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Abstract – The penetration by a gravity-driven impact of a solid sphere into a granular medium
is studied by two-dimensional simulations. The scaling laws observed experimentally for both
the final penetration depth and the stopping time with the relevant physical parameters are
here recovered numerically without the consideration of any microscopic solid friction but with
dissipative collisions only. Dissipative collisional processes are thus found as essential in catching
the penetration dynamics in granular matter whereas microscopic frictional processes can only be
considered as secondary effects.
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Introduction. – A better knowledge of the impact of a
solid object into a granular target has many applied inter-
ests from both geologist and ballistic point of view [1,2].
Since a few years, numerous studies have been carried out
by physicists interested in the ejection process [3–8], the
crater morphology [9–12] and the penetration dynamics [4,
13–20], searching for scaling laws for the crater size [9–12]
and penetration depth [13–23]. For the ejection process,
a spectacular thin granular jet raising very high can be
observed after the impact on small grains of rather low
packing fraction [3–7] whereas an opening granular corona
is seen for larger grains of rather high packing fraction [8]:
the effect of air is crucial in the former case [5,6] whereas
it is negligible in the latter one. For the crater morphol-
ogy, the scaling laws found for high energy impacts of
planetary interest [1] stand for low energy impacts of
small scale laboratory experiments [9–12], indicating some
universal physical processes involved in the crater forma-
tion. For the penetration dynamics, the observed decel-
eration of the impacting sphere towards its final stop is
usually explained by a complex drag force resulting from
frictional and collisional processes and involving several
terms: a linear depth-dependent term [17] arising from
solid friction and velocity-dependent terms of linear or

(a)E-mail: jerome.crassous@univ-rennes1.fr

quadratic form arising from the ballistic [14,17,18] or the
fluid mechanics point of view [21]. Such different force
terms are not easy to extract from the sphere trajec-
tory usually tracked by video means [13–17], but recently
direct force measurements with an accelerometer inside
the impacting sphere [19] reveal that a force propor-
tional to the velocity squared is indeed experienced by the
impacting sphere at least during its first penetration stage
at high velocity and shallow depth. The stopping time
of the sphere has been studied in different experimental
works and displays a striking and rather counter-intuitive
behaviour: it is a decreasing function of the impact veloc-
ity with an asymptotic plateau for large enough impact
velocities [13,17,19]. The characteristic time scaling for the
plateau value was proposed to be τ = (d/g)1/2 [13,17] or
τ = (ρ/ρg)

1/4(d/g)1/2 [19] for a velocity larger than the
typical characteristic velocity V = (gd)1/2 [17,19], where
ρg is the density of the grains, d and ρ are the diameter
and the density of the sphere. The observed scaling law
for the final penetration depth δ that may be written as
δ/d∝ (ρ/ρg)β(H/d)α, where H is the total falling distance
covered from release to rest, is not yet satisfactorily
explained, as well as the values of the two power exponents
α and β found to be around 1/2 in experimental or numeri-
cal works [10,14,18,20–22]. Experiments are essentially 3D
(except the real 2D experiment of Ciamarra et al. [13])
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Fig. 1: (Colour on-line) Time evolution of the penetration
z of a sphere impacting the granular medium, where z = 0
corresponds to the initial surface of the grain piling. The
projectile of diameter d= 30 dg = 30mm and of density ρ=
ρg = 2520 kgm

−3 hits the grains at the velocity vi = 1ms
−1.

Inset: snapshot during penetration by impact.

