in time. Transient fingering can nevert
less play an important role because it contributes to di
tion and broadening of the sample. In particular, we h
shown that, even if the spreading of the sample may

FIG. 12. Onset timet* of the instability for increasing values of« for
different values of the log-mobility ratio:s,d R=1, ssd R=2, snd R=3
sPe=128,l =128d.
Gaussian at long times because dispersion has again become
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the leading transport phenomenon, the variance of the
is larger than expected because of fingering at early ti
We have demonstrated this influence by numerical sim
tions of viscous fingering of miscible finite slices charac
izing the onset time of the instabilityt* and the contributio
of fingering to the sample’s variance. It is important to n
that quantitative comparison with experimental data is d
cult because the exact amplitude of the fingering contribu
to the temporal variation of the peak’s variance depends
on the amplitude and spatial realization of the noise see
the initial condition which varies from one experiment to
other. In this respect, we have computed the ensemble
aged asymptotic fingering contribution to the peak broa
ing as a function of the four relevant parameters of the p
lem, i.e., the initial length of the samplel, the initial log-
mobility ratio R, the Péclet number Pe, and the ratio betw
transverse and longitudinal dispersion coefficients«. The
broadening of the peaks due to fingering is most impo
for large R and Pe but small« while it saturates above
given initial lengthl of the sample. In chromatographic c
umns for which«,0.04, fingering is thus of crucial impo
tance particularly in preparative chromatography for wh
the large diameter of the columns lead to large Pe an
high concentration of the samples usually implies largR.
Similarly, for soil contamination, fingering will be a ma
problem in the case of stratified media such that«,1. More
work is now needed to explore the generalization of this
approach to the case where both viscosity and density v
tions as well as heterogeneous chemistry may interplay
usually the case in the applications analyzed here.
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