whereas the numerical simulations are 2D with similar
values for the power exponents. The existence of a finite
penetration depth δ is always referred to the existence
of a non-zero solid friction μ in contrast to the case
of simple fluids where the sphere would not stop but
reach a limit velocity in the absence of solid friction. The
μ-dependence of δ was proposed to be δ∝ μ−1 [10] (the
penetration depth would thus be no more finite for zero
solid friction) from experimental investigation varying the
grain material. But experimentally, it is hard to change
the coefficient of solid friction in a large range and without
changing other crucial parameters such as the coefficient
of restitution and the solid fraction.
In the present paper, we show by numerical simula-

tions that no microscopic solid friction is necessary to
explain a finite penetration depth for a sphere impact-
ing on granular matter. Furthermore, we show that the
scaling law δ/d∝ (ρ/ρg)β(H/d)α observed experimentally
or numerically with non-zero microscopic solid friction
still stands in the zero microscopic solid friction limit.
We also recover that the stopping time ts is constant at
large enough impact velocities and show that it scales
as ts � τ = (ρd/ρgg)1/2 for impact velocities larger that
the typical characteristic velocity V = (ρgd/ρg)

1/2. These
scalings clarify the previous scalings discussed above. The
numerical results will be shown and discussed after having
presented the 2D numerical method used in the present
paper.

Numerical method. – We use the method of molec-
ular dynamics to perform two-dimensional simulations in
the geometry shown in the inset of fig. 1. The granular
target is prepared by the sedimentation of an initial dilute
configuration under the action of the gravity acceleration
g= 9.8m s−2. The grains are modeled as a random packing
of spheres of mean diameter dg, mass mg and density ρg

contained in a rectangular box bounded by hard walls. In
order to avoid any crystallization of the packing, a slight
dispersion in the grain diameter is introduced, with an
uniform distribution in the range 0.8dg to 1.2dg. Before
the impact, the packing fraction in the granular medium
is φ� 0.83. The projectile is a sphere of diameter d, mass
m and density ρ which is dropped onto the granular pack-
ing. The projectile is thrown downwards at the velocity
required, and its value at impact will be noted vi. This is
equivalent to the usual experimental situation where the
sphere is dropped from the height h and impacts the gran-
ular surface with the velocity vi =

√
2gh. Note that the box

containing the granular medium is large enough (> 8d) so
that the projectile is not affected by the surrounding walls
and the layer of grains is high enough to avoid any bottom
wall effects during the penetration [22]. The number of
grains in the simulations ranges from 104 for small boxes
to 105 for largest ones.
As the goal of this paper is to show that microscopic

solid friction is not essential in explaining the finite
penetration of a projectile into a granular material, we
do not take into account any static nor dynamic friction
between the grains. The interaction forces are thus taken
as purely normal with no tangential components. The
interaction force between two grains, or between one grain
and the projectile or the bounded walls, is modeled as a
dissipative Hertz law [24] such as

Fn =−kξ3/2− γ dξ
dt
, (1)

where k is the non-linear stiffness, γ is a damping coeffi-
cient, and ξ and dξ/dt are respectively the interpenetra-
tion and the velocity of interpenetration of the grains. For
two identical spherical grains of diameter dg, Young modu-
lus E and Poisson coefficient ν, the non-linear stiffness k
is given by k= 2E

√
2dg/3(1− ν2). The collision time for

a non-dissipative contact (γ = 0) between two grains is

τc ≈ 3.21
(meff
k

)
v−1/5n , (2)

where vn is the relative normal velocity and meff =mg/2
the effective mass for two identical colliding grains. The
collision time is not very different in the case of a non-
zero dissipation (γ �= 0). The equations of motion for the
grains are integrated using a standard second order Verlet
algorithm. The choice for the numerical time step Δt
must be such that Δt� τc in order to ensure numerical
accuracy.
In the following, we present numerical simulations for

a granular material composed of glass spheres (density
ρg = 2520 kgm

−3) with an effective elastic modulus E∗ =
E/(1− ν2) = 69× 109 Pa and of mean diameter dg = 1mm
(mass mg = 1.3mg). The non-linear stiffness is thus k=
2× 109Nm3/2 and the collision time for a typical collision
velocity vn = 1ms

−1 is τc = 2.7μs. The time step is chosen
as Δt= 0.1μs� τc. For a non-zero damping coefficient γ,
the coefficient of normal restitution for normal incidence
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Fig. 2: Normalized penetration depth δ/d of the sphere as
a function of the normalized total falling distance H/d for
different projectile diameters: d= 20dg (�), d= 30dg (◦), d=
40dg (�) and d= 70dg (�). The sphere/grains density ratio
is ρ/ρg = 1. Dashed line: power law fit δ/d∝ (H/d)

α, with
α� 0.31.

en =−vfn/vin, which is the ratio of the relative normal
velocity after an impact over the velocity before the
impact, is smaller than the ideal limit value 1 for perfect
elastic collisions. More precisely, with model eq. (1), en
decreases slowly with the collision velocity as (1− en)∝
(vin)

−1/5 [24]. With the damping value γ = 0.065 kg s−1,
the restitution coefficient is en = 0.9 for v

i
n = 1ms

−1. It
should be stressed that the following results are qualita-
tively only weakly dependent on the damping factor value.

Numerical results and discussion. – Figure 1
displays the time evolution of the position z(t) of the
projectile during its penetration through the grains,
where z is the distance between the initial horizontal free
surface of the granular medium and the bottom of the
impacting sphere. The penetration increases with time up
to a maximum depth δ at the time ts. Note that a small
rise of the sphere, of typically a few percent of the total
penetration, is observed at the end of most of the runs.
We attribute this effect to the absence of microscopic
static friction in the interaction law (eq. (1)). Indeed, the
grains ejected during the collision process are redeposited
on the granular material and exert an increasing pressure
on it, inducing a downwards motion of the granular
material. This small effect was not reported in numerical
simulations including microscopic solid friction [18]. In the
following, we shall consider this maximum penetration δ
as the final penetration depth and the corresponding time
ts as the stopping time. Note that dropping the sphere
from slightly different x-positions gives very similar z(t)
even if the acceleration signals are quite different.

Penetration depth. Figure 2 shows the evolution of
the normalized penetration depth δ/d as a function of
the normalized total falling distance H/d, where H =
h+ δ is the sum of the free-fall height h= v2i /2g and the
penetration depth. The diameter of the impacting sphere
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Fig. 3: (δ/d)(H/d)−α as a function of the sphere/grains density
ratio ρ/ρg. Dashed line: power law fit (δ/d)(H/d)

−α
∝ (ρ/ρg)

β ,
with β � 0.74.

ranges from d= 20dg to 70dg, and its density is here kept
constant and equalled to the grain density (ρ= ρg). In
the log-log plot of fig. 2, the data are aligned along a
straight line of slope α= 0.31± 0.02 meaning that the
penetration depth δ varies with H following a power law
δ/d∝ (H/d)α. The variation of the penetration depth with
the density (i.e. with the mass) of the projectile is shown
in fig. 3, where (δ/d)/(H/d)−α is plotted as a function
of the density ratio ρ/ρg between the projectile and the
grains. The penetration depth is found to depend on
ρ/ρg with a power law of the form δ/d∝ (ρ/ρg)β , with
β = 0.74± 0.02. Finally, grouping the fall height and the
mass dependencies, one obtains

δ

d
=A

(
ρ

ρg

)β (
H

d

)α
, (3)

with A= 0.92± 0.02. This power law scaling for the
penetration depth is observed in various experimental
and numerical studies [10,14,18,20–22]. The value of the
exponent α� 0.31 is close to the commonly reported
values between 0.33 and 0.40, and the exponent β � 0.74
characterizing the dependence with the density ratio is
not far from the reported values ranging from 0.50 to
0.61. Thus, the impacting sphere stops at a finite depth
without any microscopic friction and the scaling laws
for the penetration depth are in agreement with those
observed experimentally or numerically with friction.

Forces. Let us now examine the forces undergone
by the sphere after the impact, to extract the main
ingredients leading to its stop. The force exerted by the
grains on the sphere depends mainly on the penetration
depth z and on the velocity v of the projectile [17–19].
For dense packings, experimental results show that this
resistance force may be separated into two independent
functions of position Fz(z) and velocity Fv(v) so that the
Newton law for the sphere motion can be written as

dv

dt
= g− Fz(z)

m
− Fv(v)
m
. (4)
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Fig. 4: Reduced acceleration −dv/dt+ g of the impacting
sphere (diameter d= 20dg, density ρ= ρg) as a function of its
velocity squared v2, at a specific depth: z = 30mm (◦), z =
40mm (�) and z = 50mm (�). Dashed lines: linear trends of
the data by−dv/dt+ g= Fz(z)/m+ v

2/d1, with d1 � 36.4mm.

Fz is usually attributed to solid friction [4,17] and Fv is
considered of collisional or inertial origin [17–19].
Figure 4 displays the reduced acceleration of the sphere

as a function of its velocity at a given penetration
depth (z = 30mm) and suggests that the drag force Fv
is proportional to v2, in agreement with the expression
mv2/d1 proposed recently by Katsuragi and Durian [17],
where d1 is a characteristic dissipative length. Note that
the reduced force is non-zero at vanishing velocity as there
is still a non-zero depth-dependent force term Fz(z). This
behavior is observed with different sphere diameters in
the range 20mm< d< 100mm and different density ratio
in the range 1< ρ/ρg < 10. Figure 5a shows that d1 does
not depend on the depth of the projectile z and thus Fv
does not depend on z as found experimentally [17], which
justify the writing of eq. (4). Figures 5b and c show that
d1 is proportional both to the projectile diameter d and to
the density ratio ρ/ρg leading to d1 ∝ ρd/ρg. The velocity-
dependent force term Fv(v) thus scales as Fv/m∝ ρgv2/ρd
indicating its inertial or collisional origin.
Plotting now in fig. 6a the force term at vanishing

velocity v as a function of z shows that the simple
dependence Fz ∝ z proposed by Katsuragi and Durian [17]
is compatible with our data despite the high scattering at
low z (z � d) where the sphere is not fully immersed in
the granular medium. Figures 6b and c show that Fz/m
is proportional to 1/d and ρg/ρ. The depth-dependent
force term Fz thus scales as Fz(z)/m∝ ρggz/ρd. This force
term linear in z has been previously proposed and seen
by various authors [17–19] with a solid friction origin,
but the extracted coefficient of friction necessary to fit
the data was far from the standard values [17]. Here, the
Fz(z) force term does not come from microscopic solid
friction as there is no microscopic solid friction in our
numerical simulations. The depth-dependent term Fz(z)
can thus simply viewed as a hydrostatic term as already
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Fig. 5: (a) Characteristic length d1 as a function of the depth
z of the projectile. Dashed line: constant fit d1 = 36.4mm.
(b) Characteristic length d1 as a function of the diameter d of
the projectile (density ρ= ρg) at a depth z = 20mm. Dashed
line: linear fit d1 = 1.3d. (c) Characteristic length d1/d as a
function of the density ratio ρ/ρg at z = 30mm for a projectile
of diameter d= 20dg. Dashed line: linear fit d1/d= 1.2ρ/ρg.

suggested in [25] for the experimental penetration of flat
plates and in [4] for an impacting sphere in very loose sand.
The pressure increases linearly with the depth as ρggz and
so is the force Fz on the sphere. This “hydrostatic” force
term is not Archimedean as the penetrating sphere is never
immersed in the granular packing before it stops as can be
seen here numerically (see the inset snapshot of fig. 1) and
experimentally [19]. It follows that Newton’s law for the
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projectile during its penetration may be written as

dv

dt
= g− az ρgg

ρd
z− av ρgv

2

ρd
, (5)

where az = 1± 0.1 and av = 0.8± 0.1 are numerical
prefactors.
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Fig. 7: Normalized stopping time ts/τ as a function of the
normalized impact velocity vi/V , for: ρ/ρg = 0.5 and d=
20mm (�), d= 30mm (�), d= 40mm (�), d= 60mm (�),
d= 80mm (•), d= 100mm (	); ρ/ρg = 1 and d= 20mm (�),
d= 30mm (�), d= 40mm (�), d= 70mm (◦); ρ/ρg = 1.5 and
d= 30mm (
); ρ/ρg = 2 and d= 20mm (�), d= 30mm (�);
ρ/ρg = 3 and d= 20mm (♦); ρ/ρg = 4 and d= 30mm (+);
ρ/ρg = 6 and d= 20mm (×). Dashed line: guideline for the
eyes. Solid line: calculated stopping time from model eq. (5).
Inset: stopping time ts as a function of the impact velocity vi
for the same set of data.

Stopping time. Let us now focus on the stopping time.
The inset of fig. 7 displays the stopping time ts of the
projectile as a function of its impact velocity vi. Numerical
data are observed to be very scattered depending on the
velocity, diameter and density of the projectile. More
precisely, ts decreases with the impact velocity vi for any
given size and density of the projectile and increases with
the projectile diameter d and with its density ratio ρ/ρg.
Two time scales can be extracted from the non-linear
differential equation (5) by considering independently the
two force terms. Considering only the depth-dependent
force term, the characteristic time τz for the stopping time
is

τz =

(
ρd

ρgg

)1/2
, (6)

which is independent of the impact velocity. Considering
now only the non-linear velocity-dependent force term in
eq. (5) leads to the characteristic time

τv =
ρd

ρgvi
, (7)

which depends on the impact velocity vi. As both force
terms play a non-negligible role in the penetration (the
velocity-dependent force term decreases from its maxi-
mal value at impact to zero at the stop whereas the
depth-dependent force term increases from zero at impact
to its maximal value at the stop), the total stopping
time ts(τz, τv) is a combination of the two characteris-
tic time scales τz and τv, and can thus be expressed as
ts/τz = f(τz/τv). Note that the time scale ratio is τz/τv =
vi(ρg/ρgd)

1/2, which corresponds also to the velocity ratio
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vi/V of the impact velocity vi to the characteristic velocity
V = (ρgd/ρg)

1/2.
By using the characteristic time scale τz and velocity

scale V , i.e. by plotting ts/τz as a function of vi/V , all
the data collapse on the same master curve with two
distinct parts (fig. 7): i) for low enough impact velocities
(vi/V � 2), the stopping time decreases with increasing
impact velocity; ii) for large enough impact velocities
(vi/V � 2), a plateau is reached, so that the stopping time
does not depend on the impact velocity and tends to the
constant value ts/τz � 1.7. The existence of a single curve
in the normalized plot ts/τz vs. vi/V , and the critical
values vi/V � 2 and ts/τz � 1.7 close to 1 indicate that
the typical velocity scale V and time scale τz are relevant
physical parameters for the problem, which validate the
two independent model forces acting on the penetrating
sphere. The stopping time calculated by eq. (5) with a
stop condition at v= 0 agrees with the simulation data
to within 20% (fig. 7). The calculated penetration depth
δ/d obtained by solving eq. (5) deviates from the data by
as much as 50% since small errors in the force terms in
the approximated model equation have a more important
effect on the integrated position than on the stopping
time.

Conclusion. – By performing numerical simulations
for an impacting sphere in a frictionless granular material,
one obtains the same scaling law for the penetration depth
as in simulations with solid friction or real experiments.
This shows that dissipation by microscopic solid friction
can be ignored and dissipation by collisions is sufficient
to catch the penetration dynamics in granular matter.
Analysing the forces reveals that besides a velocity squared
force term from collisional origin, exists a depth-dependent
force term. This pressure increasing term with the depth
is sufficient to stop the sphere, and steric hindrance
with dissipation prevents the sphere from settling, by
contrast to simple liquids. The scalings found for the
two force terms allow for the prediction of the scaling
of the stopping time which is indeed observed: a plateau
value at high impact velocity and an increasing value at
decreasing velocity. This scaling for the stopping time
without any microscopic solid friction is also in agreement
with what was observed previously. If microscopic solid
friction appears needless to explain the scaling laws for
both the final penetration depth and the stopping time of
the projectile, it would certainly affect their precise value
from a quantitative point of view.
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[24] Schäfer J., Dippel S. and Wolf D. E., J. Phys. I,
6 (1996) 5.

[25] Stone M. B. et al., Phys. Rev. E, 70 (2004) 041301;
Nature, 427 (2004) 503.

44002-p6


